ЕГЭ Профиль
Задание 745
Найдите корень уравнения: $$\frac{4}{7}x=7\frac{3}{7}$$
$$\frac{4}{7}x=7\frac{3}{7}\Leftrightarrow$$ $$\frac{4}{7}x=\frac{52}{7}\Leftrightarrow$$$$x=\frac{52}{7}*\frac{7}{4}\Leftrightarrow$$$$x=13$$
Задание 749
Найдите корень уравнения: $$(x-6)^{2}=-24x$$
$$(x6)^{2}=-24x\Leftrightarrow$$$$x^{2}-12x+36=-24x\Leftrightarrow$$$$x^{2}+12x+36=0\Leftrightarrow$$$$(x+6)^{2}=0\Leftrightarrow$$$$x=-6$$
Задание 758
Найдите корень уравнения: $$\frac{x+8}{5x+7}=\frac{x+8}{7x+5}$$. Если уравнение имеет более одного корня, в ответе запишите больший из корней.
ОДЗ: $$5x+7 \neq 0 ; 7x+5 \neq 0 \Leftrightarrow x\neq -1,4 ; x \neq -\frac{5}{7}$$
$$\frac{x+8}{5x+7}=\frac{x+8}{7x+5}\Leftrightarrow$$$$(x+8)(7x+5)=(x+8)(5x+7)\Leftrightarrow$$$$(x+8)(7x+5)-(x+8)(5x+7)=0 \Leftrightarrow$$$$(x+8)(7x+5-5x-7)=0 \Leftrightarrow$$$$x=-8 ; 2x-2=0 \Leftrightarrow$$$$x=-8 ; x=1$$
Наибольший из корней равен 1.
Задание 760
Найдите корень уравнения: $$\frac{1}{4x-1}=5$$
ОДЗ: $$4x-1 \neq 0 \Leftrightarrow x \neq 0,25$$
$$\frac{1}{4x-1}=5\Leftrightarrow$$$$1=5(4x-1) \Leftrightarrow $$$$ 20x-5=1 \Leftrightarrow$$$$20x=6 \Leftrightarrow $$$$x=0,3$$
Задание 765
Найдите корень уравнения:$$\sqrt{3x-8}=5$$
ОДЗ: $$3x-8 \geq 0 \Leftrightarrow $$$$x \geq \frac{8}{3}$$
$$\sqrt{3x-8}=5 \Leftrightarrow$$$$(\sqrt{3x-8})^{2}=5^{2} \Leftrightarrow$$$$3x-8=25\Leftrightarrow$$$$3x=33\Leftrightarrow$$$$x=11$$
Задание 899
Решите уравнение $$ \sqrt{-x^{2}}=x-x^{2} $$ .Если корней несколько, то в ответе укажите больший корень.
$$ \sqrt{-x^2}=x-x^2\ $$ $$ -x^2=x^2-2x^3+x^4 $$ $$ 2x^2-2x^3+x^4=0 $$ $$ x^2\left(2-2x+x^2\right)=0 $$ $$ x=0 $$ или $$ 2-2x+x^2 = 0 $$ у него решений нет
Задание 971
Найдите корень уравнения $$3^{\log_9 (5x-5)}=5$$
$$3^{\log_9 (5x-5)}=5\Leftrightarrow 3^{\frac{1}{2}\log_3 (5x-5)}=5 \Leftrightarrow$$ $$ 3^{\log_3 \sqrt{5x-5}}=5\Leftrightarrow \sqrt{5x-5}=5 \Leftrightarrow$$ $$ 5x-5=25\Leftrightarrow x=6$$
Задание 1010
Найдите корень уравнения $$\log _{2} (-x) + \log _{2} (2-x) = 3$$ .Если корней несколько, то в ответе укажите их сумму.
$$\log _{2} (-x) + \log _{2} (2-x) = 3$$
$$-x > 0 ; 2 - x > 0 \Leftrightarrow x<0$$
$$\log _{2} ((-x) *(2-x)) = \log _{2} 8$$
$$-2x+x^2=8$$
$$x^2-2x-8=0$$
$$x_1=4 - не входит в ОДЗ ; x_2 =-2$$
Задание 1173
Найдите корень уравнения $$ \arccos x= \frac{2\pi }{3}$$
Для того, чтобы решить данное уравнение $$ \arccos x= \frac{2\pi }{3}$$, нам, фактически, надо указать абсциссу, которой соответствует точка $$\frac{2\pi }{3}$$ на единичной окружности. У этой точки координаты $$(-\frac{1}{2};\frac{\sqrt{3}}{2})$$ $$ x = - \frac{1}{2} $$
Задание 1723
Найдите корни уравнения $$25x^2-1=0$$.
Если корней несколько, запишите их через точку с запятой в порядке возрастания.
$$25x^2-1=0 \Leftrightarrow$$$$25x^{2}=1 \Leftrightarrow $$$$x^{2}=\frac{1}{25} \Leftrightarrow $$$$x=\pm \sqrt{\frac{1}{25}}=$$$$\pm\frac{1}{5}=\pm 0,2$$
Задание 1724
Найдите корни уравнения $$2x^2-10x=0$$.
Если корней несколько, запишите их через точку с запятой в порядке возрастания.
$$2x^2-10x=0 \Leftrightarrow$$$$2x(x-5)=0 \Leftrightarrow$$$$x=0 ; x=5$$
Задание 1727
На рисунке изображены графики функций $$y=3-x^2$$ и $$y=-2x$$. Вычислите координаты точки B.
Приравняем функции, и найдем координаты точки, абсцисса которой будет положительна:
$$3-x^{2}=-2x$$
$$x^{2}-2x-3=0$$
По теореме Виета:
$$\left\{\begin{matrix}x_{1}+x_{2}=2\\x_{1}*x_{2}=-3 \end{matrix}\right.\Leftrightarrow$$$$\left\{\begin{matrix}x_{1}=3\\x_{2}=-1\end{matrix}\right.$$
То есть рассматривать мы будем точку с абсциссой 3. Подставим ее в любую из функций:
$$y(3)=3-3^{2}=-6$$
То есть координаты точки B $$(3;-6)$$
Задание 1728
Уравнение $$x^2+px+q=0$$ имеет корни −6; 4. Найдите p.
По теореме Виета: $$x_{1}+x_{2}=-p$$, тогда $$p=-(-6+4)=2$$