ЕГЭ Профиль
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 2269
Длину биссектрисы треугольника, проведённой к стороне a, можно вычислить по формуле $$l_{a}=\frac{2bc \cos\frac{\alpha}{2}}{b+c}$$. Вычислите $$\cos\frac{\alpha}{2}$$, если $$b=1$$, $$c=3$$, $$l_{a}=1,2$$.
Выразим $$\cos\frac{\alpha}{2}$$ из данной формулы: $$\cos\frac{\alpha}{2}=\frac{l_{a}(b+c)}{2bc}$$. Найдем значение $$\cos\frac{\alpha}{2}=\frac{1,2(1+3)}{2*1*3}=0,8$$
Задание 2280
Центростремительное ускорение при движении по окружности (в м/c2 ) можно вычислить по формуле $$a=\omega^{2}R$$ где $$\omega$$ — угловая скорость (в с−1), а R — радиус окружности. Пользуясь этой формулой, найдите расстояние R (в метрах), если угловая скорость равна 3 с−1, а центростремительное ускорение равно 45 м/c2.
Задание 2283
Мощность постоянного тока (в ваттах) вычисляется по формуле P = I2R, где I — сила тока (в амперах), R — сопротивление (в омах). Пользуясь этой формулой, найдите сопротивление R (в омах), если мощность составляет 150 ватт, а сила тока равна 5 амперам.
Задание 2288
Площадь четырёхугольника можно вычислить по формуле $$S=\frac{d_{1}d_{2}\sin \alpha }{2}$$, где d1 и d2 — длины диагоналей четырёхугольника, $$\alpha$$ — угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d1, если d2=7, $$\sin \alpha=\frac{2}{7}$$, S=4.
Задание 2941
При сближении источника и приёмника звуковых сигналов, движущихся в некоторой среде по прямой навстречу друг другу, частота звукового сигнала, регистрируемого приёмником, не совпадает с частотой исходного сигнала f0 = 150 Гц и определяется следующим выражением $$f=f_{0}\cdot\frac{c+u}{c-v}$$ (Гц), где c — скорость распространения сигнала в среде (в м/с), а u=10 м/с и v=15 м/с — скорости приёмника и источника относительно среды соответственно. При какой максимальной скорости c (в м/с) распространения сигнала в среде частота сигнала в приёмнике f будет не менее 160 Гц?
$$160=150\cdot\frac{c+10}{c-15}$$ $$16=\frac{15\cdot(c+10)}{c-15}$$ $$16c-15\cdot16=15c+15\cdot10$$ $$16c-15c=15\cdot16+15\cdot10$$ $$c=15\cdot26=390$$
Задание 2988
По закону Ома для полной цепи сила тока, измеряемая в амперах, равна $$I=\frac{\varepsilon }{R+r}$$, где ε — ЭДС источника (в вольтах), r=4 Ом — его внутреннее сопротивление, R — сопротивление цепи (в омах). При каком наименьшем сопротивлении цепи сила тока будет составлять не более 5% от силы тока короткого замыкания $$I_{k3}=\frac{\varepsilon }{r}$$ ? (Ответ выразите в омах.)
$$\frac{\varepsilon }{R+r}=0.05*\frac{\varepsilon }{r}$$ $$\frac{1}{R+r}=\frac{1}{20r}$$ $$R+r=20r$$ $$R=19r=19*4=76$$
Задание 3073
$$140=\frac{1260\cdot10}{2\cdot18\cdot S}\Rightarrow$$
$$\Rightarrow S=\frac{1260\cdot10}{140\cdot2\cdot18}=2,5$$
Задание 3286
В розетку электросети подключены приборы, общее сопротивление которых составляет R1 = 90 Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите наименьшее возможное сопротивление R2 этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями R1 Ом и R2 Ом их общее сопротивление даeтся формулой $$R=\frac{R_{1}R_{2}}{R_{1}+R_{2}}$$ (Ом), а для нормального функционирования электросети общее сопротивление в ней должно быть не меньше 9 Ом. Ответ выразите в омах.
Задание 3373
Уравнение состояния идеального газа (уравнение Менделеева — Клапейрона) — устанавливает зависимость между давлением, объёмом и абсолютной температурой идеального газа. Уравнение имеет вид: $$p\cdot V=\frac{m}{M}\cdot R\cdot T$$, где p – давление (Па), V – объем газа (м3), m – масса газа (кг), M – молярная масса, R≈8.31 дж/моль·K - универсальная газовая постоянная, T – абсолютная температура газа (К). Определите температуру (K) кислорода массой 64 г, находящегося в сосуде объёмом 1 л при давлении 5 • 106 Па. Молярная масса кислорода М = 0,032 кг/моль. Ответ округлите до
целого числа.
$$p\cdot V=\frac{m}{M}\cdot R\cdot T$$
$$m=64$$г=$$\frac{64}{1000}$$ кг
$$V=1$$л=$$\frac{1}{1000}$$ м3
$$T=\frac{pV\cdot M}{m\cdot R}=\frac{5\cdot10^{6}\cdot\frac{1}{1000}\cdot\frac{32}{1000}}{\frac{64}{1000}\cdot\frac{831}{100}}=$$
$$=\frac{pV\cdot M}{m\cdot R}=\frac{5\cdot10^{3}\cdot32\cdot10^{2}}{2\cdot64\cdot831}=$$
$$=\frac{500000}{2\cdot831}\approx300,8\approx301$$
Задание 4367
Для получения на экране увеличенного изображения лампочки в лаборатории используется собирающая линза с главным фокусным расстоянием $$f=30$$ см. Расстояние $$d_{1}$$ от линзы до лампочки может изменяться в пределах от 30 до 50 см, а расстояние $$d_{2}$$ от линзы до экрана – в пределах от 150 до 180 см. Изображение на экране будет четким, если выполнено соотношение $$\frac{1}{d_{1}}+\frac{1}{d_{2}}=\frac{1}{f}$$. Укажите, на каком наименьшем расстоянии от линзы можно поместить лампочку, чтобы еe изображение на экране было чeтким. Ответ выразите в сантиметрах.
Задание 4369
Перед отправкой тепловоз издал гудок с частотой $$f_{0}=440$$ Гц. Чуть позже издал гудок подъезжающий к платформе тепловоз. Из-за эффекта Доплера частота второго гудка f больше первого: она зависит от скорости тепловоза по закону $$f(v)=\frac{f_{0}}{1-\frac{v}{c}}$$ (Гц), где c – скорость звука (в м/с). Человек, стоящий на платформе, различает сигналы по тону, если они отличаются не менее чем на 10 Гц. Определите, с какой минимальной скоростью приближался к платформе тепловоз, если человек смог различить сигналы, а $$c=315$$ м/с. Ответ выразите в м/с.
Задание 4370
По закону Ома для полной цепи сила тока, измеряемая в амперах, равна $$I=\frac{\varepsilon}{R+r}$$, где $$\varepsilon$$ – ЭДС источника (в вольтах), $$r=1$$ Ом – его внутреннее сопротивление, R – сопротивление цепи (в омах). При каком наименьшем сопротивлении цепи сила тока будет составлять не более $$20$$ % от силы тока короткого замыкания Iкз=$$\frac{\varepsilon}{r}$$? (Ответ выразите в омах.)
Задание 4371
Сила тока в цепи I (в амперах) определяется напряжением в цепи и сопротивлением электроприбора по закону Ома: $$I=\frac{U}{R}$$, где U – напряжение в вольтах, R – сопротивление электроприбора в омах. В электросеть включeн предохранитель, который плавится, если сила тока превышает 4 А. Определите, какое минимальное сопротивление должно быть у электроприбора, подключаемого к розетке в 220 вольт, чтобы сеть продолжала работать. Ответ выразите в омах.
Задание 4372
Амплитуда колебаний маятника зависит от частоты вынуждающей силы, определяемой по формуле$$A(\omega)=\frac{A_{0}\omega_{p}^{2}}{|\omega_{p}^{2}-\omega^{2}|}$$, где $$\omega$$ – частота вынуждающей силы (в с-1), $$A_{0}$$ – постоянный параметр, $$\omega_{p}=360$$ с-1 – резонансная частота. Найдите максимальную частоту $$\omega$$, меньшую резонансной, для которой амплитуда колебаний превосходит величину $$A_{0}$$ не более чем на 12,5%. Ответ выразите в с-1 .