Перейти к основному содержанию

ЕГЭ Профиль

Наибольшее и наименьшее значение функций

Исследование тригонометрических функций

 
Аналоги к этому заданию:

Задание 9526

Найдите наименьшее значение функции $$y=6+\frac{\sqrt{3}\pi}{2}-3\sqrt{3}x-6\sqrt{3}\cos x$$ на отрезке $$[0;\frac{\pi}{2}]$$

Ответ: -3
 
Аналоги к этому заданию:

Задание 8911

Найдите точку минимума функции $$y=(3-2x)\cos x+2\sin x+4$$, принадлежащую промежутку $$(0;\frac{\pi}{2})$$

Ответ:
 
Аналоги к этому заданию:

Задание 8891

Найдите наименьшее значение функции $$y=-9-8\sqrt{3}\pi+24\sqrt{3}x-48\sqrt{3}\sin x$$ на отрезке $$[0;\frac{\pi}{2}]$$

Ответ: -81
 
Аналоги к этому заданию:

Задание 8285

Найдите наименьшее значение функции $$y=3\cos x-\frac{48}{\pi}x+19$$ на отрезке $$[-\frac{2\pi}{3};0]$$

Ответ: 22
 
Аналоги к этому заданию:

Задание 8266

Найдите наибольшее значение функции $$y=\log_{2}(\sin x-\cos x)$$, на отрезке $$[\frac{\pi}{2};\pi]$$
Ответ: 0,5
Скрыть

Функция логарифма, при основании больше единицы, возрастает, следовательно, наибольшее значение она будет принимать при наибольшем значение логарифмируемой функции $$f(x)=\sin x-\cos x$$

Найдем производную и приравняем ее к нулю: $$f'(x)=\cos x+\sin x=0| :\cos x\Leftrightarrow$$$$1+tg x=0\Leftrightarrow$$$$tg x=-1\Leftrightarrow$$$$x=-\frac{\pi}{4}+\pi n, n\in Z$$

При этом из множества этих точек на отрезке $$[\frac{\pi}{2};\pi]$$ располагается $$\frac{3\pi}{4}$$, которая является точкой максимума. Тогда $$y(max)=y(\frac{3\pi}{4})=\log_{2}(\sin \frac{3\pi}{4}-\cos \frac{3\pi}{4})=$$$$\log_{2}(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2})=$$$$\log_{2} \sqrt{2}=\frac{1}{2}=0,5$$