ЕГЭ Профиль
Задание 942
Найдите наименьшее значение функции $$f(x)=(x^{2}-8x+8)*e^{2-x}$$ на отрезке [1; 7].
Найдем производную функции: $$f^{'}(x)=(2x-8)e^{2-x}+(-1)e^{2-x}(x^{2}-8x+8)=$$
$$=e^{2-x}(2x-8-x^{2}+8x-8)=e^{2-x}(-x^{2}+10x-16)$$
Приравняем производную к нулю:
$$e^{2-x}(-x^{2}+10x-16)=0$$ $$e^{2-x}=0$$
решений не имеет $$(-x^{2}+10x-16)=0$$ x1=2 и x2 =8
Отметим эти точки на координатной прямой и расставим знаки производной:
Точка минимума там, где производная меняет знак с - на +, то есть в точке 2
Подставим данное значение в первоначальную функцию и получим:
$$f(2)=(2^{2}-8*2+8)*e^{2-2}=(4-16+8)*1=-4$$
Задание 979
Найдите точку максимума функции $$f(x)=\ln (x+5)-2x+9$$
Найдем производную функции и приравняем ее к нулю: $$f^{'}(x)=\frac{1}{x+5}-2=0\Leftrightarrow \frac{1-2x-10}{x+5}=0\Leftrightarrow$$ $$ \frac{-2x-9}{x+5}=0\Leftrightarrow x=-4.5 ; x\neq -5 $$ Отметим полученные точки на координатной прямой и расставим знаки производной. Получим, что точка -4,5 - точка максимума
Задание 1241
Найдите наибольшее значение функции $$f(x)=2^{x}(x+1)$$ , на отрезке [-1;2]
Найдем производную этой функции и приравняем ее к нулю:
$$f'(x)=2^{x}\ln 2(x+1)+2^{x}$$
$$2^{x}(\ln 2(x+1)+1)=0$$
$$\ln 2 * x+ \ln 2 + 1 = 0$$
$$x = -1 - \frac{1}{\ln 2}$$
Данное значение меньше -1, значит точка экстремума левее нашего промежутка, а это означает, в свою очередь, что на заданном промежутке функция монотонна. Если мы подставим ноль в производную, то получим, что на промежутке, где расположен ноль, производная больше нуля, значит функция возрастает. Поэтому наибольшее значение функции будет в конце промежутка.
$$f(2)=2^{2}(2+1)=4*3=12$$
Задание 1295
Найдите точку минимума функции $$f(x) =x^{2}-3.75x- \ln (x+2)$$
Задание 2737
Найдите точку минимума функции: $$y=(73-x)\cdot e^{73-x}$$
$$y=(73-x)\cdot e^{73-x}$$
$${y}'={(73-x)}'\cdot e^{73-x}+(73-x){(e^{73-x})}'=$$ $$=- e^{73-x}+(73-x)\cdot(-e^{73-x})=$$ $$-e^{73-x}(1+73-x)=0$$
$$x=74$$
Задание 2789
Найдите наибольшее значение функции $$y=10\cdot \ln(x+5)-10x-21$$ на отрезке [‐4,5; 0].
$${y}'=\frac{10}{x+5}-10=0$$ $$\frac{10-10x-50}{x+5}=0$$ $$\Leftrightarrow$$ $$\frac{-10x-40}{x+5}=0$$ $$x=4$$ $$x\neq -5$$ $$y=10\cdot \ln(-4+5)-10\cdot(-4)-21=19$$
Задание 3117
Найдите точку максимума функции: $$y=(x^{2}-15x+15)\cdot e^{x+3}$$
$$y'=(2x-15)\cdot\exp^{x+3}+(x^{2}-15x+15)\cdot\exp^{x+3}=\exp^{x+3}(x^{2}-13x)=0$$ $$x=0$$ $$x=13$$
Задание 3288
Найдите точку максимума функции $$y=0,5x^{2}-11x+28*\ln x + 9$$
$$y'=x-11+\frac{28}{x}=0$$ $$\frac{x^{2}-11x+28}{x}=0$$ $$x=7 ; x=4 ; x\neq 0$$ Начертим координатную прямую и отметим полученные точки. На интервале от 0 до 4 производная имеет положительные значения, от 4 до 7 - отрицательные и от 7 до плюс бесконечности - положительные, значит: 7 - точка минимума 4 - точка максимума
Задание 3375
Найдите точку минимума функции $$f(x)=x^{8}\cdot e^{5x+6}$$
$$f'(x)=(x^{8})'\cdot\exp^{5x+6}+x^{8}\cdot(\exp^{5x+6})'=$$ $$=8x^{7}\cdot\exp^{5x+6}+x^{8}\cdot\exp^{5x+6}\cdot5=$$ $$=\exp^{5x+6}\cdot x^{7}\cdot(8+5x)=0$$ $$x=0$$ или $$x=-\frac{8}{5}=-1,6$$
Задание 5239
Найдите наименьшее значение функции $$y=(x^{2}-4x+4)\cdot e^{2}$$ на отрезке $$[-1;3]$$
Найдем производную данной функции и приравняем ее к нулю: $$y'=(2x-4)e^{x}+e^{x}*(x^{2}-4x+4)=0$$ $$e^{x}(2x-4+x^{2}-4x+4)=0$$ Число $$e^{x}$$ всегда положительно, поэтому можем его убрать: $$x^{2}-2x=0$$ Тогда $$x=0 ; x=2$$ Начертим координатную прямую, расставим знаки производной и получим, что $$x=2$$ - точка минимума, то есть в ней будет наименьшее значение функции на заданном в условии отрезке: $$y(2)=(2^{2}-4*2+4)e^{2}=0$$
Задание 5287
Найдите точку максимума функции $$y=(x-4)^{2}\cdot e^{x}$$
Задание 6181
Найдите наименьшее значение функции $$y=\log_{3} (x^{2}-6x+10)+2$$
$$y=log_{3}(x^{2}-6x+10)+2$$ Найдем минимальное значение функции; $$y_{min}$$ при $$x^{2}-6x+10\rightarrow min$$ Минимальное значение квадратичная функция принимает в вершине параболы (ветви вверх): $$x_{0}=-\frac{-6}{2}=3\Rightarrow$$ $$y_{0}=9-6*3+10=1$$ Тогда минимальное значение функции: $$y_{min}=log_{3}(1)+2=2$$
Задание 6276
$${y}'=\frac{1}{2\sqrt{2\lg x-1}}*\frac{2}{x\ln 10}-\frac{1}{x\ln10}=0$$
$$\frac{1}{x\ln 10}(\frac{1}{2\sqrt{2\lg x-1}})=0$$
$$\left\{\begin{matrix}x\neq 0 \\\sqrt{2\lg x-1}=1(1)\end{matrix}\right.$$
$$(1): \sqrt{2\lg x-1}=1\Leftrightarrow$$ $$2\lg x-1\leq 1\Leftrightarrow$$ $$2\lg x=2\Leftrightarrow$$ $$\lg x=1\Leftrightarrow x=10$$
$$y(10)=y=\sqrt{2\lg 10-1}-\lg 10=1-1=0$$
Задание 6466
Найдите точку максимума функции $$y=6\ln x - (x-2)^{2}$$
Так как дан логарифм, то будет ОДЗ: $$x>0$$
Найдем производную данной функции: $${y}'=\frac{6}{x}-2(x-2)$$
Приравняем производную к нулю: $$\frac{6-2x^{2}+4x}{x}=0$$
$$2x^{2}-4x+6=0\Leftrightarrow$$$$x^{2}-2x+3=0\Leftrightarrow$$$$(x-3)(x+1)=0$$
Тогда производная имеет вид: $${y}'=\frac{-2(x-3)(x+1)}{x}$$. При этом, с учетом ОДЗ и знаков производной на полученных промежутках ((0;3) и $$(3;\infty)$$) получим, что $$x(3)=x_{max}$$
Задание 6614
Найдите наибольшее значение функции $$y=\frac{50}{2^{x}+3^{x}}$$ на промежутке [1;7]
Функция $$f(x)=2^{x}$$ - возрастает, $$g(x)=3^{x}$$ - возрастает, тогда $$m(x)=2^{x}+3^{x}$$ - возрастает на всем промежутке, тогда $$y=\frac{40}{2^{x}+3^{x}}$$ - убывает. Следовательно, $$y_{max}=y(1)=\frac{40}{2+3}=8$$