Перейти к основному содержанию

ЕГЭ Профиль

ЕГЭ (профиль) / Наибольшее и наименьшее значение функций

 

Задание 906

Найти наибольшее значение функции  f(x) = cos πx - 6x на отрезке [-2/3 ; 1]

Ответ: 3.5
Скрыть

Производная данной функции равна: $$ f^{'}\left(x\right)=-\pi{}*\sin{\pi{}x}-6 $$ С учетом того, что sin x принадлежит промежутку [-1;1], данная производная имеет максимальное значение -π*(-1)-6=π-6. Данное значение отрицательное, значит функция убывает на всей области определения. Значит ее максимальное значение в начале промежутка. $$ f\left(-2/3\right)=\cos{\pi{}(-\frac{2}{3})}-6*\left(-\frac{2}{3}\right)=-0.5+4=3.5 $$

 

Задание 942

Найдите наименьшее значение функции $$f(x)=(x^{2}-8x+8)*e^{2-x}$$ на отрезке [1; 7].

Ответ: -4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную функции: $$f^{'}(x)=(2x-8)e^{2-x}+(-1)e^{2-x}(x^{2}-8x+8)=$$

$$=e^{2-x}(2x-8-x^{2}+8x-8)=e^{2-x}(-x^{2}+10x-16)$$

Приравняем производную к нулю:

$$e^{2-x}(-x^{2}+10x-16)=0$$ $$e^{2-x}=0$$

решений не имеет $$(-x^{2}+10x-16)=0$$ x1=2 и x2 =8

Отметим эти точки на координатной прямой и расставим знаки производной:

Точка минимума там, где производная меняет знак с - на +, то есть в точке 2

Подставим данное значение в первоначальную функцию и получим:

$$f(2)=(2^{2}-8*2+8)*e^{2-2}=(4-16+8)*1=-4$$

 

Задание 979

Найдите точку максимума функции $$f(x)=\ln (x+5)-2x+9$$

Ответ: -4.5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную функции и приравняем ее к нулю: $$f^{'}(x)=\frac{1}{x+5}-2=0\Leftrightarrow \frac{1-2x-10}{x+5}=0\Leftrightarrow$$ $$ \frac{-2x-9}{x+5}=0\Leftrightarrow x=-4.5 ; x\neq -5 $$ Отметим полученные точки на координатной прямой и расставим знаки производной. Получим, что точка -4,5 - точка максимума

 

Задание 1018

Найдите критическую (стационарную) точку функции $$y=3x^{4}+8x^{3}+6x^{2}+1$$ , которая не является точкой экстремума.

Ответ: -1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную данной функции: $$y=3x^{4}+8x^{3}+6x^{2}+1\Leftrightarrow y^{'}=12x^{3}+24x^{2}+12x\Leftrightarrow$$  Приравняем производную к нулю:

$$12x^{3}+24x^{2}+12x=0 \Leftrightarrow x(12x^{2}+24x+12)=0 \Leftrightarrow $$

$$\left\{\begin{matrix}x = 0\\ 12(x^{2}+2x+1)=0\end{matrix}\right.\Leftrightarrow $$

$$\left\{\begin{matrix}x = 0\\ (x+1)^{2}=0\end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix}x = 0\\ x=-1\end{matrix}\right.$$

Начертим координатную прямую и отметим полученные точки на ней. Подставим в производную значения с каждого интервала, чтобы определеить знаки. Как видим, слева и справа от x = -1 одинаковые значения производной, значит это и есть критическая точка не являющаяся экстремумом

 

Задание 1102

Найдите точку минимума функции $$\sqrt[3]{(x+5)^{2}}-\sqrt[3]{(x+5)^{5}}$$

Ответ: -5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную этой функции. Представим, что

$$\sqrt[3]{(x+5)^{2}}=(x+5)^{\frac{2}{3}}$$

$$ \sqrt[3]{(x+5)^{5}}=(x+5)^{\frac{5}{3}}$$

Тогда $$f_{'}(x)=\frac{2}{3}*(x+5)^{-\frac{1}{3}}-\frac{5}{3}*(x+5)^{\frac{2}{3}}=0$$

$$0=\frac{1}{3}*(2(x+5)^{-\frac{1}{3}}-5*(x+5)^{\frac{2}{3}})$$

$$0=2(x+5)^{-\frac{1}{3}}-5*(x+5)^{\frac{2}{3}}$$ Вынесем $$(x+5)^{-\frac{1}{3}}$$ за скобки:

$$(x+5)^{-\frac{1}{3}}(2-5*(x+5))=0$$

Получаем, что x = -4.6 и x = -5. 

Если начертить координатную прямую и расставить на ней знаки производной, то увидим, что на промежутках (-∞;-5] и [-4.6;+∞) производная отрицательна, а на промежутке [-5;-4.6] - положительна. Значит x = -5 точка минимума

Задание 1135

Най­ди­те точку мак­си­му­ма функ­ции  $$y=x^{3}-48x+17$$ .

Ответ: -4

Задание 1136

Най­ди­те наи­боль­шее зна­че­ние функ­ции  $$y=x^{3}-3x+4$$  на от­рез­ке  [-2;0] .

Ответ: 6

Задание 1137

Най­ди­те точку ми­ни­му­ма функ­ции  $$y=x^3-3x^{2}+2$$ .

Ответ: 2

Задание 1138

Най­ди­те наи­мень­шее зна­че­ние функ­ции $$y=x^{3}-3x^{2}+2$$  на от­рез­ке [1;4] .

Ответ: -2

Задание 1139

Най­ди­те точку мак­си­му­ма функ­ции  $$y=x^{3}+2x^{2}+x+3$$ .

Ответ: -1

Задание 1140

Най­ди­те наи­мень­шее зна­че­ние функ­ции  $$y=x^{3}-2x^{2}+x+3$$  на от­рез­ке  [1;4] .

Ответ: 3

Задание 1141

Най­ди­те точку ми­ни­му­ма функ­ции $$y=x^{3}+5x^{2}+7x-5$$

Ответ: -1

Задание 1142

Най­ди­те наи­боль­шее зна­че­ние функ­ции  $$y=x^{3}+2x^{2}-4x+4$$  на от­рез­ке  [-2;0]

Ответ: 12

Задание 1143

Най­ди­те точку мак­си­му­ма функ­ции $$y=7+12x-x^{3}$$

Ответ: 2

Задание 1144

Най­ди­те наи­мень­шее зна­че­ние функ­ции  $$y=7+12x-x^{3}$$  на от­рез­ке  [-2;2]

Ответ: -9
 

Задание 1180

Найдите наименьшее значение функции $$f(x)=\frac{\sqrt{3}\pi }{6}-\cos x -\frac{\sqrt{3}}{2}x$$

Ответ: 0.5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную этой функции: $$f'(x)=\sin x -\frac{\sqrt{3}}{2}$$

Приравняем к нулю: $$f'(x)=\sin x -\frac{\sqrt{3}}{2}=0$$

Тогда получим корни $$ x_{1}= \frac{\pi}{3}+2\pi n $$; $$ x_{2}= \frac{2\pi}{3}+2 \pi n$$

Отметим на координатной прямой данные точки и расставим знаки производной, получим, что точка минимума $$x_{1}$$ на данном промежутке соответствует $$\frac{\pi}{3}$$

Найдем значение функции в этой точке: $$f(\frac{\pi}{3})=\frac{\sqrt{3}\pi }{6}-\cos \frac{\pi}{3} -\frac{\sqrt{3}}{2}\frac{\pi}{3} =-\cos \frac{\pi }{3}=-0.5$$

 

Задание 1241

Найдите наибольшее значение функции $$f(x)=2^{x}(x+1)$$ , на отрезке [-1;2]

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную этой функции и приравняем ее к нулю:

$$f'(x)=2^{x}\ln 2(x+1)+2^{x}$$

$$2^{x}(\ln 2(x+1)+1)=0$$

$$\ln 2 * x+ \ln 2 + 1 = 0$$

$$x = -1 - \frac{1}{\ln 2}$$

Данное значение меньше -1, значит точка экстремума левее нашего промежутка, а это означает, в свою очередь, что на заданном промежутке функция монотонна. Если мы подставим ноль в производную, то получим, что на промежутке, где расположен ноль, производная больше нуля, значит функция возрастает. Поэтому наибольшее значение функции будет в конце промежутка.

$$f(2)=2^{2}(2+1)=4*3=12$$

 

Задание 1282

Найдите точку максимума функции $$f(x)=24-3x^{4}-8x{3}$$

Ответ: -2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
Найдем производную функции и приравняем ее к нулю:
$$f'(x)=-12x^{3}-24x^{2}=0$$
$$f'(x)=-12x^{2}(x+2)=0$$
Получаем или x = 0, или x = -2.
Отметим эти точки на координатной прямой и расставим знаки производной:
Как видим, точка максимум -2
 

Задание 1295

Найдите точку минимума функции $$f(x) =x^{2}-3.75x- \ln (x+2)$$

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
Найдем производную этой функции и приравняем к нулю:
$$f'(x) =2x-3.75- \frac{1}{x+2}=0 $$
$$\frac{2x^{2}+4x-3.75x-7.5-1}{x+2}=0$$
$$2x^{2}+0.25x-8.5=0 $$
$$x_{1}=\frac{-34}{16}$$
$$x_{2}=2 $$
Начертим координатную прямую и посмотрим какие знаки принимает производная на полученных интервалах и получим, что точка 2 - точка минимума
 

Задание 2355

Найдите точку максимума функции: $$y=-\frac{x^{2}+324}{x}$$

Ответ: 18
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y=-\frac{x^{2}+324}{x}$$

$${y}'=-\frac{{(x^{2}+324)}'\cdot x-{x}'(x^{2}+324)}{x^{2}}=-\frac{2x\cdot x-x^{2}-324}{x^{2}}=-\frac{x^{2}-324}{x^{2}}=\frac{324-x^{2}}{x^{2}}=0$$

$$x=\pm 18$$

$$x\neq 0$$

Точка минимума: -18

Точка максимума: 18


 

Задание 2497

Найдите наименьшее значение функции $$y=(x-8)^{2}(x-1)+10$$ на отрезке [6; 14].

Ответ: 10
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y=(x-8)^{2}(x-1)+10$$ $$y{}'=2(x-8)^{2}(x-1)+(x-8)^{2}=$$ $$=2(x^{2}-9x+8)+x^{2}-16x+64=$$ $$=2x^{2}-18x+16+x^{2}-16x+64=$$ $$=3x^{2}-34x+80=0$$ $$D=1156-960=196=14^{2}$$ $$x_{1}=\frac{34+14}{6}=8$$ $$x_{2}=\frac{34-14}{6}=\frac{10}{3}$$ $$y(8)=(8-8)^{2}(8-1)+10=10$$

 

Задание 2737

Найдите точку минимума функции: $$y=(73-x)\cdot e^{73-x}$$

Ответ: 74
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y=(73-x)\cdot e^{73-x}$$

$${y}'={(73-x)}'\cdot e^{73-x}+(73-x){(e^{73-x})}'=$$ $$=- e^{73-x}+(73-x)\cdot(-e^{73-x})=$$ $$-e^{73-x}(1+73-x)=0$$

$$x=74$$

 

Задание 2789

Найдите наибольшее значение функции $$y=10\cdot \ln(x+5)-10x-21$$ на отрезке [‐4,5; 0].

Ответ: 19
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$${y}'=\frac{10}{x+5}-10=0$$ $$\frac{10-10x-50}{x+5}=0$$ $$\Leftrightarrow$$ $$\frac{-10x-40}{x+5}=0$$ $$x=4$$ $$x\neq -5$$ $$y=10\cdot \ln(-4+5)-10\cdot(-4)-21=19$$

 

Задание 2828

Найдите точку минимума функции $$y=(6-4x)\cos x+4\sin x+4$$ принадлежащую промежутку $$(0; \frac{\pi}{2})$$

Ответ: 1,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y=(6-4x)\cos x+4\sin x+4$$  $${y}'={(6-4x)}'\cos x+(6-4x){(\cos x)}'+{(4\sin x)}'=$$ $$=-4cos x-\sin x(6-4x)+4cos x=-\sin x(6-4x)$$

$$\sin x=0$$ $$(6-4x)=0$$
$$x=\pi n, n\in Z$$ $$x=1,5$$
 

Задание 2865

Найдите наименьшее значение функции $$y=\sqrt{x^{2}+8x+25}$$

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y=\sqrt{x^{2}+8x+25}$$ $$x_{0}=-\frac{8}{2}=-4$$ - вершина $$y_{min}=\sqrt{(-4)^{2}+8(-4)+25}=\sqrt{16-32+25}=\sqrt{9}=3$$

 

Задание 2943

Найдите наибольшее значение функции $$y=x^{5}+20x^{3}-65x$$ на отрезке [-4; 0].

Ответ: 44
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y=x^{5}+20x^{3}-65x$$ [-4; 0] $${y}'=5x^{4}+60x^{2}-65=0$$ $$x^{4}+12x^{2}-13=0$$ пусть $$x^{2}=a$$ $$a^{2}+12a-13=0$$ $$a_{1}=1$$ $$a_{2}=-13$$ $$\left\{\begin{matrix}x^{2}=1\\x^{2}=-13\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x=\pm 1\\x=\varnothing\end{matrix}\right.$$ $$y(-1)=(-1)^{5}+20\cdot(-1)^{3}-65\cdot(-1)=-1-20+65=44$$

 

Задание 2990

Найдите точку максимума функции $$y=x^{3}-12x^{2}+36x-30$$

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную этой функции и приравняем ее к нулю: $$y^{'}=3x^{2}-24x+36=0$$ | : 3 $$x^{2}-8x+12=0$$ $$x_{1}=2 ; x_{2}=6$$ Отметим эти точки на координатной прямой и расставим знаки производной (для этого будем подставлять по числу из каждого промежутка в производную). Получим, что до 2 функция возрастает, от 2 до 8 убывает, и от 8 снова возрастает. Значит 2 - точка максимума

 

Задание 3033

Найдите точку максимума функции $$y=\frac{16}{x}-x^{2}+9$$

Ответ: -2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y=\frac{16}{x}-x^{2}+9$$ $$y'=-\frac{16}{x^{2}}-2x=0$$ $$\frac{-16-2x^{3}}{x^{2}}=0$$ $$x\neq 0$$ $$x=-2$$

 

Задание 3075

Найдите наибольшее значение функции $$f(x)=(x+4)^{2}(x+3)$$ на отрезке [‐5; ‐3,5].

Ответ: 0
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$f'(x)=2(x+4)(x+3)+(x+4)^{2}=$$$$2(x^{2}+7x+12)+x^{2}+8x+16=$$$$3x^{2}+22x+40=0$$

$$D=484-480=4$$

$$x_{1}=\frac{-22+2}{6}=-\frac{20}{6}$$

$$x_{1}=\frac{-22-2}{6}=-4$$

$$f(-4)=(-4+4)^{2}(-4+3)=0$$

 

Задание 3117

Найдите точку максимума функции: $$y=(x^{2}-15x+15)\cdot e^{x+3}$$

Ответ: 0
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y'=(2x-15)\cdot\exp^{x+3}+(x^{2}-15x+15)\cdot\exp^{x+3}=\exp^{x+3}(x^{2}-13x)=0$$ $$x=0$$ $$x=13$$

 

Задание 3157

Найдите наименьшее значение функции $$y=x\sqrt{x}-18x+15$$ на отрезке [25; 625]. 

Ответ: -849
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y^{'}=\frac{3}{2}x^{\frac{1}{2}}-18=0$$ $$x^{\frac{1}{2}}=18*\frac{2}{3}=12$$ $$x=144$$ $$y(144)=144*12-18*144+15=-849$$

 

Задание 3202

Найдите точку минимума функции: $$y=-\frac{x^{2}+676}{x}$$

Ответ: -26
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y'=-(\frac{(x^{2}+676)'\cdot x-x'(x^{2}+676)}{x^{2}})=$$ $$=-(\frac{2x^{2}-x^{2}+676}{x^{2}})=$$ $$=-\frac{x^{2}-676}{x^{2}}=\frac{676-x^{2}}{x^{2}}$$

 

Задание 3247

Найдите наименьшее значение функции: $$f(x)=6-\log_{2}(16x-x^{2})$$

Ответ: 0
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$f(x)=6-\log_{2}(16x-x^{2})$$ $$x_{0}=\frac{-16}{-2}=8$$ $$f(8)=6-\log_{2}(16\cdot8-8^{2})=f(8)=6-\log_{2}64=6-6=0$$

 

Задание 3288

Найдите точку максимума функции $$y=0,5x^{2}-11x+28*\ln x + 9$$

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y'=x-11+\frac{28}{x}=0$$ $$\frac{x^{2}-11x+28}{x}=0$$ $$x=7 ; x=4 ; x\neq 0$$ Начертим координатную прямую и отметим полученные точки. На интервале от 0 до 4 производная имеет положительные значения, от 4 до 7 - отрицательные и от 7 до плюс бесконечности - положительные, значит: 7 - точка минимума 4 - точка максимума

 

Задание 3328

Найдите наибольшее значение функции $$y=6+12x-4x\sqrt{x}$$ на отрезке [2;11].

Ответ: 22
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную функции и приравняем ее к нулю: $$y'=12 - 4 * \frac{3}{2} * \sqrt{x} = 0$$ $$\sqrt{x}=2$$ $$x=4$$ - это точка максимума функции (можно проверить, что на промежутке от 0 до 4 производная положительна, а далее - отрицательна, просто подставив значения, например, 1 и 9, в производную). Тогда значение функции в этой точке: $$f(4)=6+12*4-4*4\sqrt{4}=6+48-32=22$$

 

Задание 3375

Найдите точку минимума функции $$f(x)=x^{8}\cdot e^{5x+6}$$

Ответ: 0
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$f'(x)=(x^{8})'\cdot\exp^{5x+6}+x^{8}\cdot(\exp^{5x+6})'=$$ $$=8x^{7}\cdot\exp^{5x+6}+x^{8}\cdot\exp^{5x+6}\cdot5=$$ $$=\exp^{5x+6}\cdot x^{7}\cdot(8+5x)=0$$ $$x=0$$ или $$x=-\frac{8}{5}=-1,6$$

 

Задание 3423

Найдите наименьшее значение функции: $$y=-\frac{4x^{2}+4x+7}{4x^{2}+4x+3}$$

Ответ: -3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y=-\frac{4x^{2}+4x+7}{4x^{2}+4x+3}=-(1+\frac{4}{4x^{2}+4x+3})$$ $$\Rightarrow 4x^{2}+4x+3\Rightarrow f(x)$$ y будет наименьшим, если $$f(x)$$ будет наименьшим: $$x_{0}=-\frac{4}{4\cdot2}=-0,5$$ $$f(-0,5)=4\cdot\frac{1}{4}-4\cdot\frac{1}{2}+3=1-2+3=2$$ $$y_{min}=-(1+\frac{4}{2})=-3$$

 

Задание 3660

Найдите наименьшее значение функции $$f(x)=9\sin^{2}x+6\sin x-1$$

Ответ: -2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$f(x)=9\sin^{2}x+6\sin x-1$$

$$f'(x)=18\sin x\cos -6\cos x=0$$

$$\left\{\begin{matrix}\cos x=0\\3\sin x-1=0\end{matrix}\right.$$

$$\left\{\begin{matrix}x=\frac{\pi}{2}+\pi n,n\in Z\\x=\arcsin\frac{1}{3}+2\pi n\\x=\pi-\arcsin\frac{1}{3}+2\pi n\end{matrix}\right.$$

$$f(\arcsin\frac{1}{3})=9\sin^{2}(\arcsin\frac{1}{3})-6\sin(\arcsin\frac{1}{3})-1=$$

$$=9\cdot\frac{1}{9}-6\cdot\frac{1}{3}-1=1-2-1=-2$$

 

Задание 3859

Найдите наименьшее значение функции $$y=\frac{x^{2}-6x+36}{x}$$ на отрезке $$[3;9]$$

Ответ: 6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y'=\frac{(2x-6)x-x^{2}+6x-36}{x^{2}}=$$

$$=\frac{2x^{2}-6x-x^{2}+6x-36}{x^{2}}=$$

$$=\frac{x^{2}-36}{x^{2}}$$

$$f_{min}=f(6)=\frac{6^{2}-6\cdot6+36}{6}=6$$

 

Задание 4016

Найдите точку макcимума функции $$y=11+6\sqrt{x}+2x\sqrt{x}$$

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y=11+6\sqrt{x}+2x\sqrt{x}=$$

$$=11+6x^{\frac{1}{2}}-2x^{\frac{3}{2}}$$

$$y'=3x^{\frac{1}{2}}-3x^{\frac{1}{2}}=$$

$$=3(\frac{1}{\sqrt{x}}-\sqrt{x})=0$$

$$\frac{1-x}{\sqrt{x}}=0$$ $$\Leftrightarrow$$

$$x=1$$

 

Задание 4186

Найдите наибольшее значение функции $$y=(7-x)\sqrt{x+5}$$ на отрезке $$[-4;4]$$

Ответ: 16
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y'=(7-x)'\sqrt{x+5}+(7-x)(\sqrt{x+5})'=$$ $$-\sqrt{x+5}+\frac{7-x}{2\sqrt{x+5}}=0$$; $$\frac{7-x-2(x+5)}{2\sqrt{x+5}}=0$$; $$7-x-2x-10=0$$; $$-3x-3=0$$; $$x=-1$$; $$y(-1)=(7-(-1))\sqrt{-1+5}=8\cdot2=16$$

 

Задание 4394

Найдите точку максимума функции $$y=\sin x-4\cos x-4x\sin x+5$$ принадлежащую промежутку $$(0;\frac{\pi}{2})$$

Ответ: 0,25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y'=\cos x+4\sin x-4\sin x-4x\cos x=0$$; $$\cos x(1-4x)=0$$; $$\left\{\begin{matrix}\cos x=0\\1-4x=0\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x=\frac{\pi}{2}+\pi n\\x=0,25\end{matrix}\right.$$

$$x_{max}=0,25$$

 

Задание 4571

Найдите наименьшее значение функции $$y=4^{x}-8\cdot2^{x}+1$$ на отрезке [1; 3].

Ответ: -15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть $$2^{x}=a$$: $$y=a^{2}-8a+1$$ - это квадратичная функция, ее наименьшее значение там, где вершина параболы: $$a_{0}=-\frac{-8}{2}=4$$; $$2^{x}=4$$ $$\Rightarrow$$ $$x=2$$; $$y(2)=4^{2}-8\cdot2^{2}+1=16-32+1=-15$$

 

Задание 4667

Найдите наименьшее значение функции $$y=7|x-3|-2|x+5|-|4x-3|+5$$ на отрезке $$[1;6]$$

Ответ: -20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

На данном отрезке второе и третье подмодульные выражения положительны, следовательно, модули раскроются не поменяв знаки: $$y=7|x-3|-2x-10-4x+3+5=7|x-3|-6x-2$$ В данном случае получаем график (выглядит как галочка) вершина которого ( в том числе и наименьшее значение) в точке x=3. Тогда наименьшее значение функции: $$y(3)=7|3-3|-2|3+5|-|4*3-3|+5=-16-9+5=-20$$

 

Задание 4817

Найдите наибольшее значение функции $$y=\frac{x^{2}+7x+49}{x}$$ на отрезке [-14;-1]

Ответ: -7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную данной функции:$$y'=\frac{(2x+7)*x-(x^{2}+7x+49)}{x^{2}}=$$$$\frac{2x^{2}+7x-x^{2}-7x-49}{x^{2}}=$$$$\frac{x^{2}-49}{x^{2}}=0$$ Начертим координатную прямую, отметим полученные точки, и растравим знаки производной:

Как видим, -7 - точка максимума, следовательно, на заданном по условию промежутке в этой точке и будет максимальное значение функции:

$$y(-7)=\frac{(-7)^{2}+7*(-7)+49}{-7}=-7$$

 

Задание 4861

Найдите наибольшее значение функции $$y=5-(x-14)\sqrt{x+13}$$ на отрезке [-9;3]

Ответ: 59
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную и приравняем ее к нулю: $$y'=-(\sqrt{x+13}+\frac{1}{2\sqrt{x+13}}*(x-14))=0 \Leftrightarrow $$$$\frac{2x+26+x-14}{\sqrt{x+13}}=0 \Leftrightarrow $$$$x=-4$$. Нарисуем координатную прямую, отметим эту точку, расставим знаки производной и получим, что она является точкой максимума, так как она еще и попадает на заданный отрезок, то наибольшее значение будет именно там: $$y(-4)=5-(-4-14)\sqrt{-4+13}=5+18*3=59$$

 

Задание 4912

Найдите точку минимума функции $$y=x\sin x+\cos x-\frac{3}{4}\sin x$$,  принадлежащую промежутку $$(0;\frac{\pi}{2})$$

Ответ: 0,75
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y'=\sin x+x\cos x-\sin x-\frac{3}{4}\cos x=0 \Leftrightarrow $$$$\cos x(x-\frac{3}{4})=0\Leftrightarrow $$$$x=0,75 ; x=\frac{\pi}{2}+\pi*n, n \in Z$$

отметим полученные точки на координатной прямой и расставим знаки производной (сначала будет рассматривать каждый из множителей, входящих в производную, затем только знак самой производной, как произведение множителей):

Как видим по рисунку (F=0 - начало отрезка, на котором ищем) точка минимума x=0,75.

 

Задание 4959

Найдите наименьшее значение функции $$y=\frac{\sqrt{3}}{3}\pi-2\cos x-\sqrt{3}x-5$$ на отрезке $$[0;\frac{\pi}{2}]$$

Ответ: -6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
Найдем производную и приравняем ее к нулю:
$$y'=2\sin x-\sqrt{3}$$ $$\Leftrightarrow$$ $$x=\frac{\pi}{3}+2\pi n$$; $$x=\frac{2\pi}{3}+2\pi n$$ 
Начертим координатную прямую, отметим точки экстремума ( с учетом отрезка возьмем $$\frac{\pi}{3}$$ и $$\frac{2\pi}{3}$$ ), расставим знаки производной:
 
Получаем, что $$\frac{\pi}{3}$$ - точка минимума, найдем значение функции в ней:
$$y(\frac{\pi}{3})=\frac{\sqrt{3}\pi}{3}-2\cos\frac{\pi}{3}-\frac{\sqrt{3}\pi}{3}-5=-2\cdot\frac{1}{2}-5=-6$$
 

Задание 5007

Найдите наибольшее значение функции $$y=18\sin x-9\sqrt{3}+1,5\sqrt{3}\pi+21$$на отрезке $$[0;\frac{\pi}{2}]$$

Ответ: 30
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y'=18\cos x-9\sqrt{3}-0$$; $$\cos x-\frac{\sqrt{3}}{2}=0$$; $$\left\{\begin{matrix}x=\frac{\pi}{6}+2\pi n,n\in Z\\x=\frac{5\pi}{6}+2\pi n,n\in Z\end{matrix}\right.$$;

$$y(\frac{\pi}{6})=18\sin\frac{\pi}{6}-9\sqrt{3}\frac{\pi}{6}+1,5\sqrt{3}\pi+21=18\cdot\frac{1}{2}+21=30$$

 

Задание 5055

Найдите наибольшее значение функции $$y=\frac{x^{3}+x^{2}+9}{x}-x^{2}$$ на отрезке $$[-9;-1$$]

Ответ: -6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y=\frac{x^{3}+x^{2}+9}{x}-x^{2}=$$ $$x^{2}+x+\frac{9}{x}-x^{2}=x+\frac{9}{x}$$; $$y'=1-\frac{9}{x^{x}}=0$$; $$\frac{x^{2}-9}{x^{2}}=0$$ $$\Leftrightarrow$$ $$x=\pm3$$;

$$y(-3)=\frac{(-3)^{3}+(-3)^{2}+9}{-3}-(-3)^{2}=\frac{-27+9+9}{-3}-9=3-9=-6$$

 

Задание 5102

Найдите наименьшее значение функции $$f(x)=2x^{3}-15x^{2}+24x+200$$ на  отрезке [-3;2].

Ответ: -61
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем $${f}'(x)=0$$: $${f}'(x)=6x^{2}-30x+24=0|:6$$

$$x^{2}-5x+4=0$$

$$\left\{\begin{matrix}x_{1}+x_{2}=5 & & \\x_{1}x_{2}=4 & &\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x_{1}=1 & & \\x_{2}=4 & &\end{matrix}\right.$$

$$x=1\rightarrow$$ $$max$$ . Тогда $$f_{min}=f(-3)$$ или $$f(12)$$

$$f(-3)=2(-3)^{3}-15*(-3)^{2}+24(-3)+200=-61$$

$$f(2)=2*2^{3}-15*2^{2}+24*2+200=204$$

 

Задание 5139

Найдите точку максимума функции $$y=11+6\sqrt{x}-2x\sqrt{x}$$

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y=11+6x^{\frac{1}{2}}-2x^{\frac{3}{2}}$$; $$y'=6\cdot\frac{1}{2}\cdot\frac{1}{\sqrt{x}}-2\cdot\frac{3}{2}\cdot\sqrt{x}=$$ $$\frac{3}{\sqrt{x}}-3\sqrt{x}=0$$; $$\frac{3-3x}{\sqrt{x}}=0$$ $$\Leftrightarrow$$ $$x=1$$

 

Задание 5192

Найдите наибольшее значение функции $$y=\frac{250+50x-x^{3}}{x}$$ на отрезке $$[-10;-1]$$

Ответ: -25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y=\frac{250+50x-x^{3}}{x}$$; $$y'=\frac{(50-3x^{2})x-(250+50x-x^{3})}{x^{2}}=$$ $$\frac{50x-3x^{3}-250-50x+x^{3}}{x^{2}}=$$ $$\frac{-2x^{3}-250}{x^{2}}=0$$; $$x^{3}=-125$$ $$\Rightarrow$$ $$x=-5$$;

$$y(-5)=\frac{250+50\cdot(-5)-(-5)^{3}}{(-5)}=\frac{125}{-5}=-25$$

 

Задание 5239

Найдите наименьшее значение функции $$y=(x^{2}-4x+4)\cdot e^{2}$$ на отрезке $$[-1;3]$$

Ответ: 0
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную данной функции и приравняем ее к нулю: $$y'=(2x-4)e^{x}+e^{x}*(x^{2}-4x+4)=0$$ $$e^{x}(2x-4+x^{2}-4x+4)=0$$ Число $$e^{x}$$ всегда положительно, поэтому можем его убрать: $$x^{2}-2x=0$$ Тогда $$x=0 ; x=2$$ Начертим координатную прямую, расставим знаки производной и получим, что $$x=2$$ - точка минимума, то есть в ней будет наименьшее значение функции на заданном в условии отрезке: $$y(2)=(2^{2}-4*2+4)e^{2}=0$$

 

Задание 5287

Найдите точку максимума функции $$y=(x-4)^{2}\cdot e^{x}$$

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
Найдем производную этой функции и приравняем ее к нулю:
$$y'=((x-4)^{2})'e^{x}+(e^{x})'(x-4)^{2}=0$$
$$y'=2(x-4)e^{x}+e^{x}(x-4)^{2}=0$$
$$e^{x}(x-4)(2+x-4)=0$$
$$x=4 ; x=2$$
Начертим координатную прямую, отметим полученные точки и расставим знаки, которые принимает производная на полученных промежутках.
Тогда x=2 - точка максимума
 

Задание 5335

Найдите наименьшее значение функции $$y=\frac{x^{2}-8x+64}{x}$$ на отрезке [4;18].

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную данной функции и приравняем ее к нулю: $$y'=\frac{(x^{2}-8x+64)'x-x'(x^{2}-8x+64)}{x^{2}}=0$$ $$y'=\frac{2x^{2}-8x-x^{2}+8x-64}{x^{2}}=0$$ $$\frac{x^{2}-64}{x^{2}}=0$$ $$x_{1}=-8 ; x_{2}=8$$ Отметим полученные значения на координатной прямой и расставим знаки производной, получим, что $$x_{2}$$ является точкой минимума. Тогда наименьшее значение функции на заданном отрезке будет именно в этой точке: $$y(8)=\frac{8^{2}-8*8+64}{8}=8$$

 

Задание 5383

Найдите точку максимума функции $$y=10x\cos x - 7\cos x -10\sin x -4$$, принадлежащую промежутку $$(0 ; \frac{\pi}{2})$$

Ответ: 0,7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную данной функции:

$$y'=(10x)'\cos x + 10x(\cos x)'-7(\cos x)'-10(\sin x)'=0 \Leftrightarrow$$$$10\cos x-10x*\sin x +7\sin x -10\cos x = 0 \Leftrightarrow$$$$\sin x(7-10x)=0 \Leftrightarrow$$$$\left\{\begin{matrix}\sin x =0\\ 10-7x=0\end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix}x =\pi*n, n\in Z\\ x=0,7\end{matrix}\right.$$

Отметим на координатной прямой полученные корни (учитываем, что корней вида $$\pi*n$$ бесконечно, потому отметим те, которые наиболее близко расположены к промежутку $$(0 ; \frac{\pi}{2})$$):

В итоге точкой максимума на данном промежутке является $$x=0,7$$

 

Задание 6039

Найдите наименьшее значение функции $$y=4\cos x +13x +9$$ на отрезке $$[0;\frac{3\pi}{2}]$$

Ответ: 13
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y=4*\cos x+13*x+9$$ $${y}'=-4*\sin x+13$$

Минимальное значение $$-4*\sin x$$ состовляет -4, когда $$\sin x=1 \Rightarrow {y}'_{min}=-4+13=9> 0$$

Т.е. значение производной положительно на всей $$D(f) \Rightarrow y_{min}=y(0)$$. $$y_{min}=4*\cos 0+13*0+9=4+9=13$$

 

Задание 6086

Найдите наименьшее значение функции $$y=\frac{2}{3}x\sqrt{x}-12x+11$$ на отрезке [137;156]

Ответ: -565
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
$$y=\frac{2}{3}*x\sqrt{x}-12x+11=\frac{2}{3}x^{\frac{3}{2}}-12x+11$$
Найдем значение производной:
$$y'=\frac{2}{3}*\frac{3}{2}*x^{\frac{1}{2}}-12=0$$
Найдем точки экстремума:
$$\sqrt{x}-12=0\Rightarrow x=144$$ - точка минимума (при х=9 y'<0, а при x=169 y'>0)
Найдем наименьшее значение на данном промежутке:
$$y(144)=\frac{2}{3}*144*\sqrt{144}-12*144+11=1152-1728+11=-565$$
 

Задание 6133

Найдите точку минимума функции $$y=(2x-3)\cos x -1-2\sin x +10$$ принадлежащую промежутку $$(0; \frac{\pi}{2})$$

Ответ: 1,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y=(2x-3)\cos x-2\sin x+10$$

Найдем производную заданной функции:

$$y'=(2x-3)'\cos x+(2x-3)(\cos x)'-2(\sin x)'=2\cos x-\sin x(2x-3)-2\cos x=0$$

Приравняем производную к нулю:

$$\sin x(3-2x)=0$$

Найдем точки экстремума:

$$\left[\begin{matrix}\sin x=0\\3-2x=0\end{matrix}\right.\Leftrightarrow$$$$ \left[\begin{matrix}x=\pi *n, n\in Z \\x=+1,5\end{matrix}\right.$$

Рассмотрим какие значения принимает производная на полученных промежутках:

Как видим, точка минимума соответсвует 1,5

 

Задание 6181

Найдите наименьшее значение функции $$y=\log_{3} (x^{2}-6x+10)+2$$

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y=log_{3}(x^{2}-6x+10)+2$$ Найдем минимальное значение функции; $$y_{min}$$ при $$x^{2}-6x+10\rightarrow min$$ Минимальное значение квадратичная функция принимает в вершине параболы (ветви вверх): $$x_{0}=-\frac{-6}{2}=3\Rightarrow$$ $$y_{0}=9-6*3+10=1$$ Тогда минимальное значение функции: $$y_{min}=log_{3}(1)+2=2$$

 

Задание 6228

Найти наименьшее значение функции $$y=\sqrt{x^{2}-2x+2}+\sqrt{x^{2}-10x+29}$$

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Воспользуемся неравенством: $$\left | \bar{a} \right |+\left | \bar{b} \right |\geq \left | \bar{a}+\bar{b} \right |$$ Рассмотрим правило треугольника : $$AB=\left | \bar{a} \right |; BC=\left | \bar{b} \right |; AC=\left | \bar{a}+\bar{b} \right |$$. По свойству треугольника: $$AC\leq AB+BC$$ При этом Знак равно $$(\left | \bar{a} \right |+\left | \bar{b} \right |=\left | \bar{a}+\bar{b}\right |)$$ только тогда, когда $$\bar{a}$$ и $$\bar{b}$$ сонаправлены , т.е. когда $$\frac{x_{1}}{x_{2}}=\frac{y_{1}}{y_{2}}$$ (где $$\bar{a}(x;y));\bar{b}(x_{2};y_{2})$$) Выделим полные квадраты под корнями: $$x^{2}-2x+2=x^{2}-2x+1+1=(x-1)^{2}+1$$ $$x^{2}-10x+29=x^{2}-10x+25+4=(x-5)^{2}+4$$ Найдем наименьшее значение: $$y=\sqrt{(x-1)^{2}+1}+\sqrt{(x-5)^{2}+4}$$ Пусть: $$\bar{a}=(1-x; 1); \bar{b}(x-5; 2)$$ (Если найти длины векторов, получим подкоренные выражения) Тогда: $$\left | \bar{a} \right |=\sqrt{(1-x)^{2}+1}=\sqrt{(x-1)^{2}+1}$$ и $$\left | \bar{b} \right |=\sqrt{(x-5)^{2}+4}$$ Каждая координата суммарного вектора, равна сумме соответствующих координат первоначальных векторов: $$\bar{a}+\bar{b} =(1-x+x-5, 1+2)=(-4 ;3)$$ Тогда его длина: $$\left | \bar{a}+\bar{b} \right |=\sqrt{(-4)^{2}+3^{2}}=5$$ В таком случае получаем: $$\left | \bar{a} \right |+\left | \bar{b} \right |\geq \left | \bar{a}+\bar{b} \right |, y(x)\geq 5$$ То есть минимальное значение данной функции равно 5.

 

Задание 6276

Найдите наибольшее значение функции $$y=\sqrt{2\lg x-1}-\lg x$$

Ответ: 0
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$${y}'=\frac{1}{2\sqrt{2\lg x-1}}*\frac{2}{x\ln 10}-\frac{1}{x\ln10}=0$$

$$\frac{1}{x\ln 10}(\frac{1}{2\sqrt{2\lg x-1}})=0$$

$$\left\{\begin{matrix}x\neq 0 \\\sqrt{2\lg x-1}=1(1)\end{matrix}\right.$$

$$(1): \sqrt{2\lg x-1}=1\Leftrightarrow$$ $$2\lg x-1\leq 1\Leftrightarrow$$ $$2\lg x=2\Leftrightarrow$$ $$\lg x=1\Leftrightarrow x=10$$

$$y(10)=y=\sqrt{2\lg 10-1}-\lg 10=1-1=0$$

 

Задание 6324

Найти наименьшее значение функции $$y=\log_{0,5} (\frac{\sqrt{4x^{4}-3x^{2}+9}-\sqrt{4x^{4}-8x^{2}+9}}{x})$$ на интервале $$(0;\infty)$$

Ответ: 0
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     При x>0: $$\sqrt{4x^{4}=3x^{2}+9}>\sqrt{4x^{4}-8x^{2}+9}$$

     Пусть $$t=\frac{\sqrt{4x^{4}-3x^{2}+9}-\sqrt{4x^{4}-8x^{2}+9}}{x}=$$$$\frac{4x^{4}-3x^{2}+9-(4x^{4}-8x^{2}+9)}{x(\sqrt{4x^{4}-3x^{2}+9}+\sqrt{4x^{4}-8x^{2}+9})}=$$$$\frac{5x^{2}}{\sqrt{4x^{4}-3x^{2}+9}+\sqrt{4x^{4}-8x^{2}+9}}=$$$$\frac{5}{\sqrt{4x^{4}-\frac{9}{x^{2}}-3}+\sqrt{4x^{4}-\frac{9}{x^{2}}-8}}$$

     Учтем, что $$a^{2}+b^{2}\geq 2ab$$. Пусть $$a^{2}=4x^{2}, b^{2}=\frac{9}{x^{2}}$$. Тогда: $$4x^{2}+\frac{9}{x^{2}}\geq 2\sqrt{4x^{2}*\frac{9}{x^{2}}}=2*6=12(1)$$

     Следовательно $$\sqrt{4x^{4}-\frac{9}{x^{2}}-3}+\sqrt{4x^{4}-\frac{9}{x^{2}}-8}(2)$$ минимальна при выполнении (1):

$$\sqrt{12-3}+\sqrt{12-8}=3+2=5$$. Чем меньше (2), тем больше t и тем меньше: $$\log_{0,5}t\Rightarrow \log_{0,5}\frac{5}{5}=\log_{0,5}1=0$$

 

Задание 6371

Найдите наименьшее на отрезке [1;6] значение функции $$y=7|x-3|-2|x+5|-|4x-3|+5$$

Ответ: -20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

На промежутке [1;6] x+5>0 4x-3>0, тогда: $$y=7\left | x-3 \right |-2x-10-4x+3+5=$$$$7\left | x-3 \right |-6x-2$$

Вершина полученного графика будет находиться в точке, где подмодульное выражение равно 0, то есть $$x=3\Rightarrow$$ $$y_{min}=y(3)$$

$$y(3)=7\left | 3-3 \right |-6*3-2=-20$$

 

Задание 6418

Найдите наименьшее значение выражения $$z=\sqrt{(2x-1)^{2}+(3y-1)^{2}}+\sqrt{(2x-3y)^{2}+9y^{2}}$$

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть $$\bar{a}: (2x-1; 3y-1);\bar{b}: (3y-2x ; -3y)$$

     Из неравенства $$\left | \bar{a} \right |+\left | \bar{b} \right |\geq \left | \bar{a}+\bar{b} \right |$$, и учитывая , что $$\bar{a}+\bar{b}:(2x-1+3y-2x;3y-1-3y)=(3y-1;-1)$$, и $$z=\left | \bar{a} \right |+\left | \bar{b} \right |$$ получим : $$z\geq \left | \bar{a}+\bar{b} \right |=\sqrt{(3y-1)^{2}+(-1)^{2}}$$

     Рассмотрим $$(3y-1)^{2}+(-1)^{2}=g$$ .Т.к. $$(3y-1)^{2}\geq 0$$ при любом y,  $$g\rightarrow min$$, только тогда, когда $$3y-1\rightarrow 0$$, следовательно, $$g_{min}=1$$. Т.е. $$z\geq \sqrt{1}=1$$

 

Задание 6466

Найдите точку максимума функции $$y=6\ln x - (x-2)^{2}$$

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Так как дан логарифм, то будет ОДЗ: $$x>0$$

     Найдем производную данной функции: $${y}'=\frac{6}{x}-2(x-2)$$

     Приравняем производную к нулю: $$\frac{6-2x^{2}+4x}{x}=0$$

$$2x^{2}-4x+6=0\Leftrightarrow$$$$x^{2}-2x+3=0\Leftrightarrow$$$$(x-3)(x+1)=0$$

     Тогда производная имеет вид: $${y}'=\frac{-2(x-3)(x+1)}{x}$$. При этом, с учетом ОДЗ и знаков производной на полученных промежутках ((0;3) и $$(3;\infty)$$) получим, что $$x(3)=x_{max}$$

 

Задание 6520

Найдите наименьшее значение функции $$f(x)=x^{3}-3x^{2}-9x+31$$ на отрезке [-1;4]

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Найдем производную и приравняем ее к нулю: $$f'(x)=3x^{2}-6x-9=0\Leftrightarrow$$$$x^{2}-2x-3=0\Leftrightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=2\\x_{1}*x_{2}=-3\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x_{1}=3\\x_{2}=-1\end{matrix}\right.$$

     При этом х=3 - является точкой минимума (х=-1 - точка максимума). Тогда минимальное значение функции: $$f_{min}=f(3)=3^{3}-3*3^{2}-9*3+31=4$$

 

Задание 6567

Найдите наибольшее значение функции $$y=\sin x +9x -9$$ на отрезке [‐ 9; 0].

Ответ: -9
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y'=\cos x+9$$ . Т.к. $$\left | \cos x \right |\leq 1$$, то $$\cos x+9>0$$, при всех x. Тогда функция возрастает на всем промежутке и $$y_{max}=y(0)$$: $$y(0)=\sin 0+9*0-9=-9$$

 

Задание 6614

Найдите наибольшее значение функции $$y=\frac{50}{2^{x}+3^{x}}$$ на промежутке [1;7]

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Функция $$f(x)=2^{x}$$ - возрастает, $$g(x)=3^{x}$$ - возрастает, тогда $$m(x)=2^{x}+3^{x}$$ - возрастает на всем промежутке, тогда $$y=\frac{40}{2^{x}+3^{x}}$$ - убывает. Следовательно, $$y_{max}=y(1)=\frac{40}{2+3}=8$$

 

Задание 6662

Найдите наибольшее значение функции $$y=2,7e^{3x^{2}-x^{3}-4}$$ на отрезке [1;3]

Ответ: 2,7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную для $$y=2,7*e^{3x^{2}-x^{3}-4}$$: $${y}'=2,7*e^{3x^{2}-x^{2}-4}*{(3x^{2}-x^{3}-4)}'=$$$$2,7*e^{3x^{2}-x^{3}-4}*(6x-3x^{2})$$

Приравняем производную к 0: $${y}'=0\Leftrightarrow$$ $$6x-3x^{2}=0\Leftrightarrow$$ $$3x(2-x)=0\Leftrightarrow$$$$\left[\begin{matrix}x=0\\x=2\end{matrix}\right.$$. x=0 - точка минимума, x=2 - максимума

$$f_{max}=f(2)=2,7*e^{3*2^{2}-2^{3}-4}=2,7$$

 

Задание 6697

Найдите наибольшее значение функции $$y=12\sin x -6\sqrt{3}x+\sqrt{3}\pi+6$$ на отрезке $$[0;\frac{\pi}{2}]$$ .

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную : $${y}'=12 \cos x-6\sqrt{3}$$

Приравняем к 0: $$12 \cos x=6\sqrt{3}\Leftrightarrow$$ $$\cos x=\frac{\sqrt{3}}{2}\Leftrightarrow$$ $$\pm \frac{\pi}{6}+2 \pi n , n \in Z$$

Как видим $$\frac{\pi}{6}$$ - точка максимума, тогда: 

$$y_{max}=y(\frac{\pi}{6})=$$$$12 *\frac{1}{2}-6\sqrt{3}*\frac{\pi}{6}+\sqrt{3} \pi +6 =12$$

 

Задание 6756

Найдите наибольшее значение функции $$y=\frac{x^{3}+x^{2}+9}{x}-x^{2}$$ на отрезке [-9;-1]

Ответ: -6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y=\frac{x^{3}+x^{2}+9}{x}-x^{2}=\frac{x^{3}+x^{2}+9-x^{3}}{x}=\frac{x^{2}+9}{x}$$

$${y}'=\frac{{(x^{2}+9)}'x-(x^{2}+9)*{x}'}{x^{2}}=\frac{2x^{2}-x^{2}-9}{x^{2}}=\frac{x^{2}-9}{x^{2}}=0$$

$$\left\{\begin{matrix}x^{2}-9=0\\x^{2}\neq 0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x=\pm 3\\x\neq 0\end{matrix}\right.$$

$$f(-3)=\frac{(-3)^{2}+9}{(-3)}=-6$$

 

Задание 6803

Найдите наименьшее значение функции $$y=|x^{2}-x|+|x+1|$$

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Раскроем модули :

1) $$x \in (-\infty ;-1]\Rightarrow$$ $$y=x^{2}-x-x-1=x^{2}-2x-1$$

2) $$x \in (-1,0]\cup [1;+\infty )\Rightarrow$$ $$y=x^{2}-x+x+1=x^{2}+1$$

3) $$x \in (0;1)\Rightarrow$$ $$y=-x^{2}+x+x+1=-x^{2}+2x+1$$

Следовательно , $$y _{min}=1$$

 

Задание 6823

Найдите наименьшее значение функции $$y=7^{5x-2}+9*7^{4-5x}-41$$

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

          Пусть $$7^{5x}=m>0$$, тогда: $$f(m)=\frac{m}{7^{2}}+\frac{9*7^{4}}{m}-41$$

          Найдем производную данной функции: $${f}'(m)=\frac{1}{7^{2}}-\frac{9*7^{4}}{m^{2}}=0$$$$\Leftrightarrow$$ $$\frac{m^{2}-9*7^{6}}{(7m)^{2}}=0$$$$\Leftrightarrow$$$$m=\pm 3*7^{3}$$

          Так как $$m>0$$ $$\Rightarrow$$ $$m=7^{5x}=3*7^{3}$$ - при данном значении и будет наименьшее значение функции:

          $$y=\frac{3*7^{3}}{7^{2}}+\frac{9*7^{4}}{3*7^{3}}-41=42-41=1$$

 

Задание 6874

Найдите наименьшее значение выражения x2-x+y2-y

Ответ: -0,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Рассмотрим выражение по частям : Пусть $$f(x)=x^{2}-x$$; $$g(y)=y^{2}-y$$ (функции одинаковы, следовательно, минимальные значения будут так же одинаковы) $$f_{min}=f(x_{0}); x_{0}=-\frac{-1}{2}=0,5$$$$\Rightarrow$$ $$f(x_{0})=0,5^{2}-0,5=-0,25$$ $$g(y_{0})=0,5^{2}=0,5=-0,25$$$$\Rightarrow$$ $$f_{min}+g_{min}=-0,25-0,25=-0,5$$

 

Задание 6922

Найдите наименьшее значение функции $$y=3x^{4}+4x^{3}-12x^{2}-12$$ на отрезке [-0,5;2].

Ответ: -17
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную и приравняем ее к нулю: $${f}'(x)=12 x^{3}+12x^{2}-24x=0\Leftrightarrow$$ $$12x(x^{2}+x-2)=0\Leftrightarrow$$ $$x(x+2)(x-1)=0$$.

На промежутке  [-0,5;2] x=1 - точка минимума, следовательно, наименьшее значение функция принимает в этой точке: $$f_{min}=f(1)=3+4-12=-17$$

 

Задание 6970

Найдите наименьшее значение функции $$f(x)=4^{x}-2^{x+4}+100$$

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$f(x)=4^{x}-2^{x+4}+100=2^{2x}-16*2^{x}+100$$ Пусть $$2^{x}=y>0$$, тогда $$f(y)=y^{2}-16y+100$$ - график парабола, ветви направлены вверх: Найдем вершину параболы (в ней будет $$f_{min}(y)$$ при y>0): $$y_{0}=-\frac{-16}{2}=8\Rightarrow$$ $$f(18)=8^{2}-16*8+100=36$$

 

Задание 7017

Найдите наибольшее значение функции $$y=(27-x)\sqrt{x}$$ на отрезке [1;16]

Ответ: 54
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Найдем производную и приравняем к 0: $${y}'={(27-x)}'\sqrt{x}+({x}')(27-x)=0\Leftrightarrow$$ $$-1*\sqrt{x}+\frac{1}{2\sqrt{x}}(27-x)=0\Leftrightarrow$$ $$\frac{-2x+27-x}{2\sqrt{x}}=0\Leftrightarrow$$ $$\frac{-3x+27}{2\sqrt{x}}=0\Leftrightarrow$$ $$\left\{\begin{matrix}x=9\\x>0\end{matrix}\right.$$

     x=9 – точка максимума , тогда $$y_{max}=y(9)=(27-9)\sqrt{9}=54$$

 

Задание 7037

Найдите точку максимума функции $$y=x^{2}e^{x}$$

Ответ: -2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$y=x^{2}*e^{x}\Rightarrow$$ $${y}'={(x^{2})}'e^{x}+{e^{x}}'*x^{2}=$$$$2xe^{x}+e^{x}*x^{2}\Leftrightarrow$$ $$e^{x}(2x+x^{2})=0$$

Т.к. $$e^{x}>0$$ при любом x $$\Rightarrow$$ $$x(2+x)=0\Leftrightarrow$$ $$\left\{\begin{matrix}x=0 \rightarrow min\\x=-2\rightarrow max\end{matrix}\right.$$

 

Задание 7058

Найдите наибольшее значение функции $$f(x)=(x^{2}-4)e^{x}$$ на отрезке [0;2]

Ответ: 0
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

   Найдем производную данной функции и приравняем к 0: $${f}'(x)={(x^{2}-4)}'e^{x}+{(e^{x})}'(x^{2}-4)=0\Leftrightarrow$$ $$2xe^{x}+e^{x}(x^{2}-4)=0\Leftrightarrow$$ $$e^{x}(x^{2}+2x-4)=0\Leftrightarrow$$ $$D=4+16=20$$; $$x_{1,2}=\frac{-2 \pm \sqrt{20}}{2}=-1 \pm \sqrt{5}$$

   на отрезке [0; 2] есть точка минимума ($$x=-1+\sqrt{5}$$), следовательно, наибольшее значение функция принимает в одном из концов:

$$f(0)=(0^{2}-4)e^{0}=-4$$
$$f(2)=(4-4)e^{2}=0\Rightarrow$$ $$f_{max}=0$$
 

Задание 7105

Найдите точку минимума функции $$f(x)=2\sqrt[3]{x^{2}}-\frac{\sqrt[3]{x^{4}}}{4}$$

Ответ: 0
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную для данной функции : $${y}'=(2*\sqrt[3]{x^{2}}-\frac{\sqrt[3]{x^{4}}}{4})=$$$$2{(x^{\frac{2}{3}})}'-\frac{1}{4}{(x^{\frac{4}{3}})}'=$$$$2*\frac{2}{3}*x^{-\frac{1}{3}}-\frac{1}{4}*\frac{4}{3}x^{\frac{1}{3}}=0\Leftrightarrow$$$$\frac{4}{3} *\frac{1}{\sqrt[3]{x}}-\frac{1}{3}*\sqrt[3]{x}=0\Leftrightarrow$$ $$\frac{1}{3}(\frac{4}{\sqrt[3]{x}}-\sqrt[3]{x})=0\Leftrightarrow$$ $$\frac{4-\sqrt[3]{x^{2}}}{\sqrt[3]{x}}=0\Leftrightarrow$$ $$\sqrt[3]{x^{2}}=4\Leftrightarrow$$ $$x^{2}=64\Leftrightarrow$$ $$x=\pm 8$$ Тогда $$x=0$$ –точка минимума

 

Задание 7178

Найдите наибольшее значение функции $$y=(x-1)*2^{x}$$ на отрезке [2; 6]

Ответ: 320
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Найдем производную функции и приравняем к 0 : $$y^{'}=(x-1)^{'}2^{x}+(x-1)(2^{x})^{'}=2^{x}+(x-1)2^{x}\ln 2=0\Leftrightarrow$$$$2^{x}(1+(x-1)\ln 2)=0\Leftrightarrow$$ $$1+(x-1)\ln 2=0\Leftrightarrow$$ $$x-1=\frac{-1}{\ln 2}\Leftrightarrow$$ $$x=-\frac{1}{\ln 2}-1=-\log_{2}e-1=$$$$\log_{2}\frac{1}{e}-1=$$$$\log_{2}\frac{1}{2e}<0\Rightarrow$$ на промежутке [2 ;6] $$y_{max}=y(6)=(6-1)2^{6}=320$$

     2) Можно решить рассуждением:

На промежутке [2; 6] : y=(x-1) и возрастает $$y=2^{x} \Rightarrow$$ $$y=(x-1)2^{x}\Rightarrow$$ $$y_{max}=y(6)$$

 

Задание 7198

Найдите наибольшее значение функции $$f(x)=2-\sqrt[4]{x^{2}-10x+41}$$

Ответ: 0
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

   Наибольшее значение f(x) будет при наименьшем $$g(x)=\sqrt{x^{2}-10x+41}$$. При этом $$m(x)=x^{2}-10x+41$$ принимает наименьшее значение (а, следовательно, и $$g(x)$$ ) в вершине параболы: $$x_{0}=-\frac{-10}{2}=5\Rightarrow$$$$m(x_{0})=5^{2}-10*5+41=16 \Rightarrow$$ $$g(x_{0})=\sqrt[4]{16}=2\Rightarrow$$ $$f(x)_{min}=2-2=0$$

 

Задание 7219

Найдите точку минимума функции $$y=x^{3}\cdot e^{x}$$

Ответ: -3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную данной функции и приравняем к 0 : $$y^{'}=(x^{3})^{'}e^{x}+(e^{x})^{'}x^{3}=0\Leftrightarrow$$ $$3x^{2}e^{x}+e^{x}x^{3}=0\Leftrightarrow$$ $$x^{2}e^{x}(3+x)=0\Rightarrow$$ $$\left\{\begin{matrix}x=0\\x=-3\end{matrix}\right.$$

x=-3 точка минимума

 

Задание 7321

Найдите наименьшее значение функции $$y=-\frac{4x^{2}+4x+7}{4x^{2}+4x+3}$$

Ответ: -3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Преобразуем данную функцию: $$y=-\frac{4x^{2}+4x+7}{4x^{2}+4x+3}=$$$$-(1+\frac{4}{4x^{2}+4x+3})=$$$$-1-\frac{4}{4x^{2}+4x+3}$$

Найдем производную: $$y^{'}=-\frac{4^{'}(4x^{2}+4x+3)-(4x^{2}+4x+3)^{'}*4}{(4x^{2}+4x+3)^{2}}=0$$$$\Rightarrow$$ $$\frac{(8x+4)*4}{4x^{2}+4x+3}=0$$$$\Rightarrow$$ $$8x+4=0\Rightarrow$$ $$x=-\frac{1}{2}$$

$$y(-2)=-\frac{4*\frac{1}{4}+4(-\frac{1}{2})+7}{4*\frac{1}{4}+4(-\frac{1}{2})+3}=$$$$-\frac{6}{2}=-3$$

 

Задание 7361

Найдите наименьшее значение функции $$y=7^{x-3}+7^{5-x}$$

Ответ: 14
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 7410

Найдите наименьшее значение функции $$y=\log_{\sqrt{3}} (x-4\sqrt{x-2}+5)$$ на отрезке [5;10].

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 7439

Найдите наименьшее значение функции $$y=2^{\sqrt{x}}+3^{\sqrt[3]{x}}+4$$ на отрезке [1;64]

Ответ: 9
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 7512

В какой точке отрезка [12;22] первообразная F(x) для функции $$f(x)=-1-\ln^{2}(x-2)$$ достигает своего наименьшего значения на этом отрезке?

Ответ: 22
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Заметим, что функция $$g(x)=-\ln^{2}(x-2)$$ меньше или равна при любых значениях х (так как натуральный логарифм в квадрате и перед ним стоит знак "-"), следовательно, $$f(x)=-1-\ln^{2}(x-2)$$ отрицательна при любом х. При этом данная функция является функцией производной для первообразной F(x). То есть производная отрицательна на всем промежутке по х, следовательно, сама функция F(x) убывает на нем. Тогда наименьшее значение будет в конце промежутка, то есть в точке 22

 

Задание 7559

График первообразной F(x) для функции $$y=3\sin x-2\cos x$$ проходит через точку $$(-\pi;0)$$. В какой точке график первообразной пересекает ось ординат? В ответе укажите ординату этой точки.

Ответ: -6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 7634

Найдите наименьшее значение функции $$f(x)=(x^{2}-8x+8)e^{2-x}$$ на отрезке [1;7]

Ответ: -4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 7681

Найти наибольшее значение функции $$f(x)=\cos \pi x -6x$$ на отрезке $$[-\frac{2}{3};1]$$

Ответ: 3,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 7729

Найдите наибольшее значение функции $$y=\sin (2x+\frac{\pi}{6})$$ на промежутке $$[-\frac{\pi}{2};\frac{\pi}{2}]$$ .

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 7780

Найдите точку максимума функции $$y=(1-2x)\sin 2x-\cos 2x$$ , принадлежащую интервалу $$(-\frac{\pi}{4};\frac{\pi}{4})$$

Ответ: 0,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 7876

Найдите наименьшее значение функции $$y=x^{3}+6x^{2}+9x+21$$ на отрезке $$[-3;0]$$

Ответ: 17
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 7892

Найдите наибольшее значение функции $$y=14\sqrt{2}\sin x-14x+3,5\pi+3$$ на отрезке $$[0;\frac{\pi}{2}]$$

Ответ: 17
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 7941

Найдите наибольшее значение функции $$y=\sqrt{-21+10x-x^{2}}$$

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8235

Найдите наименьшее значение функции $$y=3-\sqrt{96-x^{2}-4x}$$ на отрезке $$[-5;8]$$

Ответ: -7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть Чем больше значение корня, тем меньше значение функции. Под корнем представлена квадратичная функция. При этом наибольшее значение она принимает в вершине параболы (своего графика), так как коэффициент при $$x^{2}$$ отрицательный. Найдем абсциссу вершины: $$x_{0}=-\frac{-4}{-2}=-2$$. Данная точка располагается на отрезке [-5;8], следовательно, там и будет наименьшее значение функции: $$y(-2)=3-\sqrt{96-(-2)^{2}-4*(-2)}=3-10=-7$$
 

Задание 8266

Найдите наибольшее значение функции $$y=\log_{2}(\sin x-\cos x)$$, на отрезке $$[\frac{\pi}{2};\pi]$$
Ответ: 0,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Функция логарифма, при основании больше единицы, возрастает, следовательно, наибольшее значение она будет принимать при наибольшем значение логарифмируемой функции $$f(x)=\sin x-\cos x$$

Найдем производную и приравняем ее к нулю: $$f'(x)=\cos x+\sin x=0| :\cos x\Leftrightarrow$$$$1+tg x=0\Leftrightarrow$$$$tg x=-1\Leftrightarrow$$$$x=-\frac{\pi}{4}+\pi n, n\in Z$$

При этом из множества этих точек на отрезке $$[\frac{\pi}{2};\pi]$$ располагается $$\frac{3\pi}{4}$$, которая является точкой максимума. Тогда $$y(max)=y(\frac{3\pi}{4})=\log_{2}(\sin \frac{3\pi}{4}-\cos \frac{3\pi}{4})=$$$$\log_{2}(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2})=$$$$\log_{2} \sqrt{2}=\frac{1}{2}=0,5$$

 

Задание 8285

Найдите наименьшее значение функции $$y=3\cos x-\frac{48}{\pi}x+19$$ на отрезке $$[-\frac{2\pi}{3};0]$$

Ответ: 22
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8304

Найдите наименьшее значение функции $$y=x^{4}-5x^{2}-10$$ на отрезке [‐4;1]

Ответ: -16,25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8322

Найдите точку максимума функции $$y=2+5x-\frac{2}{3}x\sqrt{x}$$

Ответ: 25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8341

Найдите наибольшее значение функции $$f(x)=(x+2)\cdot \log_{\frac{1}{2}}(x+2)$$ на отрезке [0;2].

Ответ: -2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8679

Найдите точку минимума функции $$y=x+\frac{25}{x}$$

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8696

Найдите точку минимума функции $$y=x^{2}-28x+96\ln x-5$$
Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8716

Найдите точку максимума функции $$y=x^{3}+18x^{2}+81x+23$$
Ответ: -9
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8739

Найдите наибольшее значение функции $$y=(x^{2}+22x-22)e^{2-x}$$ на отрезке [0;5]
Ответ: 26
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8758

Найдите наименьшее значение функции $$y=(1-x)e^{2-x}$$ на отрезке [0,5;5].
Ответ: -1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8777

Найдите точку минимума функции $$y=\frac{162}{x}+2x+7$$
Ответ: 9
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8796

Найдите точку минимума функции $$y=-\frac{x}{x^{2}+900}$$
Ответ: 30
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8870

Найдите наибольшее значение функции: $$y=x(\sqrt{1-9x^{2}}+3\sqrt{4-x^{2}})$$

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8891

Найдите наименьшее значение функции $$y=-9-8\sqrt{3}\pi+24\sqrt{3}x-48\sqrt{3}\sin x$$ на отрезке $$[0;\frac{\pi}{2}]$$

Ответ: -81
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8911

Найдите точку минимума функции $$y=(3-2x)\cos x+2\sin x+4$$, принадлежащую промежутку $$(0;\frac{\pi}{2})$$

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9042

Найдите наибольшее значение функции $$y=\log_{3}x \cdot \log_{3}\frac{9}{x}+1$$ на отрезке [1;9]

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9063

Найдите наименьшее значение функции $$y=2x^{2}-5x+\ln x-5$$ на отрезке$$[\frac{5}{6};\frac{7}{6}]$$

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9109

Найдите наименьшее значение функции $$y=4x^{2}-12x+4\ln x-10$$ на отрезке $$[\frac{12}{13};\frac{14}{13}]$$

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9160

Найдите наибольшее значение функции $$y=x^{3}-12|x+1|$$ на отрезке $$[-4;3]$$

Ответ: -1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9227

Найдите наибольшее значение функции $$y=-\frac{4}{3}x\sqrt{x}+6x+13$$ на отрезке [4;16]

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9244

Найдите наименьшее значение функции $$y=5x-\ln(5x)+12$$ на отрезке $$[\frac{1}{10};\frac{1}{2}]$$

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9341

Найдите наименьшее значение функции $$y=\sqrt{x^{3}-27x+55}$$ на отрезке $$[-5;6]$$

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9361

Найдите наибольшее значение функции $$y=\ln(8x)-8x+7$$ на отрезке $$[\frac{1}{16};\frac{5}{16}]$$

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9381

Найдите наибольшее значение функции $$y=\ln (x+9)^{5}-5x$$ на отрезке [-8,5;0]

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9486

Найдите точку максимума функции $$y=(x+7)^{2}\cdot e^{-1-x}$$

Ответ: -5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9506

Найдите наименьшее значение функции $$y=3x^{2}+\frac{12}{x^{2}+1}+4$$

Ответ: 13
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9526

Найдите наименьшее значение функции $$y=6+\frac{\sqrt{3}\pi}{2}-3\sqrt{3}x-6\sqrt{3}\cos x$$ на отрезке $$[0;\frac{\pi}{2}]$$

Ответ: -3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9631

Найдите наименьшее значение функции $$y=2x+3+6|x-1|-x^{2}$$ на отрезке [-2;2]

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9659

Найдите наименьшее значение функции $$y=9x-\ln (x+5)^{9}$$ на отрезке [-4,5;0]

Ответ: -36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9678

При каком наибольшем b значении функция $$f(x)=x^{3}+bx^{2}+3bx-1$$ возрастает на всей числовой прямой?

Ответ: 9
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9779

Найдите точку максимума функции $$f(x)=2x^{2}-5x+\ln x-5$$

Ответ: 0,25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9799

Найдите наименьшее значение функции $$y=12x-\ln(12x)+4$$ на отрезке $$[\frac{1}{24};\frac{5}{24}]$$

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9874

Найдите наименьшее значение функции $$y=2(x-20)\sqrt{x+7}+5$$ на отрезке $$[-6;2]$$
Ответ: -103
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9899

Найдите наименьшее значение функции $$f(x)=(x-2)(x-1)(x+1)(x+2)$$ на отрезке [‐1;2].

Ответ: -2,25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9946

Найдите наименьшее значение функции $$y=\frac{x^3+x^2+9}{x}$$ на отрезке [1;10]

Ответ: 6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10051

Найдите точку максимума функции $$y=(6-4x)\cos x+4\sin x+4$$, принадлежащую промежутку $$(-\frac{\pi}{2};\pi)$$.

Ответ: 0
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10071

Найдите наибольшее значение функции: $$y=\sqrt{-x^2+4}+1$$

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10094

Найдите наименьшее значение функции $$f(x)=(2-\cos^2 x-\cos^{4} x)(1+ctg^{2}x)$$

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10113

Найдите наименьшее значение функции $$y=\cos x-16x+9$$ на отрезке $$[-\frac{3\pi}{2};0]$$

Ответ: 11
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10132

Найдите точку минимума функции $$y=5\frac{3}{4}+3x+\frac{x^2}{2}-x^{3}-\frac{x^{4}}{4}$$

Ответ: -1
 

Задание 10151

Найдите наибольшее значение функции $$y=x^{3}+8x^{2}+16x+23$$ на отрезке[-13;-3].

Ответ: 23
 

Задание 10166

Найдите точку минимума функции $$y=(x-0,5)\cdot \sin x+\cos x$$ на промежутке $$(0;\frac{\pi}{2})$$

Ответ: 0,5
 

Задание 10191

Найти наименьшее значение функции
$$f(x)=|\sqrt{-x^{2}+6x-5}-3|+\sqrt{-x^{2}+6x-5}+x^{3}+6x^{2}$$
Ответ: 10
 

Задание 10212

Найдите наибольшее значение функции $$f(x)=(\frac{1}{2})^{\log_{\frac{1}{3}}(23-x^2+4x)}$$

Ответ: 8
 

Задание 10259

Найдите наибольшее значение функции $$y=3x-e^{3x}$$ на отрезке $$[-1;1]$$

Ответ: -1
 

Задание 10285

Найдите точку минимума функции $$y=\ln(2x+5)+\frac{2}{(2x+5)^2}$$

Ответ: -1,5
 

Задание 10389

Найдите наибольшее значение функции $$y=\frac{\ln(2x-3)}{2}+3x-x^{2}$$

Ответ: 2
 

Задание 10439

Найдите наибольшее значение функции $$f(x)=e^{2x-6}(x-2)$$ на отрезке [1;3]

Ответ: 1
 

Задание 10495

Найдите точки экстремума функции. Если их несколько, в ответ запишите их сумму. $$f(x)=\frac{6x-x^{3}}{x+1}\cdot 3^{\log_{3}(x+1)}+\frac{(x^{3}+2)(\sqrt{3-x})^{2}}{x-3}$$

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10506

Найдите наибольшее значение функции $$y=(1+x)\log_{5}x$$ на отрезке [1;5]

Ответ: 6
 

Задание 10526

Найдите точку минимума функции $$y=5x-5\ln(x+7)+7$$

Ответ: -6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

По области определения натурального логарифма получим: $$x+7>0\Leftrightarrow x>-7$$

Найдем производную функции и приравняем к нулю: $$y'=5-5\cdot \frac{1}{x+7}=0\Leftrightarrow$$$$\frac{5x+35-5}{x+7}=0$$ .Получим, что $$x=-6$$, $$x\neq 7$$.

На промежутке $$(-7;-6)$$ производная имеет знак "-", далее "+", то есть "-6" - точка минимума.

 

Задание 10554

Найдите наименьшее значение функции $$y=\sqrt[5]{-\frac{5*x^4}{4}+4*x^5}$$ на интервале $$\left(0;;\frac{1}{2}\right)$$

Ответ: -0,25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем производную: $$y^{'}={\left({\left(-\frac{5*x^4}{4}+4*x^5\right)}^{\frac{1}{5}}\right)}^{'}=$$$$\frac{1}{5}*{\left(-\frac{5*x^4}{4}+4*x^5\right)}^{\frac{4}{5}}*{\left(-\frac{5*x^4}{4}+4*x^5\right)}^{'}=$$$$\frac{1}{5}*\frac{1}{\sqrt[5]{{\left(-\frac{5*x^4}{4}+4*x^5\right)}^4}}*\left(-5*x^3+20*x^4\right)=0$$ $$-5*x^{3}*\left(1-4*x\right)=0\to x=0$$ и$$x=\frac{1}{4};$$ $$\left(\frac{1}{4}\right)=\sqrt[5]{\frac{-5*{(\frac{1}{4})}^4}{4}+4*{\left(\frac{1}{4}\right)}^5}=$$$$\sqrt[5]{-{\left(\frac{1}{4}\right)}^5}=-0,25$$

 

Задание 10574

Найдите наименьшее значение функции $$y={{\log }_2 x\ }\cdot {{\log }_2 \left(16\cdot x\right)\ }+14$$

Ответ: 10
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть $$y={{\log }_2 x\ }\cdot {{\log }_2 \left(16\cdot x\right)\ }+14={{\log }_2 x\ }\cdot \left(4+{{\log }_2 x\ }\right)+14=$$$${{{{\rm (log}}_2 x\ })}^2+4\cdot {{\log }_2 x\ }+14$$ Пусть $${{\log }_2 x\ }=m$$, получим $$f\left(m\right)=m^2+4\cdot m+14$$. Тогда $$f_{{\rm min}}\left(m\right)=f(m_0)$$, где $$m_0=\frac{-4}{2}=-2$$ (вершина параболы) $$\to y_{min}={\left(-2\right)}^2+4\cdot \left(-2\right)+14=10$$
 

Задание 10594

Найдите точку минимума функции $$y=\left(73-x\right)*e^{73-x}$$

Ответ: 74
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть $$y'={(73-x)}'e^{73-x}+\left(73-x\right){\left(e^{73-x}\right)}'=$$$$\left(-1\right)e^{73-x}+\left(73-x\right)\left(-1\right)e^{73-x}=0\to$$ $$\to\left(-1\right)-73+x=0\to x=74$$
 

Задание 10614

Найдите точку максимума функции $$f\left(x\right)=x^8\cdot e^{5x+6}$$.

Ответ: -1,6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть $$f'\left(x\right)={(x^8)}'e^{5x+6}+x^8{(e^{5x+6})}'=8x^7\cdot e^{5x+6}+x^8\cdot 5e^{5x+6}=0\to$$ $$\to e^{5x+6}\left(8x^7+5x^8\right)=0\to x^7\left(8+5x\right)=0\to \left[ \begin{array}{c} x=0 \\ x=-1,6 \end{array} \right.$$ Расставим знаки производной: $$x=-1,6$$ - точка максимума.
 

Задание 10634

Найдите наименьшее значение функции $$y=4x-\frac{8\sqrt{3}}{3}{\sin x\ }+2+\frac{4\sqrt{3}}{3}-\frac{2\pi }{3}$$ на отрезке $$\left[0;\pi \right]$$.

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть Найдем производную: $$y'={\left(4x\right)}'-\frac{8\sqrt{3}}{3}{\left({\sin x\ }\right)}'=4-\frac{8\sqrt{3}}{3}{\cos x\ }=0\to {\cos x\ }=\frac{4\cdot 3}{8\sqrt{3}}=\frac{\sqrt{3}}{2}\to$$ $$\to x=\pm \frac{\pi }{6}+2\pi n,\ n\in Z.$$ На $$\left[0;\pi \right]$$ имеем $$x=\frac{\pi }{6}$$. При этом это точка минимума $$\to y\left(\frac{\pi }{6}\right)=4\cdot \frac{\pi }{6}-\frac{8\sqrt{3}}{3}\cdot \frac{1}{2}+2+\frac{4\sqrt{3}}{3}-\frac{2\pi }{3}=2$$ - наименьшее значение.
 

Задание 10654

Найдите точку минимума функции $$f\left(x\right)=\frac{5^{{{\log }_5 \left(2-x\right)\ }}}{5^{{{\log }_5 \left(x+4\right)\ }}}+6x$$
Ответ: -3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$f\left(x\right)=\frac{5^{{{\log }_5 \left(2-x\right)\ }}}{5^{{{\log }_5 \left(x+4\right)\ }}}+6x\to g\left(x\right)=\frac{2-x}{x+4}+6x$$ при $$x\in \left(-4;2\right)\ (M(x))$$

$$g'\left(x\right)=\frac{{\left(2-x\right)}'\left(x+4\right)-(x+4)'(2-x)}{{\left(x+4\right)}^2}+6=\frac{-x-4-2+x}{{\left(x+4\right)}^2}+6=0$$

$$\to {\left(x+4\right)}^2=1\to \left[ \begin{array}{c} x=-5\ \\ x=-3 \end{array} \right.$$, где $$x=-5$$ не принадлежит $$M\left(x\right)\to x=-3-min$$

 

Задание 10690

Найдите точку минимума функции $$f\left(x\right)={\ln (\frac{x^2+4}{x})\ }$$

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть $$f'\left(x\right)=\frac{1}{\frac{x^2+4}{x}}\cdot {\left(\frac{x^2+4}{x}\right)}'=$$$$\frac{x}{x^2+4}{\left(x+\frac{4}{x}\right)}'=$$$$\frac{x}{x^2+4}\left(1-\frac{4}{x^2}\right)=$$ $$=\frac{x^2-4}{x(x^2+4)}=0\to \left[ \begin{array}{c} x=\pm 2 \\ x\ne 0 \end{array} \right.$$ Учтем, что по $$D\left(f\right):\ \frac{x^2+4}{x}>0\to x>0\to x=2$$.
 

Задание 10730

Найдите точку минимума функции $$y={\left(x^2-7x+7\right)}^{e^{\left(x-17\right)}}$$
Ответ: 5
Скрыть

1. Вычислим производную функции, получим: $$y'={\left(2x-7\right)}^{e^{(x-17)}}+{\left(x^2-7x+7\right)}^{e^{\left(x-17\right)}}\to y'=e^{\left(x-17\right)}(x^2-5x)$$

2. Приравняем производную нулю и найдем точки экстремума функции: $$e^{\left(x-17\right)}\left(x^2-5x\right)=0$$, так как $$e^{x-17}>0$$, то $$x^2-5x=0\to \left[ \begin{array}{c} x_1=0 \\ x_2=5 \end{array} \right.$$

3. Точкой минимума будет являться та точка экстремума, в окрестности которой производная меняет свой знак с «-» на «+». Получаем точку x = 5.

 

Задание 10750

Найдите точку минимума функции $$y=\left(2x^2-26x+26\right)e^{x-17}$$

Ответ: 11
Скрыть

Вычислим производную функции: $$y'=\left(4x-26\right)e^{x-17}+\left(2x^2-26x+26\right)e^{x-17}\to y'=e^{x-17}(2x^2-22x)$$

Приравняем производную нулю и найдем точки экстремума: $$e^{x-17}\left(2x^2-22x\right)=0$$, так как $$e^{x-17}>0$$, то $$2x^2-22x=0\to x-11x=0\to \left[ \begin{array}{c} x_1=0 \\ x_2=11 \end{array} \right.$$

Найдем точку минимума функции. В окрестности этой точки производная должна менять свой знак с «-» на «+». Анализ показывает, что это точка $$x=11$$.

 

Задание 10819

Найдите наименьшее значение функции $$y=x^3-9x^2+3$$ на отрезке$$\ [-3;7]$$.
Ответ: -105
Скрыть $$y'=3x^2-18x=0\leftrightarrow \left[ \begin{array}{c} x=0 \\ x=6 \end{array} \right.$$. Получим, что 6 - точка минимума, тогда на отрезке $$[-3;7]$$. $${\min \left(y\right)\ }=y\left(6\right)=216-324+3=-105$$.
 

Задание 10839

Найдите наибольшее значение функции $$y=27x+25{\cos x\ }-14$$ на отрезке $$\left[-\frac{\pi }{2};0\right]$$.

Ответ: 11
Скрыть

Вычислим производную от функции y, получим: $$y'=27-25{\sin x\ }$$. В точках экстремума производная равна нулю, т.е. $$25{\sin x\ }=27\to {\sin x\ }=\frac{27}{25}\notin [-1;1]$$ следовательно, максимальное и минимальное значение функции находятся на границах диапазона $$\left[-\frac{\pi }{2};0\right]$$.

Вычислим значение функции в этих точках, получим: $$y\left(-\frac{\pi }{2}\right)=27\cdot \left(-\frac{\pi }{2}\right)+25{\cos \left(-\frac{\pi }{2}\right)\ }-14$$ данное значение не может быть выражено конечной десятичной дробью, а значит не является ответом в ЕГЭ;

$$y\left(0\right)=27\cdot 0+25{\cos 0\ }-14=11$$ точка максимума функции на отрезке.

 

Задание 10858

Найдите наибольшее значение функции $$y=20{\tan x\ }-20x+5\pi -6$$ на отрезке $$\left[-\frac{\pi }{4};\frac{\pi }{4}\right]$$

Ответ: 14
Скрыть

Вычислим производную, получим: $$y'=\frac{20}{{{\cos }^{{\rm 2}} x\ }}-20$$.

Приравняем производную нулю для поиска точек экстремума функции, получим уравнение $$\frac{20}{{{\cos }^{{\rm 2}} x\ }}=20\to {{\cos }^{{\rm 2}} x\ }=1$$ откуда имеем $${\cos x\ }=1\to x=0\in \left[-\frac{\pi }{4};\frac{\pi }{4}\right]$$ и $${\cos x\ }=-1\to x=\pi \notin \left[-\frac{\pi }{4};\frac{\pi }{4}\right]$$.

Дополнительно нужно оценить значение функции в граничных точках диапазона $$y\left(-\frac{\pi }{4}\right)=20{\tan \left(-\frac{\pi }{4}\right)\ }-20\left(-\frac{\pi }{4}\right)+5\pi -6$$ и $$y\left(0\right)=20{\tan \left(0\right)\ }+5\pi -6$$ данные значения не могут быть выражены конечными десятичными дробями, а значит не являются ответами в ЕГЭ; $$y\left(\frac{\pi }{4}\right)=14$$ - точка максимума.

 

Задание 10877

Найдите наименьшее значение функции $$y=\frac{2}{3}x\sqrt{x}-6x-5$$ на отрезке $$[9;36]$$.

Ответ: -77
Скрыть Преобразуем выражение $$y=\frac{2}{3}x^{\frac{3}{2}}-6x-5$$. Производная равна $$y'=x^{\frac{1}{2}}-6=\sqrt{x}-6$$. В точках экстремума функции производная равна нулю, получаем уравнение $$\sqrt{x}-6=0\to x=36\in [9;36]$$. Рассмотрим значения функции в граничных точках диапазона, получим: $$y\left(9\right)=\frac{2}{3}\cdot 9\cdot 3-54-5=-41$$. $$y\left(36\right)=\frac{2}{3}\cdot 36\cdot 6-216-5=-77.$$ Наименьшее значение равно -77.
 

Задание 10896

Найдите наибольшее значение функции $$y=x^5-5x^3-20x$$ на отрезке $$\left[-3;1\right]$$

Ответ: 48
Скрыть

Вычислим производную от функции, получим $$y'=5x^4-15x^2-20$$.

В точках экстремума функции производная равна нулю, имеем: $$5x^4-15x^2-20\to x^4-3x^2-4=0$$. Решение уравнения дает два корня $$x^2=-1$$ - не принадлежит множеству действительных чисел $$x^2=4\to x=\pm 2$$.

Значение $$x=2\notin \left[-3;1\right]$$ и остается одна точка $$x=-2$$. Вычислим значения функции в точке экстремума -2 и в граничных точках -3 и 1, получим: $$y\left(-3\right)={\left(-3\right)}^5-5{\left(-3\right)}^3+60=-48$$. $$y\left(-2\right)={\left(-2\right)}^5-5{\left(-2\right)}^3+40=48.$$ $$y\left(1\right)=1-5-20=-24.$$ Наибольшее значение функции равно 48.

 

Задание 10934

Найдите точку максимума функции $$y=\left(5x-6\right){\cos x\ }-5{\sin x\ }-8$$, принадлежащую промежутку $$(0;\frac{\pi }{2})$$

Ответ: 1,2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть Найдем производную $$y'=(5x-6)' {\cos x\ }+(5x-6)({\cos x\ })'-5{\cos x\ }\to $$ $$\to 5{\cos x\ }-5x{\sin x\ }+6{\sin x\ }-5{\cos x\ }=0\to {\sin x\ }\left(6-5x\right)=0\leftrightarrow $$ $$\leftrightarrow \left[ \begin{array}{c} {\sin x\ }=0 \\ 6-5x=0 \end{array} \to \left[ \begin{array}{c} x=\pi n,n\in Z \\ x=1,2 \end{array} \right.\right.$$. На $$(0;\frac{\pi }{2})$$ точка максимума $$x=1,2$$
 

Задание 10998

Найдите наименьшее значение функции $$f\left(x\right)=5-{{\log }_2 (31-x^2-2x)\ }$$

Ответ: 0
Скрыть Пусть $$g\left(x\right)=31-x^2-2x\to f\left(x\right)\to min,$$ если $${{\log }_2 (31-x^2-2x)\ }\to max$$ или $$g\left(x\right)\to max.$$ Наибольшее будет в вершине параболы: $$x_0=-\frac{-2}{-2}=-1\to g\left(-1\right)=31-1+2=32\to$$$$ f\left(-1\right)=5-{{\log }_2 32\ }=0$$
 

Задание 11018

Найдите наименьшее значение функции $$y=\left(x-22\right)e^{x-21}$$ на отрезке $$[20;\ 22].$$

Ответ: -1
Скрыть Вычислим производную $$y'=e^{x-21}+{\left(x-22\right)}^{e^{x-21}}=e^{x-21}\left(x-21\right).$$ В точках экстремума производная равна нулю, получим уравнение $$e^{x-21}\left(x-21\right)=0\to x=21\in \left[20;22\right].$$ Для определения наименьшего значения функции, вычислим ее значение на краях диапазона и в точке экстремума, получим: $$y\left(20\right)=-2e^{-1}$$ данное значение не может быть выражено конечной десятичной дробью, а значит не является ответом в ЕГЭ; $$y\left(21\right)=-1;y\left(22\right)=0.$$ Наименьшее значение равно -1.
 

Задание 11084

Найдите наибольшее значение функции $$y={{\log }_{\frac{1}{3}} \sqrt{x^3}\ }$$ на отрезке $$[\frac{1}{3};3]$$

Ответ: 1,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть $$y={{\log }_{\frac{1}{3}} \sqrt{x^3}\ }$$ т.к. $$f\left(x\right)=x^3$$ - возрастает, то $$y={{\log }_{\frac{1}{3}} f(x)\ }$$ - убывает на $$\left[\frac{1}{3};3\right]\to y_{max}=y\left(\frac{1}{3}\right)={{\log }_{\frac{1}{3}} \sqrt{{\left(\frac{1}{3}\right)}^3}\ }=\frac{3}{2}{{\log }_{\frac{1}{3}} \frac{1}{3}\ }=1,5.$$
 

Задание 11103

Найдите наибольшее значение функции $$y=\frac{x^2+400}{x}$$ на отрезке $$\left[-28;-2\right].$$

Ответ: -40
Скрыть Преобразуем выражение функции $$y=x+\frac{400}{x}$$ и вычислим ее производную $$y^'=1-\frac{400}{x^2}.$$ В точках экстремумов функции производная равна нулю, имеем: $$\frac{400}{x^2}=1\to x_1=20\notin \left[-28;-2\right];\ x_2=-20\in \left[-28;-2\right].$$ Для нахождения наибольшего значения функции вычислим ее в граничных точках диапазона и в точке экстремума, получим: $$y\left(-28\right)=\frac{{28}^2+400}{-28}=-28-\frac{400}{28}$$ данное значение не может быть выражено конечной десятичной дробью, а значит не является ответом в ЕГЭ; $$y\left(-20\right)=\frac{800}{-20}=-40;y\left(-2\right)=\frac{404}{-2}=-202.$$ Наибольшее значение равно -40.
 

Задание 11123

Найдите наименьшее значение функции $$y={\left(x-10\right)}^2\left(x+1\right)+3$$ на отрезке [5;14].

Ответ: 3
Скрыть

Преобразуем выражение $$y\left(x^2-20x+100\right)\left(x+1\right)+3$$ и вычислим производную от этой функции $$y'=\left(2x-20\right)\left(x+1\right)+\left(x^2-20x+100\right)\to y'=\left(x-10\right)\left(3x-8\right).$$ В точках экстремума функции производная равна нулю, имеем: $$\left(x-10\right)\left(3x-8\right)=0\to x_1=10;\ x_2=\frac{8}{3}\notin \left[5;14\right].$$

Для нахождения наименьшего значения функции, вычислим ее значения в граничных точках диапазона и в точке экстремума, получим $$y\left(5\right)=25\cdot 6+3=153;y\left(10\right)=3;y\left(14\right)=16\cdot 15+3=243.$$

Наименьшее значение равно 3.

 

Задание 11142

Найдите наименьшее значение функции $$f\left(x\right)=e^{2x}-4e^x+7$$ на отрезке $${\rm [-1};{\rm \ 1].}$$

Ответ: 3
Скрыть Вычислим производную от функции, получим: $$f'\left(x\right)=2e^{2x}-4e^x.$$ В точках экстремума функции производная равна нулю, имеем уравнение $$2e^{2x}-4e^x=0\to 2e^x\left(e^x-2\right)=0.$$ Учитываем, что $$2e^x\ne 0,$$ и рассматриваем уравнение $$e^x-2=0\to e^x=2\to x={\ln 2\ }\in \left[-1;1\right].$$ Найдем значение функции в точке экстремума и на краях диапазона, получим: $$f\left(-1\right)=e^{-2}-4e^{-1}+7;f\left(1\right)=e^2-4e+7$$ данные значения не могут быть выражены конечными десятичными дробями, а значит не являются ответами в ЕГЭ. $$f\left({\ln 2\ }\right)={\left(e^{{\ln 2\ }}\right)}^2-4e^{{\ln 2\ }}+7=4-8+7=3.$$
 

Задание 11273

Найдите наибольшее значение функции $$f(x)=\cos^{2}x+\sin x$$ на отрезке $$[0;\frac{\pi}{4}]$$.

Ответ: 1,25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11339

Найдите наименьшее значение функции $$y=e^{2x}-6e^{x}+3$$ на отрезке $$[1;2]$$

Ответ: -6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11374

Найдите точку максимума функции $$y=-\frac{x^{2}+196}{x}$$

Ответ: 14
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11418

Найдите наибольшее значение функции $$f(x)=\log_{7}(\frac{1}{x^{3}-12x^{2}+45x-1})$$ на отрезке [3;6].

Ответ: -2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11465

Найдите наименьшее значение функции $$f(x)=-4\cdot(9x^{2}+3x-2)^{2}$$ при условии $$|3x+2|\leq 2$$ .

Ответ: -400
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11709

Найдите наибольшее значение функции: $$y=4(12\sin^{2}x+15\cos x-4\cos^{3}x)$$

Ответ: 64
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11728

Найдите сумму значений функции $$y=4\cos^{3}x-3\cos x$$ в точках экстремума принадлежащих промежутку $$[0;11\pi)$$.

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11747

Найдите наименьшее значение функции $$y=\log_{0,5}(4^{x}-2^{x+2}+8)$$ на отрезке $$[-1;2]$$.

Ответ: -3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11766

Найдите наименьшее значение функции $$y=\frac{5x^{2}+2}{3x^{2}+20}+\frac{3x^{2}+20}{5x^{2}+2}$$ на отрезке $$[-1;4]$$

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11851

Найдите наименьшее значение функции $$y=x+\cos^{2}x$$ на отрезке $$[0;\frac{\pi}{2}]$$

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12295

Найдите наибольшее значение функции $$y\ =\ \left(x-6\right)е^{7-x}$$ на отрезке [2; 15].

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12310

Найдите точку минимума функции $$y=11x-{{\ln \left(x+4\right)\ }}^{11}-3$$

Ответ: -3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12330

Найдите наибольшее значение функции $$y=\ 7\ln(x\ +\ 5)-7x\ +\ 10$$ на отрезке $$[-4,5;\ 0].$$

Ответ: 38
 

Задание 12350

Найдите наименьшее значение функции $$y=x\sqrt{x}-6x+11$$ на отрезке [0;30]

Ответ: -21
 

Задание 12371

Найдите точку минимума функции $$y={\left(x+8\right)}^2\cdot e^{-x-3}$$

Ответ: -8
 

Задание 12391

Найдите точку минимума функции $$y\ =\ x^2\ -\ 28x\ +\ 96\lnx\ -\ 5.$$

Ответ: 8
 

Задание 12411

Найдите точку максимума функции $$y\ =\ x^3\ +\ 18x^2\ +\ 81x\ +\ 23.$$

Ответ: -9
 

Задание 12431

Найдите наибольшее значение функции $$y\ =\ \left(x^2+\ 22x-22\right)е^{2-x}$$ на отрезке [0; 5].

Ответ: 26
 

Задание 12450

Найдите наименьшее значение функции $$y\ =\ \left(1-x\right)е^{2-x}$$ на отрезке [0,5; 5].

Ответ: -1
 

Задание 12469

Найдите точку минимума функции $$y=\frac{162}{x}+2x+7$$

Ответ: 9
 

Задание 12491

Найдите точку минимума функции $$y=-\frac{x}{x^2+900}$$

Ответ: 30
 

Задание 12511

Найдите наименьшее значение функции $$y=-9-8\sqrt{3}\pi +24\sqrt{3}x-48\sqrt{3}\sin x$$ на отрезке $$[0;\frac{\pi }{2}]$$

Ответ: -81
 

Задание 12530

Найдите точку минимума функции $$y=\ (3\ -\ 2x)\cos x\ +\ 2\sin x\ +\ 4$$, принадлежащую промежутку $$(0;\frac{\pi }{2})$$

Ответ: 1,5
 

Задание 12549

Найдите наименьшее значение функции $$y\ =\ 2x^2-\ 5x\ +\ \ln x\ -\ 5$$ на отрезке $$[\frac{5}{6};\frac{7}{6}]$$

Ответ: -8
 

Задание 12571

Найдите наименьшее значение функции $$y\ =\ 4x^2-\ 12x\ +\ 4lnx\ -\ 10$$ на отрезке $$[\frac{12}{13};\frac{14}{13}]$$

Ответ: -18
 

Задание 12591

Найдите наибольшее значение функции $$y=-\frac{4}{3}x\sqrt{x}+6x+13$$ на отрезке $$[4;16]$$

Ответ: 31
 

Задание 12611

Найдите наименьшее значение функции $$y\ =\ 5x-\ln(5x)\ +\ 12$$ на отрезке $$[\frac{1}{10};\frac{1}{2}]$$

Ответ: 13

Задание 12631

Найдите наибольшее значение функции $$y={\ln \left(8x\right)\ }-8x+7$$ на отрезке $$[\frac{1}{16};\frac{5}{16}]$$

Ответ: 6
 

Задание 12651

Найдите наименьшее значение функции $$y=6+\frac{\sqrt{3}\pi }{2}-3\sqrt{3}x-6\sqrt{3}\cos x$$ на отрезке $$[0;\ \frac{\pi }{2}]$$

Ответ: -3
 

Задание 12670

Найдите наименьшее значение функции $$y=9x-{{\ln \left(x+5\right)\ }}^9$$ на отрезке [-4,5; 0].

Ответ: -36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12691

Найдите наименьшее значение функции $$y\ =\ 12x-\ln(12x)\ +\ 4$$ на отрезке $$[\frac{1}{24};\frac{5}{24}]$$

Ответ: 5
 

Задание 12711

Найдите точку максимума функции $$y\ =\ 2x^2-57x\ +\ 203\ln x\ +\ 28.$$

Ответ: 7
 

Задание 12731

Найдите наибольшее значение функции $$y=\ {\log}_2(-60-16x-x^2)-3.$$

Ответ: -1
 

Задание 12750

Найдите точку минимума функции $$y=x-\ \ln(x\ +\ 6)\ +\ 3.$$

Ответ: -5
 

Задание 12771

Найдите точку минимума функции $$y\ =\ 5x\ -\ 5\ln(x+\ 7)\ +\ 7.$$

Ответ: -6
 

Задание 12792

Найдите наибольшее значение функции $$y\ =\ {\left(x+\ 20\right)}^2е^{-18-x}$$ на отрезке $$[-19;-17].$$

Ответ: 4
 

Задание 12851

Найдите точку минимума функции $$y\ =\ \left(2x^2\ -\ 26x\ +\ 26\right)e^{x-17}.$$

Ответ: 11
Скрыть

1. Вычислим производную функции, получим: $$y'=(4x-26)e^{x-17}+(2x^{2}-26x+26)e^{x-17}=$$$$e^{x-17}(2x^{2}-22x)$$

2. Приравняем производную нулю и найдем точки экстремума функции: $$e^{x-17}(2x^{2}-22x)=0\Leftrightarrow$$$$$$

так как $$e^{x-17}>0, x\in R$$, то $$x_{1}=0, x_{2}=11$$

3. Точкой минимума будет являться та точка экстремума, в окрестности которой производная меняет свой знак с «-» на «+». Получаем точку $$x = 11$$.

 

Задание 12861

Найдите точку минимума функции $$y\ =\ \left(x^2\ -\ 7x\ +\ 7\right)e^{x-17}.$$

Ответ: 5
Скрыть

Точка минимума функции – это точка экстремума функции, в которой производная меняет свой знак с отрицательного на положительный. Для вычисления точек экстремума необходимо найти производную функции и приравнять ее к нулю.

Область определения функции: все числа.

Найдем производную функции: $$y'=(2x-7)e^{x-17}+(x^{2}-7x+7)e^{x-17}$$ $$y'=e^{x-17}(x^{2}-5x)$$

Произведение равно нулю тогда и только тогда, когда равен нулю хотя бы один из множителей, а другой при этом не теряет смысла, т.е. $$e^{x-17}>0, x\in R$$, $$x^{2}-5x=0$$, $$x_{1}=0, x_{2}=5$$

Отметим точки 0 и 5 на числовой прямой и найдем знаки производной функции на получившихся промежутках, подставляя любые значения из промежутков в найденную производную (см. рисунок)

В точке x = 5 производная функции меняет знак с отрицательного на положительный, значит, это искомая точка минимума.

 

Задание 12873

Найдите наибольшее значение функции $$y\ =\ {\ln {\left(x\ +\ 9\right)}^5\ }\ -5x$$ на отрезке [-8,5; 0].

Ответ: 40
 

Задание 12892

Найдите точку максимума функции $$y=\ {\left(x+\ 7\right)}^2-е^{-1-x}$$

Ответ: -5
 

Задание 12913

Найдите значение функции $$f(x)=4^{\log_{4}\frac{(x+3)^2}{x^{3}+12x}+\log_{0,5}(x+3)}$$ в точке минимума

Ответ: 0,0625
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13389

Найдите точку минимума функции $$y=\frac{4}{3}x\sqrt{x}-5x+4$$

Ответ: 6,25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13541

Найдите наименьшее значение функции $$y=42\cos x-45x+35$$ на отрезке $$[-\frac{3\pi}{2};0]$$.

Ответ: 77
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13559

Найдите наибольшее значение функции $$y=49x-46\sin x+37$$ на отрезке $$[-\frac{\pi}{2};0]$$

Ответ: 37
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13690

Найдите наибольшее значение функции $$y=x^{5}+5x^{3}-140x$$ на отрезке [-8;-1].

Ответ: 208
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13773

Найдите точку минимума функции $$y=x^{3}-8,5x^{2}+10-13$$

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13795

Найдите наибольшее значение функции $$y=2x^{2}-12x+8\ln x-5$$ на отрезке $$[\frac{12}{13};\frac{14}{13}]$$.

Ответ: -15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 14028

Найдите точку максимума функции $$y=(x+35)e^{35-x}$$

Ответ: -34
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 14290

Найдите точку максимума функции $$f(x)=-\frac{x}{x^{2}+196}$$

Ответ: -14
 

Задание 14312

Найдите наименьшее значение функции $$y=2^{x^2-6x+6}$$.

Ответ: 0,125
 

Задание 14359

Найдите наибольшее значение функции $$f(x)=\frac{\sqrt{x}}{x+1}$$

Ответ: 0,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 14378

Найдите наименьшее значение функции $$y=x+\frac{25}{x}+2020$$ на отрезке $$[1;25]$$
Ответ: 2030
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!