ЕГЭ Профиль
Задание 901
На графике производной функции у = f ' / (x) отмечены семь точек: х1,…, х7. Найдите все отмеченные точки, в которых функция f (x) возрастает. В ответе укажите количество этих точек.
Так как дан график производной, то мы будем искать точки над осью OX (функция возрастает, производная положительна) |
Задание 937
На графике производной функции у = f' / (x) отмечены семь точек: х1,…, х7. Найдите все отмеченные точки, в которых угловой коэффициент касательной к графику функции f (x) положительный. В ответе укажите количество этих точек.
Угловой коэффициент касательной к графику это и есть значение производной, следовательно, мы ищем, где производная положительная. Так как дан нам график производной, то мы просто найдем количество точек, которые располагаются над осью ОХ: x1,x3,x4,x6 всего 4
Задание 973
Прямая y=3х+4 является касательной к графику функции у=х2‐3x‐c. Найдите c.
Так как прямая является касательной, то мы можем приравнять производные данных функций, чтобы найти абсциссу точки касания: 3 = 2x - 3. Отсюда x = 3. Так же мы можем приравнять сами функции и подставить найденную абсциссу:
3x+4=х2‐3x‐c
3*3+4=32-3*3-с
13=-c, отсюда с = -13
Задание 1013
Производная непрерывной функции f (x) равна нулю в каждой точке отрезка [‐5; 4]. Известно, что f (– 5) = – 5. Найдите f (4)
Раз производная равна нулю на всем промежутке и функция непрерывна, то функция не возрастает и не убывает, то есть сохраняет свое значение. Значит f(– 5) =f(4)= – 5
Задание 1047
Материальная точка движется прямолинейно по закону $$x(t)=\frac{1}{3}t^{3}-3t^{2}-5t+3$$ (где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). В какой момент времени (в секундах) ее скорость была равна 2 м/с?
Задание 1048
На рисунке показан график движения автомобиля по маршруту. На оси абсцисс откладывается время (в часах), на оси ординат — пройденный путь (в километрах). Найдите среднюю скорость движения автомобиля на данном маршруте. Ответ дайте в км/ч. |
Задание 1097
К графику функции у = f (x) в точке с абсциссой х0 проведена касательная, которая перпендикулярна прямой, проходящей через точки (4; 3) и (3; ‐1) этого графика. Найдите f / (x0).
Пусть прямая, проходящая через точки (4; 3) и (3; ‐1) задается формулой y = k1x+b. Найдем k1, подставив имеющиеся координаты в уравнение прямой:
$$\left\{\begin{matrix}3=4*k_{1}+b\\ -1=3*k_{1}+b\end{matrix}\right.$$ Найдем $$k_{1}$$. Решив систему получим, что $$k_{1}=4$$ Далее воспользуемся свойством: если k1 и k2 угловые коэффициенты двух линейных функций, то их графики буду перпендикулярны в том случае, когда k1k2=-1. Получаем, что k2=-1/k1=-1/4=-0.25. А значение производной в точке и есть величина углового коэффициента.
Задание 1175
Функция у = f (x) определена на отрезке [‐4; 4]. На рисунке приведен график её производной. Найдите промежутки убывания функции. В ответе укажите сумму всех целых x, входящих в эти промежутки.
Функция убывает, когда производная отрицательная. То есть мы смотрим, где график производной лежит под осью оХ, и выбираем оттуда целые значения Х (в задании надо сумму целых чисел). Важно выбрать значения, где производная равна 0, так как считается, что если функция определена в точках максимума или минимума, то эти точки входят в промежутки возрастания и убывания. Получаем точки -2; -1; 0 ; 1 ; 2 ;3
-2-1+0+1+2+3=3
Задание 1236
По графику функции у = f (x) определите количество точек на интервале (4;5), в которых касательная к графику параллельна оси абсцисс или совпадает с ней.
Если касательная параллельна оси ОХ, то производная равна 0. Производная равна нулю на данном графике функции в точках максимума и минимума ( они отмечены жирной точкой ). Их всего 7
Задание 1277
На рисунке приведен график f ' (x) – производной функции у = f (x). Определите абсциссу точки графика функции у = f (x), в которой касательная параллельна прямой у = 2х – 1 или совпадает с ней.
Так как касательная к графику параллельна или совпадает с прямой y = 2x - 1, и при этом значение производной равно коэффициенту k линейной функции ( в нашем случае этот коэффициент равен 2 ), то и значение производной, которое мы ищем, равно 2. А так как нам дан график производной, то мы смело находим точку с ординатой (ось Оу) равную 2 и ищем абсциссу этой точки. Она равна -3
Задание 1290
На рисунке изображён график функции y=F(x) − одной из первообразных некоторой функции f(x), определённой на интервале (‐7;4). Пользуясь рисунком, определите значение функции f(x) в точке х=1.
Нам дана первообразная F, нам необходимо найти значение функции f в точке. При подобном задании можно рассматривать следующую ситуацию, вместо F - рассматривается функция g, вместо функции f - производная g'. То есть нам дан график функции g(x), а надо найти значение производной g'(x) в точке x = 1. Как видим на графике, данная точка - точка минимум, значит значение производной и ответ - 0
Задание 2350
На рисунке изображен график $$y={f}'(x)$$ – производной функции f (x), определенной на интервале (‐6; 5). Найдите точку экстремума функции f (x), принадлежащую отрезку [-5; 4]
Точка экстремума там, где производная равна 0. Т. к. нам дан график производной, то она равна 0 там, где пересекает ось Ох, т. е. в точке -2. | ![]() |
Задание 2732
Материальная точка движется прямолинейно по закону $$x(t)=\frac{1}{6}t^{3}-2t^{2}-4t+3$$, где x – расстояние от точки отсчета в метрах, t – время в секундах, измеренное с начала движения. В какой момент времени (в секундах) ее скорость была равна 38 м/с?
$${x}'(t)=\frac{1}{2}t^{2}-4t-4=38$$
$$\frac{1}{2}t^{2}-4t-42=0$$ $$\Leftrightarrow$$ $$t^{2}-8t-84=0$$
$$D=64+336=20^{2}$$
$$t_{1}=\frac{8+20}{2}=14$$
$$t_{2}<0$$
Задание 2784
На рисунке изображён график $$y={f}'x$$ – производной функции f (x). На оси абсцисс отмечены семь точек: x1, x2, x3, x4, x5, x6, x7 . Сколько из этих точек лежит на промежутках возрастания функции f (x)?
Промежутки возрастания функции там, где график производной над осью Ox: x1; x2 $$\Rightarrow$$ 2 точки.
Задание 2823
На рисунке изображён график функции $$y=f(x)$$. На оси абсцисс отмечены точки -2, -1, 2, 3. В какой из этих точек значение производной наибольшее? В ответе укажите
эту точку.
2 - т.к. там функция возрастает $$\Rightarrow$$ производная положительная; в -1 тоже возрастает, но если провести касательную, то угол будет меньше, чем в $$x=2$$.
Задание 2860
На рисунке изображён график y=f′(x) — производной функции f(x), определенной на интервале (-8;4). В какой точке отрезка [-7;-3] функция f(x) принимает наименьшее значение?
На всем отрезке [-7; -3] f'(x) $$\Rightarrow$$ функция возрастает минимальное значение в начале отрезка $$\Rightarrow$$ -7
Задание 2899
Прямая $$y=-4x-11$$ является касательной к графику функции $$y=x^{3}+7x^{2}+7x-6$$. Найдите абсциссу точки касания.
$$f'=-4x-11x^{3}+7x^{2}+7x-6=g$$ $$f'=-4$$ $$g'=3x^{2}+14x+7$$ $$f'=g'$$ $$\Rightarrow$$ $$3x^{2}+14x+7=-4$$ $$3x^{2}+14x+11=0$$ $$D=196-132=64$$ $$x_{1}=\frac{-14+8}{6}=-1$$ $$x_{1}=\frac{-14-8}{6}=-\frac{11}{3}$$ $$f(-1)=-4(-1)-11=-7$$ $$g(-1)=(-1)^{3}+7\cdot (-1)^{2}+7\cdot (-1)-6=-7$$ $$f(-1)=g(-1)$$ $$\Rightarrow$$ абсцисса -1
Задание 2938
На рисунке изображен график y=f′(x) - производной функции f(x), определенной на интервале (-12;5). Найдите количество точек минимума функции f(x), принадлежащих отрезку [-10;4].
$$-7; 2$$ $$\Rightarrow$$ 2 точки
Задание 2985
На рисунке изображен график функции y=f(x), определенной на интервале (−6;8). Определите количество целых точек, в которых производная функции положительна.
Производная положительная в том случае, когда функция возрастает. Целые абсциссы на графики, где функция возрастает отмечены жирными точками. Их 4
Задание 3028
Прямая $$y=7x-5$$ параллельна касательной к графику функции $$y=x^{2}+6x-8$$. Найдите абсциссу точки касания.
$$\left\{\begin{matrix}7x-5=x^{2}+6x-8\\7=2x+6\end{matrix}\right.$$ $$2x=1$$ $$x=0,5$$
Задание 3070
На рисунке приведен график производной $${g}'(x)$$, на графике отмечены шесть точек: х1, х2, …, х6. Сколько из этих точек принадлежит промежуткам возрастания функции g(x)?
Функция возрастает там, где $${g}'(x)>0$$ $$\Rightarrow$$ $$x_{1};x_{2};x_{3};x_{4};x_{6}$$
Задание 3111
Функция у = f (x) определена на отрезке [-2; 4]. На рисунке приведен график ее производной. Укажите абсциссу точки графика функции у = f (x), в которой она принимает наименьшее значение.
Производная $$>0$$ $$\Rightarrow$$ f всегда возрастает $$\Rightarrow$$ в начале промежутка
Задание 3152
На рисунке приведен график функции у=g(x). На графике отмечены шесть точек: х1, х2, …, х6. В скольких из этих точек производная g/(x) принимает положительные значения?
Производная принимает положительные значения там, где функция возрастает: на рисунке это точки х2,х5 и х6
Задание 3197
Прямая $$y=-9x+5$$ является касательной к графику функции $$f(x)=ax^{2}+15x+11$$. Найдите a.
$$\left\{\begin{matrix}-9=2ax+15\\-9x+5=ax^{2}+15x+11\end{matrix}\right.$$ $$\Leftrightarrow$$ $$x=-\frac{12}{a}$$ $$-9x+5-ax^{2}-15x-11=0$$ $$ax^{2}+24x+6=0$$ $$a\cdot\frac{144}{a^{2}}-\frac{288}{a}+6$$ $$-\frac{144}{a}=-6$$ $$a=\frac{144}{6}=24$$
Задание 3242
Функция у = f (x) определена на промежутке [‐4; 5]. На рисунке приведен график её производной. Найдите количество точек графика функции у = f (x), касательная в которых параллельна прямой 5х – 2у = 1 или совпадает с ней.
$$5x-2y=1$$ $$5x-1=2y$$ $$\Leftrightarrow$$ $$y=\frac{5x}{2}-\frac{1}{2}$$ $$y'=\frac{5}{2}$$ $$\Rightarrow$$ 4 точки
Задание 3283
На рисунке изображен график производной функции y=f′(x), определенной на интервале (−3;9). Найдите промежутки возрастания функции. В ответе укажите сумму целых точек, входящих в эти промежутки.
Раз изображен график производной, то мы должны смотреть промежутки, где этот график находится над осью Ох (так как функция возрастает тогда, когда значение производной положительно). На этих промежутках абсциссы (координаты Х) целые: -2 ; -1 ; 4 ; 5 ; 6 ; 7 (-2) + (-1) + 4 + 5 + 6 + 7 = -3 + 22 = 19
Задание 3323
На рисунке изображен график функции y=f(x), определенной на интервале (−5;8). Определите количество целых точек, в которых производная функции отрицательна.
Значение производной отрицательное в том случае, если функция убывает. Функция убывает на промежутке от -2 до 0, причем -2 и 0 это точки экстремума, и, следовательно, там производная равна 0, а значит отрицательна она только в -1 (если рассматривать только целые абсциссы), на промежутке от 2 до 5,5 (примерно), 2 так же точка экстремума, значит мы считаем только 3; 4; 5 и на промежутке от 7 до 8, где 7 и 8 точки экстремум, то есть нас устраивающих точек нет. В итоге всего 4 точки
Задание 3370
На рисунке изображен график $$y=f'(x)$$ – производной непрерывной функции $$f(x)$$ , определенной на интервале (-4; 7). Найдите количество точек минимума функции $$f(x)$$ , принадлежащих отрезку [-3; 6].
Первая точка, когда график пересекает ось Ох в точке -2 (значение производной было отрицательным, стало положительным), вторая в точке 2, так как функция по условию непрерывна, а значение производной до этого было отрицательным, значит в этой точке хоть производная и не найдена, но значение функции минимальное на отрезке) и третья в точке 5.
Задание 3418
На рисунке изображён график y=f′(x) производной функции f(x), определённой на интервале (- 8; 4). В какой точке отрезка [- 2; 3] функция f(x) принимает наименьшее значение?
На отрезке [- 2; 3] везде $$f'(x)>0$$ $$\Rightarrow$$ $$f(x)$$ везде возрастает $$\Rightarrow$$ $$f_{min}$$ в начале отрезка, т.е. в т. -2
Задание 3598
Материальная точка M начинает движение из точки A и движется по прямой на протяжении 12 секунд. График показывает, как менялось расстояние от точки A до точки M со временем. На оси абсцисс откладывается время t в секундах, на оси ординат — расстояние s.
Определите, сколько раз за время движения скорость точки M обращалась в ноль (начало и конец движения не учитывайте).
Задание 3641
Материальная точка движется от начального до конечного положения. На рисунке изображён график её движения. На оси абсцисс откладывается время в секундах, на оси ординат — расстояние от начального положения точки (в метрах). Найдите среднюю скорость движения точки. Ответ дайте в метрах в секунду.
Задание 3655
$$f(x)=3^{x}-3^{-x}$$. Найдите значение выражения $$f(-4)+f(4)$$
$$f(x)=3^{x}-3^{-x}$$
$$f(-4)=3^{-4}-3^{4}$$
$$f(4)=3^{4}-3^{-4}$$
$$f(-4)+f(4)=3^{-4}-3^{4}+3^{4}-3^{-4}=0$$
Задание 3854
Прямая, изображенная на рисунке, является графиком одной из первообразных функции $$y=f(x)$$. Найдите $$f(2)$$.
Достроим прямоугольный треугольник, вычислим тангенс угла:
$$\tan\alpha=-\frac{4}{2}=-2$$
Задание 4011
На рисунке изображен график функции f (x). Касательная к этому графику, проведенная в точке с абсциссой 4, проходит через начало координат. Найдите f ′(4).
$$f'(4)=\frac{6}{4}=1,5$$
Задание 4181
Прямая $$y=-4x+15$$ является касательной к графику функции $$y=x^{3}-6x^{2}+8x+7$$. Найдите абсциссу точки касания
$$\left\{\begin{matrix}-4x+15=x^{3}-6x^{2}+8x+7(1)\\(-4x+15)'=(x^{3}-6x^{2}+8x+7)'(2)\end{matrix}\right.$$
2) $$-4=3x^{2}-12x+8$$
$$3x^{2}-12x+12=0$$
$$x^{2}-4x+x=0$$
$$(x-2)^{2}=0$$
$$x=2$$
Задание 4389
На рисунке изображен график движения точки по прямой. По горизонтали отложено время, по вертикали—расстояние до точки отсчета. Сколько раз за наблюдаемый период точка останавливалась?
Точка останавливалась там, где на графике точки максимума и минимума
Задание 4566
Дан график производной функции $$y=f'(x)$$ и отмечены семь точек: $$x_{1},...,...,x_{7}$$. В скольких из этих точек функция $$y=f(x)$$ возрастает?
Функция возрастает там, где производная положительна (график над осью Ох): $$x_{1},x_{2},x_{3},x_{4},x_{6}$$ - 5 точек
Задание 4662
Прямая $$y=3x+4$$ является касательной к графику функции $$y=3x^{2}-3x+c$$. Найдите c.
Раз она является касательной, то производные данных функций равны: $$3=6x-3 \Leftrightarrow $$$$x=1$$ Но и значение этих функций в точке 1 так же должны быть равны: $$3*1+4=3*1^{2}-3*1+c \Leftrightarrow $$$$7=c$$
Задание 4812
На рисунке изображен график функции $$y=f(x)$$ , определенной на интервале (−4; 9). Определите количество целых чисел $$(x_{i}$$ , для которых $$f'(x_{i})$$ отрицательно.
Производная отрицательно там, где функция убывает. На всех промежутках целую абсциссу имеет только одна точка (2;0)
Задание 4856
На рисунке изображен график $$y=F(x)$$ одной из первообразных некоторой функции $$f(x)$$, определенной на интервале (‐1;13). Определите количество целых чисел $$x_{i}$$, для которых $$f(x_{i})$$ отрицательно.
Следует понимать, что фразу первообразная F(x) для функции f(x), можно переделывать для себя, как функция g(x) для производной g'(x). И тогда нам необходимо найти все целые абсциссы, где производная отрицательная, а отрицательная он там , где функция убывает. Данные точки отмечены на графике:
Задание 4907
На рисунке изображен график производной функции $$y=f'(x)$$, определенной на интервале (−3; 9). В какой точке отрезка [−2; 3] $$f(x)$$ принимает наибольшее значение?
В данном задании необходимо помнит следующее: производная отрицательна, значит функция убывает. В нашем случае график произвольной находится под осью Ох на всем отрезке [-2;3] (то, что он "скачет" никак не убывание функции не влияет: она просто убывает где-то быстрее, где-то медленнее). Раз функция на всем отрезке убывает, то ее наибольшее значение будет в начале отрезка.
Задание 4954
На рисунке изображен график производной функции f (x), определенной на интервале (−2; 11). Найдите точку экстремума функции f (x), принадлежащую отрезку [1; 6].
Точка экстремума функции там, где производная равна нулю. Так как нам дан график производной, то мы просто ищем пересечение графика с осью Ох. Эта точка с абсциссой 3
Задание 5050
Прямая $$y=-5x+8$$ является касательной к графику функции $$y=28x^{2}+bx+15$$. Найдите $$b$$, учитывая, что абсцисса точки касания больше 0.
$$\left\{\begin{matrix}y_{1_{'}}=y_{2_{'}}\\y_{1}=y_{2}\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}-5x+8=28x^{2}+bx+15\\-5=56x+b\end{matrix}\right.$$ $$\Leftrightarrow$$ $$b=-5-56x$$; $$-5x+8=28x^{2}+x(-5-56x)+15$$; $$28x^{2}-5x-56x^{2}+15+5x-8=0$$; $$-28x^{2}=-7$$; $$x^{2}=\frac{1}{4}$$; $$x=\pm\frac{1}{2}$$; $$b=-5-56\cdot\frac{1}{2}=-5-28=-33$$
Задание 5097
На рисунке изображен график функции $$y=f(x)$$, определенной на интервале$$(-1;13)$$. Определите количество целых чисел $$x_{1}$$, для которых $$f'(x_{1})$$ отрицательно.
{f}'x<0 тогда, когда f(x) убывает : (0;15)-одно целое (5;9)- три целых (12;13)-ноль целых Всего 4 целых
Задание 5234
На рисунке изображен график $$y=f'(x)$$ – производной функции у = f (x), определенной на интервале (−16; 4). Найдите количество точек экстремума функции у = f (x), принадлежащих отрезку [−14; 2].
Экстремумы функции расположены там, где производная функции равна 0, то есть там, где график производной пересекает ось Ох. На заданном отрезке таких точек 4 (с абсциссами: -13 ; -11 ; -9 ; -7)
Задание 5282
На рисунке изображены график функции $$y=f(x)$$ и касательная к нему в точке с абсциссой $$x_{0}$$. Найдите значение производной функции $$y'=f(x)$$ в точке $$x_{0}$$.
Значение производной в точке равно значению тангенса угла между касательной, проведенной в эту точку, и осью ОХ. Достроим треугольник прямоугольный как показано на рисунке:
$$tg \angle BAC = \frac{BC}{AC}=\frac{9}{6}=1,5$$
Задание 5330
На рисунке изображён график $$y=f'(x)$$ — производной функции $$f(x)$$ , определённой на интервале (-4;10) . Найдите количество точек, в которых касательная к графику y=f(x) параллельна прямой y=x или совпадает с ней.
Раз касательная к графику параллельна графику функции y=x, то значения коэффициента при х у нее должно быть равно 1 (Графики линейных функций $$y=k_{1}x+b_{1} ; y=k_{2}x+b_{2}$$ параллельны при $$k_{1}=k_{2}$$. А это значение и есть значение производной. То есть необходимо найти количество точек, где значение производной равно 1 (чертим прямую y=1 и находим количество пересечений с графиком функции). Их будет 4
Задание 5377
На рисунке изображён график функции y = f(x), определённой на интервале (–2; 10). Определите количество точек с целыми абсциссами, в которых производная функции отрицательна.
Производная функции отрицательна там, где сама функция убывает. На данном рисунке это промежутки $$x \in (-2;0)\cup (4;6)\cup (9,5;10)$$. Целых значений, входящих в эти промежутки всего два : -1 ; 5.
Задание 6034
Функция $$y=f(x)$$ определена на интервале (‐5;6). На рисунке изображен график функции $$y=f(x)$$. Найдите среди точек $$x_{1}, x_{2},...,x_{7}$$ те точки, в которых производная функции $$f(x)$$ равна нулю. В ответ запишите количество найденных точек.
Дан график функции, следовательно ищем точки максимума и минимума ( в них $${f}'\left ( x \right )=0$$: $$x_{2};x_{5};x_{7}$$
Задание 6081
На рисунке изображены график функции y=f(x) и касательная к этому графику, проведенная в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Значение производной есть тангенс угла между касательной, проведенной в заданную точку и осью Ох. Достроим $$\Delta ABC$$ : $$tg\angle ABC=\frac{AC}{CB}=\frac{2}{1}=2$$. Так как функция убывает, то значение производной будет отрицательное, то есть -2
Задание 6128
На рисунке изображен график функции y=f(x) и отмечены точки ‐7, ‐3, 1, 5. В какой из этих точек значение производной этой функции наибольшее? В ответе укажите эту точку
Если f(x) возрастает , то f'(x)> 0 , если f(x) убывает, то f'(x)< 0 . В точках -3; 1; 5 f'(x)> 0. При этом касательная в точке 5 имеет большой угол $$\Rightarrow f'_{max}=f'(5).$$
Задание 6176
На рисунке изображен график $$y=f'(x)$$ производной функции . Найдите абсциссу точки, в которой касательная к графику $$f(x)$$ параллельна оси абсцисс.
Касательная к графику функции параллельна оси Ох, если производная в точке касания равна 0. Так как нам дан график производной, то находим точку, где график пересекается ось Ох : x=2
Задание 6223
На рисунке изображен график производной $$y=f'(x)$$ функции $$y=f(x)$$ , определенной на интервале (-4;8) . В какой точке отрезка [-3;1] функция $$y=f(x)$$ принимает наименьшее значение?
На данном промежутке график функции находится под осью Ох. Т.к. дан график производной , то это значит, что она отрицательная и функция убывает на всем данном промежутке. Тогда наименьшее значение будет в конце промежутка, то есть в точке 1
Задание 6271
На рисунке изображен график производной функции f(x), определенной на интервале (‐4;20). Найдите количество точек экстремума функции f(x) , принадлежащих отрезку [0;18]
Точки экстремума –точки максимума и минимума, то есть когда производная равна 0 (на рисунке отмечены черными точками ). Их на данном промежутке 5.
Задание 6319
Прямая $$y=3x+1$$ является касательной к графику функции $$y=ax^{2}+2x+3$$. Найдите a .
Чтобы прямая являлась касательной, тогда производные должны быть одинаковы:
$${y_{1}}'={y_{2}}'\Leftrightarrow$$ $$3=2ax+2\Leftrightarrow$$ $$x=\frac{1}{2a}(1)$$
С другой стороны, функции тоже должны быть одинаковы:
$$y_{1}=y_{2}\Leftrightarrow$$ $$3x+1=ax^{2}+2x+3 (2)$$
Подставим (1) в (2):
$$3*\frac{1}{2a}+1=a*(\frac{1}{2a})^{2}+2*\frac{1}{2a}+3\Leftrightarrow$$$$\frac{3}{2a}+1=\frac{a}{4a^{2}}+\frac{2}{2a}+3\Leftrightarrow$$ $$\frac{3}{2a}+1=\frac{1}{4a}+\frac{2}{2a}+3\Leftrightarrow$$$$\frac{3}{2a}-\frac{1}{4a}-\frac{2}{2a}=3-1\Leftrightarrow$$ $$\frac{6-1-4}{4a}=2\Leftrightarrow$$ $$\frac{1}{4a}=2\Leftrightarrow$$ $$a=\frac{1}{8}=0,125$$
Задание 6366
На рисунке изображен график функции $$y=f(x)$$. Найдите среди точек x1,x2,...,x6 те точки, в которых производная функции $$y=f(x)$$ отрицательна. В ответ запишите количество найденных точек.
f'<0 если f(x)-убывает : $$x_{2};x_{4}$$ - две точки
Задание 6413
На рисунке изображен график функции $$f(x)$$ . Касательная к этому графику, проведенная в точке с абсциссой ‐4 проходит через начало координат. Найдите $$f'(-4)$$
Рассмотрим $$\Delta ABC: tg\angle A=-{f}'(-4)$$
$$tg\angle A=\frac{CB}{AB}=$$$$\frac{2}{4}=\frac{1}{2}\Rightarrow$$ $${f}'(-4)=-0,5$$
Задание 6461
На рисунке изображен график производной функции $$f(x)$$ , определенной на интервале (‐5;4). Найдите точку минимума функции $$f(x)$$ на этом интервале.
Точка минимума , когда {f}' переходит с «-» на «+» (был график под Ox, стал над Ox): $$x=3$$
Задание 6515
На графике функции у = f (x) отмечены семь точек с абсциссами ‐7, ‐5, ‐3, ‐2, 1, 2, 5. Определите по данному графику, в какой из этих точек значение производной f'(x) наибольшее. (В ответе укажите абсциссу этой точки).
Если f(x) возрастает , то $$f}(x)>0$$. Чем быстрее возрастает, тем больше $$f'(x)\Rightarrow$$ $$f'_{max}={f}'(5)$$
Задание 6609
Функция $$y=f(x)$$ определена на всей числовой прямой и является периодической с периодом 4. На рисунке изображен график этой функции при $$-1\leq x \leq 3$$ . Найдите значение выражения $$f(-3)*f(1)*f(11)$$
С учетом периодичности функции: $$f(-3)=f(-3+4)=f(1)=-2$$; $$f(1)=-2$$; $$f(11)=f(11-4*2)=f(3)=1$$
Тогда: $$f(-3)*f(1)*f(11)=-2*(-2)*1=4$$
Задание 6657
Функция $$y=f(x)$$ определена на всей числовой прямой и является периодической с периодом 5. На промежутке $$(-1;4]$$ она задается формулой $$f(x)=3-|1-x|$$ . Найдите значение выражения $$5f(20)-3f(-12)$$.
С учетом периода в 5: $$f(20)=f(0)$$, $$f(-12)=f(3)$$. Получим : $$f(3)=3-(1-3)=1$$; $$f(0)=3-(1-0)=2$$.
Тогда: $$5f(20)-3f(-12)=5*2-3*1=7$$
Задание 6692
На рисунке изображен график $$y=f'(x)$$ — производной функции $$f(x)$$, определенной на интервале (‐3;14). Найдите промежутки убывания функции $$f(x)$$. В ответе укажите длину наибольшего из них.
Функция убывает там, где $${f}’ (x)<0$$. Убывает на промежутке: (-4;-3) - длина 1; (2;6) - длина 4; (11;13) - длина 2
Задание 6798
На рисунке изображен график производной функции f(x), определенной на интервале (−8; 5). В какой точке отрезка [0;4] f(x) принимает наименьшее значение?
т.к. дан график производной и на $$(-\infty ;-3)$$ - $${f}'<0$$, а на $$(-3; +\infty )$$ - $${f}'>0$$ $$\Rightarrow$$ $$x=-3$$ - точка минимума. Но на отрезке $$[0; 4]$$ - $$f'>0$$$$\Rightarrow$$ $$f_{min}=f(0)$$ (функция врзрастает на всем промежутке, следовательно, меньшее значение функции в начале промежутка)
Задание 6818
Прямая y=4x-3 является касательной к графику функции $$y=8x^{2}-12x+c$$. Найдите c .
Так как является касательной, то производные данных функций равны: $${(4x-3)}'={(8x^{2}-12x+c)}'\Leftrightarrow$$ $$4=16x-12\Leftrightarrow$$ $$x=1$$
Но значения функций в полученной точке так же равны: $$y_{1}(1)=4*1-3=1$$ ; $$y_{2}(1)=8*1^{2}-12*1+c=1$$$$\Leftrightarrow$$ $$c=5$$
Задание 6869
Функция y=f(x) определена на отрезке [‐2; 4]. На рисунке дан график её производной. Найдите абсциссу точки графика функции y=f(x) , в которой она принимает наименьшее значение.
При x=1 имеем , что $${f}'(x)=0$$, при этом на промежутке [-2; 1): $${f}'(x)<0$$, а на (1;4]: $${f}'>0$$$$\Rightarrow$$ $$x=1$$ - точка минимума и $$f_{min}=f(1)$$
Задание 6917
На графике дифференцируемой функции у=f (x) отмечены семь точек: х1,…, х7. Найдите все отмеченные точки, в которых производная функции f(x) равна нулю. В ответе укажите количество этих точек.
$$f'=0$$ в точках экстремума; в данном случае $$x_{4}$$ и $$x_{7}$$ - 2 точки.
Задание 6965
F(x) - первообразная функции f(x)=3x2+2x, причем ее график проходит через точку (2;‐3). Найдите F(-2)
$$F(x)=\int f(x) dx=x^{3}+x^{2}+c$$. Т.к. F(x) проходит через (2;-3), то F(2)=-3 $$-3=2^{3}+2^{2}+c\Leftrightarrow$$ $$c=-15$$. Тогда :$$F(-2)=(-2)^{3}+(-2)^{2}-15=-19$$
Задание 7012
К графику функции у = f (x) проведена касательная. Определите значение производной функции в точке х0
из $$\Delta ABC$$: $$tg \angle CAB =\frac{CB}{AB}=\frac{5}{4}=1,25\Rightarrow$$ $${f}'(x_{0})=-tg\angle CAB=-1,25$$ (т .к. f(x) убывает в $$x_{0}$$)
Задание 7032
Прямая, параллельная оси абсцисс, касается графика функции $$f(x)=-2x^{2}+6x-7$$ . Найдите ординату точки касания.
Пусть y=a - прямая, параллельная Ox $$\Rightarrow$$ $${y}'=0$$. Раз касается f(x) , то и $${f}'(x)=0$$ ( в точке касания ): $$-4x+6=0 \Rightarrow$$ $$x=1,5$$. Найдем ординату точки касания: $$f(1,5)=-2*1,5^{2}+6*1,5-7=-2,5$$
Задание 7053
Используя геометрический смысл определенного интеграла, вычислите $$\int_{-2}^{0}\frac{1}{\pi}\sqrt{4-x^{2}}dx$$
Рассмотрим функцию $$y=\sqrt{4-x^{2}}$$ - это полуокружность радиуса 2 с центром в начале координат . При этом по $$x \in [-2; 0]$$ получим четверть данной окружности : $$S=\frac{1}{4} \pi 2^{2}=\pi$$ . Геометрический смысл интеграла в нахождении площади криволинейного трапеции, тогда: $$\int_{-2}^{0} \frac{1 }{\pi }\sqrt{4-x^{2}}dx=$$$$\frac{1}{\pi}*\int_{-2}^{0}\sqrt{4-x^{2}}dx=$$$$\frac{1}{\pi}*\pi=1$$
Задание 7100
Движение автомобиля во время торможения описывается формулой $$S(t)=36t-5t^{2}$$ , где S – путь в метрах, t – время в секундах. Сколько секунд автомобиль будет двигаться с момента начала торможения до его полной остановки?
Производная функции расстояния есть функция скорости, найдем ее и приравняем к 0: $${S}'(t)=v(t)=36-10t\Rightarrow$$ $$v(t)=0$$ или $$t=3,6$$
Задание 7173
По графику функции у = f(x) определите количество точек на интервале (‐3; 4), в которых касательная к графику параллельна прямой у = 0,3х – 4 или совпадает с ней.
Если параллельна или совпадает , то $$f^{'}=(0,3x-4)^{'}=0,3$$. Тогда точки (отмечены на рисунке) находятся на промежутке возрастания , и их количество 5. (Можно построить схематичный график производной)
Задание 7193
Функция $$f(x)$$ определена на отрезке [‐4; 5]. На рисунке приведен график ее производной $$f'(x)$$. По графику определите количество критических точек функции $$y=f(x)$$.
Необходимо определить точки , где производная равна 0 или не существует : $$-3;-1; \approx 0,4 ; 2$$ - 4 штуки (т.к. дан график производной, то смотрим , где он пересекает ось Ox или значение по х, где $$f^{'}(x)$$ не существует – пустая точка)
Задание 7214
Функция у = f (x) определена на отрезке [‐3; 5]. На рисунке дан график её производной. Найдите количество точек минимума функции у = f (x).
Точка минимума на графике производной это точка, где производная равна нулю и график производной убывает $$\Rightarrow$$ есть на (-3; -2) и на $$(2; 3)\Rightarrow$$ 2 точки
Задание 7316
На рисунке изображен график y=F(x) одной из первообразных некоторой функции f(x) , определенной на интервале (−6; 8). Определите количество целых чисел xi, для которых f(xi) положительно.
Если y=F(x)-первообразная для y=f(x), то y=f(x)-производная для y=F(x). Тогда f(x)>0 если F(x) –возрастает $$\Rightarrow$$ $$x\in (-3 ;0)\cup (3,5; 6)$$ .На этих промежутках 4 целых значений (-2; -1; 4; 5)
Задание 7507
Прямая, изображенная на рисунке, является графиком одной из первообразных функции y=f(x). Найдите f(2).
Задание 7724
Материальная точка движется вдоль прямой от начального до конечного положения. На рисунке изображен график ее движения. На оси абсцисс откладывается время в секундах, на оси ординат – расстояние от начального положения точки (в метрах). Найдите среднюю скорость движения точки. Ответ дайте в метрах в секунду.
При решении данного задания важно помнить, что средняя скорость есть отношение всего пройденного пути, к всему затраченному времени. При этом пройденный пусть и перемещение не является одинаковой величиной. Для того чтобы найти весь пройденный путь необходимо считать каждое перемещение до момента смены направления движения и суммировать полученные значения. То есть до 4 секунды тело прошло 10 метров, затем поменяло направление движения и прошло еще 8 метров за 6 секунд до остановки. Тогда средняя скорость составит $$\frac{10+8}{4+6}=1,8$$ метров в секунду
Задание 8230
На рисунке изображен график $$y=f'(x)$$ ‐ производной функции $$f(x)$$, определенной на интервале (-12;9). Найдите количество точек максимума функции $$f(x)$$, принадлежащих отрезку [-9;8]
Задание 8261
Функция $$y=f(x)$$ определена на интервале (‐5;6). На рисунке изображен график функции $$y=f(x)$$. Найдите среди точек $$x_{1}, x_{2},...,x_{7}$$ те точки, в которых производная функции f(x) равна нулю. В ответ запишите количество найденных точек.
Производная равна 0 на графике функции там, где находятся точки экстремума (максим и минимум): x2, x5, x7 - всего три точки.
Задание 8299
На рисунке изображен график функции $$y=f(x)$$. На оси абсцисс отмечены точки ‐2, ‐1, 1, 4. Какое из значений выражений
- $$f'(-2)-f'(-1)-f'(-4)$$
- $$f'(-1)\cdot f'(-4)+f'(1)$$
- $$f'(-1)-f'(1)-f'(-2)$$
- $$f'(-1)\cdot f'(4)+f'(-2)$$
является наименьшим? В ответе укажите номер этого выражения.
Задание 8865
На рисунке изображен график неравномерного прямолинейного движения тела и касательная к этому графику в точке с абсциссой $$t_{0}$$. По оси абсцисс откладывается время в секундах, по оси ординат – расстояние в метрах. Найдите мгновенную скорость этого тела в момент времени $$t_{0}$$. Ответ дайте в м/с.
Задание 10108
Материальная точка М начинает движение из точки А и движется по прямой на протяжении 10 секунд. График показывает, как менялось расстояние от точки А до точки М со временем. На оси абсцисс откладывается время t в секундах, на оси ординат S – расстояние в метрах. Определите, сколько раз за время движения скорость точки М обращалась в ноль (начало и конец движения не учитывайте).
Задание 10186
Наблюдение за космическим телом показало, что расстояние (в километрах) между этим телом и Землей увеличивается по закону $$S=1,8\cdot 10^{5}+0,5\cdot10^{5}\sqrt{t}$$, где t — время в секундах от момента начала наблюдения. Через сколько секунд после начала наблюдения скорость удаления тела от Земли составит 103 км/с?
Задание 10521
На рисунке изображён график функции у = f(x) и одиннадцать точек на оси абсцисс: x1, х2, х3, х4, x5, х6, х7, x8, x9, x10, х11. В скольких из этих точек производная функции f(x) отрицательна?
Производная принимает отрицательное значение в точках, в окрестности которых функция f(x) убывает. Выберем такие точки функции, имеем: x1, х2, x3, x5, x10, x11 , то есть в 6 точках
Задание 10549
Найдите координату $$x$$ точки, в которой касательная к графику функции $$y=\frac{x^2}{2}$$ точке $$x_0=4$$ пересекает ось абсцисс.
Задание 10569
Функция $$y=f\left(x\right)$$ определена на промежутке $$\left(-2;7\right)$$. На рисунке изображен график ее производной. Найдите точку $$x_0$$, в которой функция $$f\left(x\right)$$ принимает наибольшее значение.
Задание 10589
На рисунке изображен график функции $$y=f(x)$$, определенной на интервале $$(-6;8)$$. Определите количество целых точек, в которых производная функции положительна.
Задание 10609
На рисунке изображен график $$y=f'\left(x\right)$$ - производной непрерывной функции $$f(x)$$, определенной на интервале $$\left(-4;7\right)$$. Найдите количество точек минимума функции $$f(x)$$, принадлежащих отрезку $$\left[-3;6\right]$$.
Задание 10629
Функция $$y=f\left(x\right)$$ определена на промежутке $$(-4;4)$$. На рисунке изображен её график и касательная к этому графику в точке с абсциссой $$x_0=1$$. Вычислите значение производной функции $$g\left(x\right)=16\cdot f\left(x\right)-6$$ в точке $$x_0=1$$.
Задание 10649
При движении тела по прямой расстояние S (в метрах) до точки отсчета изменялось по закону: $$S\left(t\right)=5t^2-t^3+9t$$, где t - время в секундах, прошедшее от начала движения. Через сколько секунд после начала движения ускорение тела было равно 1 м/с$${}^{2}$$?
$$S'\left(t\right)=V\left(t\right);$$
$$V'\left(t\right)=a\left(t\right)\to$$ $$S''\left(t\right)=a(t)$$
Тогда $$10-6t=1\to 6t=9\to t=1,5$$
Задание 10685
Прямая $$y=7x+28$$ является касательной к графику функции $$y=ax^2-21x+3a$$. Найдите значение коэффициента $$a$$, если известно, что абсцисса точки касания положительна.
Т. к. касательная, то $$(7x+28)'=(ax^2-21x+3a)'$$ и $$7x+28=ax^2-21x+3a$$.
Получим: $$\left\{ \begin{array}{c} 7=2ax-21 \\ ax^2-28x+3a-28=0 \\ x>0 \end{array} \right.\to $$$$\left\{ \begin{array}{c} a=\frac{14}{x} \\ 14x-28x+\frac{42}{x}-28=0 \\ x>0 \end{array} \right.$$; $$\frac{42}{x}-14x-28=0\to$$$$ -14x^2-28x+42=0\to$$$$ x^2+2x-3=0\to$$
$$\to \left[ \begin{array}{c} x_1=-3<0 \\ x_2=1\to a=\frac{14}{1}=14 \end{array} \right.$$
Задание 10725
На рисунке изображён график функции $$у = f(x)$$. На оси абсцисс отмечены точки -2, -1, 1, 4. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.
1. Значение производной положительно в некоторой точке x, если в окрестности этой точки функция возрастает. Наоборот, если в окрестности точки x функция убывает, то производная в ней отрицательна. Причем значение производной тем больше, чем сильнее изменение функции в окрестности точки x.
2. Выберем точку на графике, в которой функция возрастает наибольшим образом. Это точка -1.
Задание 10745
На рисунке изображён график функции $$у = f(x)$$. На оси абсцисс отмечены точки -2, 1, 3, 4. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.
Значение производной положительно в некоторой точке $$x$$, если в окрестности этой точки функция возрастает. Наоборот, если в окрестности точки $$x$$ функция убывает, то производная в ней отрицательна. Причем значение производной тем больше, чем сильнее изменение функции в окрестности точки $$x$$.
Выберем точку на графике, в которой функция возрастает наибольшим образом. Это точка 1.
Задание 10814
Функция $$f(x)$$ определена при всех действительных $$x$$. На рисунке изображен график $$f'(x)$$ её производной. Найдите значение выражения $$f\left(3\right)-f(1)$$.
Задание 10834
На рисунке изображён график $$у\ =\ f'(x)$$ - производной функции $$f(x)$$. На оси абсцисс отмечены девять точек: $$x_1,\ x_2,\dots ,x_9$$. Сколько из этих точек лежит на промежутках возрастания функции $$f(x)$$?
Задание 10853
На рисунке изображён график функции $$у\ =\ f(x)$$, определённой на интервале $$(-7;\ 7)$$. Определите количество целых точек, в которых производная функции положительна.
Задание 10872
На рисунке изображён график $$у=f'(x)$$ - производной функции $$f(x)$$, определённой на интервале$$\ (-3;\ 19)$$. Найдите количество точек максимума функции $$f(х)$$, принадлежащих отрезку $$[-2;\ 15]$$
Задание 10891
На рисунке изображён график функции $$y =\ f(x)$$, определённой на интервале (-3;10). Найдите количество точек, в которых производная функции $$f(x)$$ равна 0.
Задание 10929
На рисунке изображён график функции $$у = f(x)$$, определённой на интервале (-5; 9). Найдите количество решений уравнения $$f'(x) = 0$$ на отрезке [-2; 8].
Задание 10993
На графике функции $$у\ =\ f\ (x)$$ отмечены четыре точки с абсциссами $$-3,\ -1,\ 1,\ 3.$$ По данному графику определите, в какой из этих точек значение производной $$f'(x)$$ будет наибольшим. (В ответе укажите абсциссу этой точки).
Задание 11013
На рисунке изображены график функции $$y=f(x)$$ и касательная к этому графику, проведённая в точке $$x_0$$. Уравнение касательной показано на рисунке. Найдите значение производной функции $$y=4f\left(x\right)-3$$ в точке $$x_0$$
Задание 11079
В точке А графика функции $$y=x^3+4x+2$$ проведена касательная к нему, параллельная прямой $$y=4x+5.$$ Найдите сумму координат точки А.
Задание 11098
На рисунке изображён график функции $$у=f(x)$$, определённой на интервале $$(-8;\ 3)$$. Найдите количество точек, в которых производная функции $$f(x)$$ равна 0.
Задание 11118
Материальная точка движется прямолинейно по закону $$x\left(t\right)=\frac{1}{2}t^2+2t-15$$, где х - расстояние от точки отсчёта в метрах, t - время в секундах, измеренное с начала движения. Найдите её скорость (в метрах в секунду) в момент времени $$t\ =\ 7$$ с.
Как известно, скорость равна производной от пути, т.е. закон изменения скорости будет равен $$v\left(t\right)=\frac{dx\left(t\right)}{dt}=t+2.$$
В момент времени $$t=7$$, скорость будет равна $$v\left(t=7\right)=7+2=9$$ м/с.
Задание 11137
На рисунке изображены график дифференцируемой функции $$у\ =\ f(х)$$ и касательная к нему в точке с абсциссой $$x_0$$. Найдите значение производной функции $$f(х)$$ в точке $$x_0$$.
Производная равна тангенсу угла наклона касательной к оси OX. Рассмотрим прямоугольный треугольник, показанный на рисунке ниже и найдем из него тангенс угла наклона касательной в точке $$x_0$$.
Противолежащий катет равен -3, прилежащий равен 6, следовательно, производная равна $$f'\left(x_0\right)={\tan \alpha \ }=-\frac{3}{6}=-\frac{1}{2}=-0,5.$$
Задание 11846
Движение двух материальных точек вдоль одной прямой заданы уравнениями $$S_{1}=4t^{2}+2$$, $$S_{2}=3t^{2}+4t-1$$, ( $$S_{1},S_{2}$$–пройденный путь в метрах, t ‐ время в секундах). Найдите скорости движения точек в те моменты, когда пройденные ими расстояния равны. В ответе укажите сумму всех полученных значений скоростей.
Задание 12807
На рисунке изображён график некоторой функции $$y\ =\ f(x).$$ Одна из первообразных этой функции равна $$F\left(x\right)=\frac{1}{3}x^3-x^2+2x-3$$
Найдите площадь заштрихованной фигуры.
Площадь фигуры, ограниченной по оси OY графиком функции f(x), а по оси OX диапазоном значений от 0 до 3, можно вычислить с помощью определенного интеграла вида:
$$\int_{0}^{3}f(x)dx=F(3)-F(0)$$, где F(x) - первообразная от f(x) .
Значение первообразной дано по условию задачи, получаем значение площади
Задание 12827
На рисунке изображён график функции $$y\ =\ f(x).$$ На оси абсцисс отмечены точки -2, -1, 1, 4. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.
1. Значение производной положительно в некоторой точке x, если в окрестности этой точки функция возрастает. Наоборот, если в окрестности точки x функция убывает, то производная в ней отрицательна. Причем значение производной тем больше, чем сильнее изменение функции в окрестности точки x.
2. Выберем точку на графике, в которой функция возрастает наибольшим образом. Это точка -1.
Задание 12846
На рисунке изображён график функции $$y\ =\ f(x).$$ На оси абсцисс отмечены точки -2, 1, 3, 4. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.
1. Значение производной положительно в некоторой точке x, если в окрестности этой точки функция возрастает. Наоборот, если в окрестности точки x функция убывает, то производная в ней отрицательна. Причем значение производной тем больше, чем сильнее изменение функции в окрестности точки x.
2. Выберем точку на графике, в которой функция возрастает наибольшим образом. Это точка 1.
Задание 14354
На рисунке изображен график неравномерного прямолинейного движения тела и касательная к этому графику в точке с абсциссой $$t_{0}=6$$. По оси абсцисс откладывается время в секундах, по оси ординат – расстояние в метрах. Найдите мгновенную скорость этого тела в момент времени $$t_{0}$$. Ответ дайте в км/час.
Задание 14373
На рисунке изображен график неравномерного прямолинейного движения тела (материальной точки). По оси абсцисс откладывается время в секундах, по оси ординат – расстояние в метрах. Найдите среднюю скорость этого тела на участке АВ (т.е. с 11‐й по 15‐ю секунду его движения включительно). Ответ дайте в км/час.