ЕГЭ Профиль
Задание 2502
1 апреля 2017 года Юрий открыл в банке счёт «Пополняй», вложив 6 млн. рублей сроком на 4 года под 10% годовых. По договору с банком проценты по вкладу должны начисляться 31 марта каждого последующего года.
1 апреля 2018 года и 1 апреля 2020 года Юрий решил пополнять счёт на п тысяч рублей (п – целое число).
1 апреля 2021 года Юрий собирается закрыть счёт в банке и забрать все причитающиеся ему деньги.
Найдите наибольшее значение п, при котором доход Юрия от вложений в банк за эти 4 года окажется не более 3 млн. рублей.
Задание 3162
1 июня планируется в банке взять в кредит некоторую сумму денег на срок 12 месяцев. Условия возврата таковы:
Найдите наименьшую возможную ставку r, если известно, что за вторую половину года было выплачено более, чем на 30% меньше, нежели за первую половину.
Задание 3208
Петр Иванович взял кредит на несколько лет и выплатил его равными ежегодными платежами по 200000 руб. При этом в начале каждого года сумма кредита увеличивалась на 10 %, а в конце года производился платёж. Если бы Петр Иванович не делал платежей, то за это время вследствие начисления процентов сумма кредита составила бы 928200 руб. На сколько лет был взят кредит?
Задание 3428
Брокерская фирма выставила на торги пакет акций, состоящий из акций двух компаний: нефтяной компании (по 100 долларов за акцию) и газовой компании (по 65 долларов 60 центов за акцию). Всего было выставлено 200 акций. Все акции газовой компании были проданы, а часть акций нефтяной компании осталась непроданной. Общая сумма выручки оказалась равной 13120 долларов. Определите процент акций газовой компании в выставленном на продажу пакете и найдите сумму выручки, полученной за акции газовой компании.
Задание 3665
1 июля планируется взять кредит в банке на сумму 300 тыс. рублей на некоторый срок (целое число месяцев). Условия его возврата таковы:
На сколько месяцев был взят кредит, если известно, что сумма выплат за первый год оказалась на 144 тыс. рублей больше, чем сумма выплат за второй год? Найдите общую сумму выплат после полного погашения кредита.
Задание 4021
В январе 2014 года Аристарх Луков‐Арбалетов взял в кредит 1 млн. рублей под 12% годовых на четыре года. Часть денег Аристарх закопал в огороде, чтобы ежегодно гасить проценты по кредиту. На оставшиеся деньги Аристарх купил доллары США по курсу 33 рубля за один доллар, а на половину этих долларов ‐ биткоины (BTC) по курсу 750 долларов за 1 BTC. 1 января 2018 года Аристарх продал биткоины по цене 13800 долларов США за один BTC и доллары по курсу 69 рублей за один доллар. Найдите доход, полученный Аристархом, округлив его до целого числа млн. рублей.
Пусть $$S=10^{6}$$ руб, тогда каждый год %: $$10^{6}\cdot0,12=120000$$ $$v$$
$$4\cdot120000=480000$$ закопал.
Осталось $$520000$$ $$\Rightarrow$$
$$\frac{120000}{33}=15757$$ долларов и 19 рублей.
На половину суммы биткоины: $$\frac{15757}{2}=7878,5$$ $$\Rightarrow$$
$$\frac{7878,5}{750}=10$$ биткоинов и $$7878,5+378,5$$ долларов $$\Rightarrow$$ 10 биткоинов и 8257 долларов.
После продажи: $$(10\cdot13800+8257)\cdot69=10091733$$ рублей
$$10091733-1000000\approx9$$ млн
Задание 4399
Фермер получил кредит в банке под определенный процент годовых. Через год фермер в счет погашения кредита вернул в банк 3/4 от всей суммы, которую он был должен банку к этому времени, а еще через год в счет полного погашения кредита он внес в банк сумму, на 21% превышающую величину полученного кредита. Каков процент годовых по кредиту в банке?
Пусть S - начальная сумма, n-% тогда через год: $$S+S\cdot\frac{n}{100}=S(1+\frac{n}{100}$$ - сумма долга через 2 года с учетом оплаты $$\frac{3}{4}$$: $$\frac{1}{4}S(1+\frac{n}{100})\cdot S(1+\frac{n}{100})$$ - сумма долга и она же конечная выплата: $$\frac{1}{4}S(1+\frac{n}{100})^{2}=1,21S$$; $$(1+\frac{n}{100})^{2}=4,84$$; $$1+\frac{n}{100}=2,2$$; $$\frac{n}{100}=1,2$$ $$\Rightarrow$$ $$n=120$$ %
Задание 4576
1 июля гражданка взяла в кредит S млн. рублей. Условия его возврата таковы:
‐ 15 числа каждого месяца сумма долга увеличивается на 10% по сравнению с началом текущего месяца;
‐ с 16 по 28 число каждого месяца необходимо выплатить часть долга;
‐ 1 числа каждого месяца долг должен составлять часть кредита в соответствии со следующей таблицей:
Месяц | 07 | 08 | 09 | 10 | 11 | 12 | 01 | ... | |
Долг (млн.руб.) | S | S-0,5 | S-0,9 | S-1,2 | S-1,4 | S-1,5 | S-1,6 | ... | 0 |
(начиная с декабря, долг равномерно уменьшался на 100 тыс. руб.)
Определите: а) размер кредита; б) через сколько месяцев он был полностью погашен, если известно, что за все время кредитования было выплачено 4,16 млн. рублей.
Задание 4764
31 декабря 2013 года Сергей взял в банке 9 930 000 рублей в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Сергей переводит в банк определённую сумму ежегодного платежа. Какой должна быть сумма ежегодного платежа, чтобы Сергей выплатил долг тремя равными ежегодными платежами?
Задание 4765
За время хранения вклада в банке проценты по нему начислялись ежемесячно сначала в размере 5%, затем 12%, потом $$11\frac{1}{9}$$% и, наконец, 12,5% в месяц. известно, что под действием каждой новой процентной ставки вклад находился целое число месяцев, а по истечении срока хранения первоначальная сумма увеличилась на $$104\frac{1}{6}$$% Определите срок хранения вклада.
Задание 4766
Антон взял кредит в банке на срок 6 месяцев. В конце каждого месяца общая сумма оставшегося долга увеличивается на одно и то же число процентов (месячную процентную ставку), а затем уменьшается на сумму, уплаченную Антоном. Суммы, выплачиваемые в конце каждого месяца, подбираются так, чтобы в результате сумма долга каждый месяц уменьшалась равномерно, то есть на одну и ту же величину. Общая сумма выплат превысила сумму кредита на 63%. Найдите месячную процентную ставку.
Задание 4767
В одной стране в обращении находилось 1 000 000 долларов, 20% из которых были фальшивыми. Некая криминальная структура стала ввозить в страну по 100000 долларов в месяц, 10% из которых были фальшивыми. В это же время другая структура стала вывозить из страны 50 000 долларов ежемесячно, из которых 30% оказались фальшивыми. Через сколько месяцев содержание фальшивых долларов в стране составит 5%?
Задание 4768
Банк планирует вложить на 1 год 30% имеющихся у него средств клиентов в акции золотодобывающего комбината, а остальные 70% — в строительство торгового комплекса. В зависимости от обстоятельств первый проект может принести банку прибыль в размере от 32% до 37% годовых, а второй проект — от 22 до 27% годовых. В конце года банк обязан вернуть деньги клиентам и выплатить им проценты по заранее установленной ставке, уровень которой должен находиться в пределах от 10% до 20% годовых. Определите, какую наименьшую и наибольшую чистую прибыль в процентах годовых от суммарных вложений в покупку акций и строительство торгового комплекса может при этом получить банк.
Задание 4769
В банк был положен вклад под банковский процент 10%. Через год, после начисления процентов, хозяин вклада снял со счета 2000 рублей, а еще через год снова внес 2000 рублей. Однако, вследствие этих действий через три года со времени первоначального вложения вклада он получил сумму меньше запланированной (если бы не было промежуточных операций со вкладом). На сколько рублей меньше запланированной суммы получил в итоге вкладчик?