Перейти к основному содержанию

ЕГЭ Профиль

(C5) Финансовая математика

Банки, вклады, кредиты

 
Аналоги к этому заданию:

Задание 9879

Наш добрый герой В. взял в банке кредит в размере 20192020 рублей по очень знакомой схеме:

  • в конце очередного месяца пользования кредитом банк начисляет проценты за пользование заемными средствами по специальной ставке данного варианта 2,96%
  • в этот же день клиент выплачивает часть долга и сумму начисленных процентов
  • после выплаты долг должен быть на одну и ту же величину меньше долга на конец предыдущего месяца

Но дальше все пошло не по сценарию. Наш герой решил каждый месяц, начиная с первого, платить банку сверх прочего дополнительную сумму на погашение долга, при этом долг по‐прежнему ежемесячно уменьшался на одну и ту же величину (бóльшую, чем планировалось изначально) до полного погашения. В итоге срок кредита сократился на 52%. На какое наименьшее число процентов могла уменьшиться при этом переплата банку?

Ответ: 50
 
Аналоги к этому заданию:

Задание 9804

15 июля планируется взять кредит в банке на сумму 1400 тысяч рублей на 31 месяц. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца с 1-го по 30-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;
- 15-го числа 30-го месяца долг составит 500 тысяч рублей;
- к 15-му числу 31-го месяца кредит должен быть полностью погашен.

Найдите г, если известно, что общая сумма выплат после полного погашения кредита составит 1989 тысяч рублей.

Ответ: 2
 
Аналоги к этому заданию:

Задание 9683

1 февраля 2018 года планируется взять кредит на сумму 1 млн рублей. Условия его возврата таковы:

‐ 1 марта каждого года сумма долга увеличивается на 2% по сравнению с началом года
‐ с 1 мая по 1 августа необходимо выплатить часть долга
‐ 1 марта каждого года долг должен составлять часть кредита в соответствии с таблицей
Год 2018 2019 2020 2018+n 2019+n 2020+n 2018+2n 2019+2n
Долг (тыс. руб) 1000 985 970 1000-15n 1000‐15n‐x 1000‐15n‐2x 600 0

Начиная с 2018 года долг уменьшался равномерно на 15 тысяч рублей, а начиная с (2018+n)‐го по (2018+2n)‐й год, долг уменьшался равномерно на x тысяч рублей. В каком году планируется совершить последний платеж, если общая сумма выплат равна 1 346 000 рублей?

Ответ: 2038
 
Аналоги к этому заданию:

Задание 9664

15-го марта планируется взять кредит в банке на 26 месяцев. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на 3 % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца с 1-го по 25-й долг должен быть на 40 тысяч рублей меньше долга на 15-е число предыдущего месяца;
- к 15-му числу 26-го месяца кредит должен быть полностью погашен.

Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1924 тысячи рублей?

Ответ: 1300000 рублей
 
Аналоги к этому заданию:

Задание 9636

Андрей Петрович взял кредит на несколько лет и выплатил его равными ежегодными платежами по 200000 руб. При этом в начале каждого года сумма кредита увеличивалась на 10%, а в конце года производился платёж. Если бы Андрей Петрович не делал платежей, то за это время вследствие начисления процентов сумма кредита составила бы 928200 руб. На сколько лет был взят кредит?

Ответ:
 
Аналоги к этому заданию:

Задание 9531

31 декабря 2014 года Михаил взял в банке некоторую сумму в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Михаил переводит в банк 2 928 200 рублей. Какую сумму взял Михаил в банке, если он выплатил долг четырьмя равными платежами (то есть за четыре года)?

Ответ: 9282000 рублей
 
Аналоги к этому заданию:

Задание 9511

1 апреля 2019 г. Андрей Петрович положил 10000 рублей на банковский вклад сроком на 1 год с ежемесячным начислением процентов и капитализацией под 21% годовых. Это означает, что первого числа каждого месяца сумма вклада увеличивается на одно и то же количество процентов, рассчитанное таким образом, что за 12 месяцев она увеличится ровно на 21%. Через сколько месяцев сумма вклада впервые превысит 11000 рублей?

Ответ:
 
Аналоги к этому заданию:

Задание 9491

15 января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на 2 % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Известно, что в течение второго года кредитования нужно вернуть банку 339 тыс. рублей. Какую сумму нужно вернуть банку в течение первого года кредитования?

Ответ:
 
Аналоги к этому заданию:

Задание 9387

Найдите все значения и, при каждом из которых система уравнений $$\left\{\begin{matrix} a(x^2+y^2)-ax+(a-3)y+1=0\\xy-1=y-x \end{matrix}\right.$$ имеет ровно четыре различных решения.

Ответ:
 
Аналоги к этому заданию:

Задание 9386

15 мая планируется взять кредит в банке на 17 месяцев. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на 2 % по сравнению с концом предыдущего месяца;

- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

- 15-го числа каждого месяца с 1-го по 16-й долг должен быть на 50 тысяч рублей меньше долга на 15-е число предыдущего месяца;

- к 15-му числу 17-го месяца кредит должен быть полностью погашен.

Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1472 тысячи рублей?

Ответ:
 
Аналоги к этому заданию:

Задание 9366

15 июня планируется взять кредит в банке на сумму 1300 тысяч рублей на 16 месяцев. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;

-  со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

-  15-го числа каждого месяца с 1-го по 15-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;

-  15-го числа 15-го месяца долг составит 100 тысяч рублей;

-  к 15-му числу 16-го месяца кредит должен быть полностью погашен.

Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1636 тысяч рублей.

Ответ:
 
Аналоги к этому заданию:

Задание 9346

1 апреля 2017 г. Андрей Петрович положил 10000 рублей на банковский вклад сроком на 1 год с ежемесячным начислением процентов и капитализацией под a % годовых. Это означает, что первого числа каждого месяца сумма вклада увеличивается на одно и то же количество процентов, рассчитанное таким образом, что за 12 месяцев она увеличится ровно на a %. Через 6 месяцев сумма вклада составила 10500 рублей. Найдите a.

Ответ:
 
Аналоги к этому заданию:

Задание 9249

Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заёмщика возрастает на 25 % по сравнению с началом года. В конце 1-го и 2-го годов заёмщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 3-го и 4-го годов заёмщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заёмщика превысит 9 млн рублей.

Ответ:
 
Аналоги к этому заданию:

Задание 9232

Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заёмщика возрастает на 20 % по сравнению с началом года. В конце 1-го и 2-го годов заёмщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 3-го и 4-го годов заёмщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заёмщика превысит 8 млн рублей.

Ответ:
 
Аналоги к этому заданию:

Задание 9165

Александр Сергеевич взял ипотечный кредит суммой 2 млн. рублей на 20 лет. Условия выплаты кредита таковы:

– в начале каждого года долг увеличивается на 10%,

– после начисления процентов выплачивается некоторая часть долга,

– после выплаты долг должен быть на одну и ту же величину меньше, чем в аналогичном периоде прошлого года.

После 8‐й выплаты Александру Сергеевичу удалось произвести реструктуризацию кредита, в результате чего процент, начисляемый в последующие годы, уменьшился до 8%. Какую сумму сэкономил Александр Сергеевич?

Ответ: 156000
 
Аналоги к этому заданию:

Задание 9114

По бизнес-плану четырёхлетний проект предполагает начальное вложение — 10 млн рублей. По итогам каждого года планируется прирост вложенных средств на 12 % по сравнению с началом года. Начисленные проценты остаются вложенными в проект. Кроме этого, сразу после начислений процентов нужны дополнительные вложения: целое число n млн рублей и в первый, и во второй годы, а также целое число m млн рублей и в третий, и в четвёртый годы. Найдите наименьшее значение n, при котором первоначальные вложения за два года вырастут как минимум в полтора раза, и наименьшее значение m, такое, что при найденном ранее значении n первоначальные вложения за четыре года как минимум утроятся.

Ответ:
 
Аналоги к этому заданию:

Задание 9095

В июле планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:

- каждый январь долг возрастает на 14 % по сравнению с концом предыдущего года;

- с февраля по июнь каждого года необходимо выплатить часть долга, равную 3,249 млн рублей.

Сколько миллионов рублей было взято в банке, если известно, что он был полностью погашен двумя равными платежами (то есть за два года)?

Ответ:
 
Аналоги к этому заданию:

Задание 9049

Всеволод и Александра в один день открыли в банке по вкладу с возможностью частичного снятия средств. Размер каждого вклада составил 1 000 000 рублей. В конце очередного месяца банк увеличивает размер вклада на некоторую фиксированную сумму, но только в том случае, если клиент в течение данного месяца не снимал деньги со счета. Всеволод попал под условия бонусной акции, поэтому его ежемесячная прибавка оказалась выше, чем у Александры. Некоторое время наши герои не обращались в банк. Но когда вклад Всеволода достиг суммы 1 200 000 рублей, он каждый месяц с марта по август 2019 года снимал со счета по 25 000 рублей, а вклад Александры продолжал ежемесячно расти. При этом в конце июля 2019 года суммы на вкладах наших героев оказались одинаковыми, а спустя некоторое время сравнялись повторно. Определите размер вкладов Всеволода и Александры, когда они сравняются повторно, если после августа 2019 года наши герои не будут снимать деньги со счетов?

Ответ:
 
Аналоги к этому заданию:

Задание 8916

По бизнес-плану четырёхлетний проект предполагает начальное вложение — 20 млн рублей. По итогам каждого года планируется прирост вложенных средств на 15 % по сравнению с началом года. Начисленные проценты остаются вложенными в проект. Кроме этого, сразу после начислений процентов нужны дополнительные вложения: целое число n млн рублей и в первый, и во второй годы, а также целое число m млн рублей и в третий, и в четвёртый годы. Найдите наименьшее значение n, при котором первоначальные вложения за два года как минимум удвоятся, и наименьшее значение m, такое, что при найденном ранее значении n первоначальные вложения за четыре года как минимум утроятся.

Ответ:
 
Аналоги к этому заданию:

Задание 8896

По бизнес-плану четырёхлетний проект предполагает начальное вложение — 25 млн рублей. По итогам каждого года планируется прирост вложенных средств на 20 % по сравнению с началом года. Начисленные проценты остаются вложенными в проект. Кроме этого, сразу после начислений процентов нужны дополнительные вложения: целое число п млн рублей и в первый, и во второй годы, а также целое число т млн рублей и в третий, и в четвёртый годы. Найдите наименьшее значение п, при котором первоначальные вложения за два года как минимум удвоятся, и наименьшее значение т, такое, что при найденном ранее значении п первоначальные вложения за четыре года вырастут как минимум в четыре раза.

Ответ: 7 и 3 млн.
Аналоги к этому заданию:

Задание 8875

19 января планируется взять в кредит некоторую сумму на 16 месяцев. Условия кредита таковы:

‐ 1 числа каждого месяца долг возрастает на 10% по сравнению с концом предыдущего месяца

‐ со 2 по 18 число каждого месяца необходимо выплатить часть долга

‐ 19‐го числа каждого месяца с 1‐й по 15‐й месяц долг должен быть на 30 тысяч рублей меньше долга на 19‐е число предыдущего месяца

‐ к 19‐му числу 16‐го месяца кредит должен быть полностью погашен.

Какой долг будет 19‐го числа 15‐го месяца, если общая сумма выплат после полного погашения кредита составит 914 тыс. рублей?

Ответ:
Аналоги к этому заданию:

Задание 8801

15 декабря планируется взять кредит в банке на сумму 1 000 000 рублей на (n+1) месяцев. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца с 1-го по n-й долг должен быть на 40 тысяч рублей меньше долга на 15-е число предыдущего месяца;
- 15-го числа n-го месяца долг составит 200 тысяч рублей;
- к 15-му числу (n+1)-го месяца кредит должен быть полностью погашен.

Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1 378 тысяч рублей.

Ответ: 3
Аналоги к этому заданию:

Задание 8782

15 декабря планируется взять кредит в банке на сумму 600 тысяч рублей на (n+1) месяц. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на 3 % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца с 1-го по n-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;
- 15-го числа n-го месяца долг составит 200 тысяч рублей;
- к 15-му числу (n+1)-го месяца кредит должен быть полностью погашен.

Найдите n, если известно, что общая сумма выплат после полного погашения кредита составит 852 тысячи рублей.

Ответ: 20
Аналоги к этому заданию:

Задание 8763

В июле планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:

- каждый январь долг возрастает на 16 % по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплатить часть долга, равную 2,523 млн рублей.

Сколько миллионов рублей было взято в банке, если известно, что он был полностью погашен двумя равными платежами (то есть за два года)?

Ответ: 4,05
Аналоги к этому заданию:

Задание 8744

В июле планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:

- каждый январь долг возрастает на 15 % по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплатить часть долга, равную 1,587 млн рублей.

Сколько миллионов рублей было взято в банке, если известно, что он был полностью погашен двумя равными платежами (то есть за два года)?

Ответ: 2,58
Аналоги к этому заданию:

Задание 8721

15 января планируется взять кредит в банке на 49 месяцев. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на 1 % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 2 млн рублей? (Считайте, что округления при вычислении платежей не производятся.)

Ответ: 1,6 млн. руб.
Аналоги к этому заданию:

Задание 8701

15-го января планируется взять кредит в банке на некоторый срок (целое число месяцев). Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на 1 % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

На сколько месяцев планируется взять кредит, если известно, что общая сумма выплат после полного погашения кредита на 20 % больше суммы, взятой в кредит? (Считайте, что округления при вычислении платежей не производятся.)

Ответ: 39
Аналоги к этому заданию:

Задание 4773

1 марта 2010 года Аркадий взял в банке кредит под 10% годовых. Схема выплаты кредита следующая: 1 марта каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Аркадий переводит в банк платеж. Весь долг Аркадий выплатил за 3 платежа, причем второй платеж оказался в два раза больше первого, а третий – в три раза больше первого. Сколько рублей взял в кредит Аркадий, если за три года он выплатил банку 2 395 800 рублей?

Ответ:
Аналоги к этому заданию:

Задание 4772

Жанна взяла в банке в кредит 1,2 млн рублей на срок 24 месяца. По договору Жанна должна возвращать банку часть денег в конце каждого месяца. Каждый месяц общая сумма долга возрастает на 2 %, а затем уменьшается на сумму, уплаченную Жанной банку в конце месяца. Суммы, выплачиваемые Жанной, подбираются так, чтобы сумма долга уменьшалась равномерно, то есть на одну и ту же величину каждый месяц. Какую сумму Жанна вернёт банку в течение первого года кредитования?

Ответ:
Аналоги к этому заданию:

Задание 4771

Семья Ивановых ежемесячно вносит плату за коммунальные услуги, телефон и электричество. Если бы коммунальные услуги подорожали на 50%, то общая сумма платежа увеличилась бы на 35%. Если бы электричество подорожало на 50%, то общая сумма платежа увеличилась бы на 10%. Какой процент от общей суммы платежа приходится на телефон?

Ответ:
Аналоги к этому заданию:

Задание 4770

При рытье колодца глубиной свыше 10 м за первый метр заплатили 1000 руб., а за каждый следующий на 500 руб. больше, чем за предыдущий. Сверх того за весь колодец дополнительно было уплачено 10 000 руб. Средняя стоимость 1 м оказалась равной 6250 руб. Определите глубину колодца.

Ответ:
Аналоги к этому заданию:

Задание 4769

В банк был положен вклад под банковский процент 10%. Через год, после начисления процентов, хозяин вклада снял со счета 2000 рублей, а еще через год снова внес 2000 рублей. Однако, вследствие этих действий через три года со времени первоначального вложения вклада он получил сумму меньше запланированной (если бы не было промежуточных операций со вкладом). На сколько рублей меньше запланированной суммы получил в итоге вкладчик?

Ответ:
Аналоги к этому заданию:

Задание 4768

Банк планирует вложить на 1 год 30% имеющихся у него средств клиентов в акции золотодобывающего комбината, а остальные 70% — в строительство торгового комплекса. В зависимости от обстоятельств первый проект может принести банку прибыль в размере от 32% до 37% годовых, а второй проект — от 22 до 27% годовых. В конце года банк обязан вернуть деньги клиентам и выплатить им проценты по заранее установленной ставке, уровень которой должен находиться в пределах от 10% до 20% годовых. Определите, какую наименьшую и наибольшую чистую прибыль в процентах годовых от суммарных вложений в покупку акций и строительство торгового комплекса может при этом получить банк.

Ответ:
Аналоги к этому заданию:

Задание 4767

В одной стране в обращении находилось 1 000 000 долларов, 20% из которых были фальшивыми. Некая криминальная структура стала ввозить в страну по 100000 долларов в месяц, 10% из которых были фальшивыми. В это же время другая структура стала вывозить из страны 50 000 долларов ежемесячно, из которых 30% оказались фальшивыми. Через сколько месяцев содержание фальшивых долларов в стране составит 5%?

Ответ:
Аналоги к этому заданию:

Задание 4766

Антон взял кредит в банке на срок 6 месяцев. В конце каждого месяца общая сумма оставшегося долга увеличивается на одно и то же число процентов (месячную процентную ставку), а затем уменьшается на сумму, уплаченную Антоном. Суммы, выплачиваемые в конце каждого месяца, подбираются так, чтобы в результате сумма долга каждый месяц уменьшалась равномерно, то есть на одну и ту же величину. Общая сумма выплат превысила сумму кредита на 63%. Найдите месячную процентную ставку.

Ответ:
Аналоги к этому заданию:

Задание 4765

За время хранения вклада в банке проценты по нему начислялись ежемесячно сначала в размере 5%, затем 12%, потом $$11\frac{1}{9}$$% и, наконец, 12,5% в месяц. известно, что под действием каждой новой процентной ставки вклад находился целое число месяцев, а по истечении срока хранения первоначальная сумма увеличилась на $$104\frac{1}{6}$$% Определите срок хранения вклада.

Ответ:
Аналоги к этому заданию:

Задание 4764

31 декабря 2013 года Сергей взял в банке 9 930 000 рублей в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Сергей переводит в банк определённую сумму ежегодного платежа. Какой должна быть сумма ежегодного платежа, чтобы Сергей выплатил долг тремя равными ежегодными платежами?

Ответ: