ЕГЭ Профиль
Задание 11001
Решите неравенство: $${{\log }_{0,25} (1-6x)\ }\cdot {{\log }_{\left(1-x\right)} \left(\frac{1}{2}\right)\ }>1$$
$${{\log }_{0,25} (1-6x)\ }\cdot {{\log }_{\left(1-x\right)} \left(\frac{1}{2}\right)\ }>1\leftrightarrow {{\log }_{{0,5}^{-2}} \left(1-6x\right)\ }\cdot \frac{1}{{{\log }_{0,5} \left(1-x\right)\ }}>1\leftrightarrow$$ $$\leftrightarrow \frac{\frac{1}{2}{{\log }_{0,5} \left(1-6x\right)\ }}{{{\log }_{0,5} \left(1-x\right)\ }}\leftrightarrow \left\{ \begin{array}{c} {{\log }_{\left(1-x\right)} \left(1-6x\right)\ }>2 \\ 1-6x>0 \\ 1-x>0 \\ 1-x\ne 1 \end{array} \right.\leftrightarrow$$ $$\leftrightarrow \left\{ \begin{array}{c} \left(1-6x-{\left(1-x\right)}^2\right)\left(1-x-1\right)>0(1) \\ x<\frac{1}{6} \\ x<1 \\ x\ne 0 \end{array} \right.$$
$$(1): \left(1-6x-1+2x-x^2\right)\left(-x\right)>0\leftrightarrow \left(-x^2-4x\right)\left(-x\right)>0\leftrightarrow x^2\left(x+4\right)>0\leftrightarrow $$ $$\leftrightarrow x>-4.$$ Тогда: $$x\in (-4;0)\cup (0;\frac{1}{6})$$.