Перейти к основному содержанию

ЕГЭ Профиль

(C4) Планиметрическая задача

Окружности и треугольники

 
Аналоги к этому заданию:

Задание 9950

Окружность радиуса $$\sqrt{3}$$ касается прямой a в точке А, а прямой b в точке В так, что хорда АВ стягивает дугу окружности в 600. Прямые a и b пересекаются в точке F. Точка С расположена на луче FA, а точка D – на луче BF так, что AC=BD=2. 

а) Докажите, что треугольник BAD – прямоугольный
б) Найдите длину медианы треугольника CBD, проведенную из вершины D.
Ответ:
 
Аналоги к этому заданию:

Задание 9783

Окружность касается сторон АС и ВС треугольника АВС в точках А и В соответственно. На дуге этой окружности, лежащей вне треугольника, расположена точка К так, что расстояния от нее до продолжений сторон АС ВС равны 39 и 156 соответственно.

а) Найдите расстояние от точки К до прямой АВ.
б) В каком отношении перпендикуляр, опущенный из точки К на прямую АВ, делит площадь пятиугольника KFABE, где точки F и Е – основания перпендикуляров, опущенных из точки К на прямые АС и АВ соответственно?
Ответ:
 
Аналоги к этому заданию:

Задание 9164

Вписанная в треугольник АВС окружность с центром О касается сторон АВ и АС в точках М и N соответственно. Прямая ВО пересекает окружность, описанную около треугольника CON вторично в точке Р.

а) Докажите, что точка Р лежит на прямой MN

б) Найдите площадь треугольника АВР, если площадь треугольника АВС равна 24.

Ответ: 12
 
Аналоги к этому заданию:

Задание 9113

В треугольнике АВС все стороны различны. Прямая, содержащая высоту ВН треугольника АВС, вторично пересекает описанную около этого треугольника окружность в точке K. Отрезок BN-диаметр этой окружности.

а) Докажите, что AC и KN параллельны.

б) Найдите расстояние от точки N до прямой AC, если радиус описанной около треугольника ABC окружности равен $$6\sqrt{6}$$, $$\angle BAC$$=30°, $$\angle ABC$$=105°.

Ответ:
Аналоги к этому заданию:

Задание 9094

В треугольнике АВС все стороны различны. Прямая, содержащая высоту ВН треугольника АВС, вторично пересекает описанную около этого треугольника окружность в точке F. Отрезок BD-диаметр этой окружности.

а) Докажите, что AD=CF.

б) Найдите DF, если радиус описанной около треугольника АВС окружности равен 12, $$\angle BAC$$=35°, $$\angle ACB$$=65°.

Ответ:
 
Аналоги к этому заданию:

Задание 9048

В треугольнике АВС биссектриса угла В пересекает описанную окружность этого треугольника в точке F. Е – центр окружности, касающейся стороны АС и продолжений сторон АВ и ВС (вневписанная окружность). О – центр вписанной окружности треугольника АВС.

а) Докажите, что отрезки AF и OF равны

б) Найдите длину отрезка CF, если ОЕ = 14.

Ответ:
Аналоги к этому заданию:

Задание 8874

В остроугольном треугольнике АВС угол А равен 40, отрезки ВВ1и СС1– высоты, точки В2 и С2 – середины сторон АС и АВ соответственно. Прямые В1С2 и С1В2пересекаются в точке К.

а) Докажите, что точки В1, В2, С1 и С2 лежат на одной окружности

б) Найдите угол В1КВ2

Ответ:
Аналоги к этому заданию:

Задание 8800

В треугольнике АВС известно, что AC=26 и AB=BC=38.

а) Докажите, что средняя линия треугольника, параллельная стороне AC, пересекает окружность, вписанную в треугольник ABC.
б) Найдите отношение длин отрезков, на которые окружность делит среднюю линию, параллельную стороне AC.
Ответ: 4:5:4
Аналоги к этому заданию:

Задание 8781

В треугольнике ABC известно, что AC=10 и AB=BC=14.

а) Докажите, что средняя линия треугольника, параллельная стороне AC, пересекает окружность, вписанную в треугольник ABC.
б) Найдите отношение длин отрезков, на которые окружность делит среднюю линию, параллельную стороне AC.
Ответ: 1:3:1
Аналоги к этому заданию:

Задание 8720

Точка O — центр вписанной в треугольник ABC окружности. Прямая BO вторично пересекает описанную около этого треугольника окружность в точке E.

а) Докажите, что $$\angle EOC=\angle ECO$$.
б) Найдите площадь треугольника ACE, если радиус описанной около треугольника ABC окружности равен $$6\sqrt{3}$$, $$\angle ABC=60$$.
Ответ: $$27\sqrt{3}$$
Аналоги к этому заданию:

Задание 8700

Точка О — центр вписанной в треугольник АВС окружности. Прямая ВО вторично пересекает описанную около этого треугольника окружность в точке Р.

а) Докажите, что $$\angle POA=\angle PAO$$.
б) Найдите площадь треугольника АРО, если радиус описанной около треугольника АВС окружности равен 6, $$\angle BAC=75$$, $$\angle ABC=60$$.
Ответ: $$9\sqrt{2}$$
Аналоги к этому заданию:

Задание 4746

Окружность, вписанная в треугольник ABC, касается сторон AB, BC и CA в точках K, M и N соответственно.
а) Докажите, что $$AN=\frac{AB+AC-BC}{2}$$
б) Найдите отношение AK : KB, если известно, что AN : NC = 4 : 3 и $$\angle BAC = 60^{\circ}$$

Ответ:
Аналоги к этому заданию:

Задание 4745

Первая окружность с центром O, вписанная в равнобедренный треугольник KLM, касается боковой стороны KL в точке B, а основания ML — в точке A. Вторая окружность с центром O1 касается основания ML и продолжений боковых сторон.
а) Докажите, что треугольник OLO1 прямоугольный.
б) Найдите радиус второй окружности, если известно, что радиус первой равен 6 и AK = 16.

Ответ:
Аналоги к этому заданию:

Задание 4744

Окружность, вписанная в треугольник АВС, площадь которого равна 66, касается средней линии, параллельной стороне ВС. Известно, что ВС = 11. Найдите сторону АВ.

Ответ:
Аналоги к этому заданию:

Задание 4743

На стороне BA угла ABC, равного 30°, взята такая точка D, что AD = 2 и BD = 1. Найдите радиус окружности, проходящей через точки A и D и касающейся прямой BC.

Ответ:
Аналоги к этому заданию:

Задание 4742

Боковые стороны AB и CD трапеции ABCD равны 6 и 8 соответственно. Отрезок, соединяющий середины диагоналей, равен 5, средняя линия трапеции равна 25. Прямые AB и CD пересекаются в точке M. Найдите радиус окружности, вписанной в треугольник BMC.

Ответ:
Аналоги к этому заданию:

Задание 4741

Высота равнобедренного треугольника, опущенная на основание, равна 9, а радиус вписанной в треугольник окружности равен 4. Найдите радиус окружности, касающейся стороны треугольника и продолжений двух его сторон.

Ответ:
Аналоги к этому заданию:

Задание 4740

Окружность радиуса $$8\sqrt{2}$$ вписана в прямой угол. Вторая окружность также вписана в этот угол и пересекается с первой в точках M и N. Известно, что расстояние между центрами окружностей равно 12. Найдите MN.

Ответ:
Аналоги к этому заданию:

Задание 4739

Стороны AB и BC треугольника ABC равны соответственно 26 и 14,5, а его высота BD равна 10. Найдите расстояние между центрами окружностей, вписанных в треугольники ABD и BCD.

Ответ:
Аналоги к этому заданию:

Задание 4738

Вневписанной окружностью треугольника называется окружность, касающаяся одной стороны треугольника и продолжений двух других его сторон. Радиусы двух вневписанных окружностей прямоугольного треугольника равны 7 и 17. Найдите расстояние между их центрами.

Ответ:
Аналоги к этому заданию:

Задание 4737

Угол C треугольника ABC равен 60°, D — отличная от A точка пересечения окружностей, построенных на сторонах AB и AC как на диаметрах. Известно, что DB : DC = 1 : 3. Найдите угол A.

Ответ:
Аналоги к этому заданию:

Задание 4736

Продолжение биссектрисы CD неравнобедренного треугольника ABC пересекает окружность, описанную около этого треугольника, в точке E. Окружность, описанная около треугольника ADE, пересекает прямую AC в точке F, отличной от A. Найдите радиус окружности, описанной около треугольника ABC, если AC = 4, AF = 2, ∠BAC = 60°.

Ответ:
Аналоги к этому заданию:

Задание 4735

Точка O — центр правильного шестиугольника ABCDEF со стороной 7. Найдите радиус окружности, касающейся окружностей, описанных около треугольников BOD, DOF и BOF.

Ответ:
Аналоги к этому заданию:

Задание 4734

Дан треугольник со сторонами 115, 115 и 184. Внутри него расположены две равные касающиеся окружности, каждая из которых касается двух сторон треугольника. Найдите радиусы окружностей.

Ответ:
Аналоги к этому заданию:

Задание 4733

Дан прямоугольный треугольник ABC с катетами AC = 15 и BC = 8. С центром в вершине B проведена окружность S радиуса 17. Найдите радиус окружности, вписанной в угол BAC и касающейся окружности S.

Ответ:
Аналоги к этому заданию:

Задание 4732

Точка M лежит на отрезке AB. На окружности с диаметром AB взята точка C, удаленная от точек A, M и B на расстояния 20, 14 и 15 соответственно. Найдите площадь треугольника BMC.

Ответ:
Аналоги к этому заданию:

Задание 4731

Прямая, перпендикулярная гипотенузе прямоугольного треугольника, отсекает от него четырехугольник, в который можно вписать окружность. Найдите радиус окружности, если отрезок этой прямой, заключённый внутри треугольника, равен 12, а косинус острого угла равен $$\frac{3}{5}$$

Ответ:
Аналоги к этому заданию:

Задание 4730

Прямая, перпендикулярная боковой стороне равнобедренного треугольника, отсекает от него четырёхугольник, в который можно вписать окружность. Найдите радиус окружности, если отрезок прямой, заключённый внутри треугольника, равен 6, а отношение боковой стороны треугольника к его основанию равно $$\frac{5}{6}$$

Ответ:
Аналоги к этому заданию:

Задание 4729

В треугольнике ABC известны стороны: AB = 7, BC = 8, AC = 9. Окружность, проходящая через точки A и C, пересекает прямые BA и BC соответственно в точках K и L, отличных от вершин треугольника. Отрезок KL касается окружности, вписанной в треугольник ABC. Найдите длину отрезка KL.

Ответ:
Аналоги к этому заданию:

Задание 4728

Точка B лежит на отрезке AC. Прямая, проходящая через точку A, касается окружности с диаметром BC в точке M и второй раз пересекает окружность с диаметром AB в точке K. Продолжение отрезка MB пересекает окружность с диаметром AB в точке D.
а) Докажите, что прямые AD и MC параллельны.
б) Найдите площадь треугольника DBC, если AK = 3 и MK = 12.

Ответ:
Аналоги к этому заданию:

Задание 4727

Точки D и E — основания высот непрямоугольного треугольника ABC, проведённых из вершин A и C соответсвенно. Известно, что $$\frac{DE}{AC}=k$$, BC = a и AB = b. Найдите сторону AC, если известно, что:
а) треугольник остроугольный
б) угол B тупой.

Ответ:
Аналоги к этому заданию:

Задание 4726

Радиус окружности, описанной около треугольника ABC, равен 13, высота, проведённая к стороне BC, равна 5. Найдите длину той хорды AM описанной окружности, которая делится пополам стороной BC.

Ответ:
Аналоги к этому заданию:

Задание 4725

Дан треугольник ABC со сторонами AB = 25, AC = 7 и BC = 24. На стороне BC взята точка D, а на отрезке AD — точка O, причем CD = 8 и AO = 3OD. Окружность с центром O проходит через точку C. Найдите расстояние от точки C до точки пересечения этой окружности с прямой AB.

Ответ:
Аналоги к этому заданию:

Задание 4724

Окружность, вписанная в треугольник ABC, площадь которого равна 114, касается средней линии, параллельной стороне BC. Известно, что BC = 19. Найдите сторону AB.

Ответ:
Аналоги к этому заданию:

Задание 4723

Прямые, содержащие катеты AC и CB прямоугольного треугольника АСВ, являются общими внутренними касательными к окружностям радиусов 2 и 4. Прямая, содержащая гипотенузу АВ, является их общей внешней касательной.
а) Докажите, что длина отрезка внутренней касательной, проведенной из вершины острого угла треугольника до одной из окружностей, равна половине периметра треугольника АСВ.
б) Найдите площадь треугольника АСВ.

Ответ:
Аналоги к этому заданию:

Задание 4722

Расстояние между параллельными прямыми равно 4. На одной из них лежит точка C, а на другой — точки A и B, причем треугольник ABC — равнобедренный и его боковая сторона равна 5. Найдите радиус окружности, вписанной в треугольник ABC.

Ответ:
Аналоги к этому заданию:

Задание 4721

В треугольнике ABC, AB = 15, BC = 7, CA = 9. Точка D лежит на прямой BC причем BD : DC = 5 : 7. Окружности, вписанные в каждый из треугольников ADC и ADB касаются стороны AD в точках E и F. Найдите длину отрезка EF.

Ответ: