Перейти к основному содержанию

ЕГЭ Профиль

(C2) Стереометрическая задача

Круглые тела: цилиндр, конус, шар

 

Задание 2992

Внутри куба расположены два равных шара, касающихся друга. При этом один шар касается трех граней куба, имеющих общую вершину, а другой касается трех оставшихся граней.
а) Докажите, что центры шаров принадлежат диагонали куба, исходящей из общей для граней вершины.
б) Найдите радиусы этих шаров, если ребро куба равно 13.

Ответ: $$\frac{13\sqrt{3}}{2+2\sqrt{3}}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

a) Пусть шар с центром в точке $$O_1$$ касается граней $$ABCD,AA_1D_1D,AA_1B_1B$$, соответственно шар с центром в точке $$O_2$$ касается граней $$A_1B_1C_1D_1,BB_1C_1C,DD_1C_1C$$.

Так как первый шар касается граней $$AA_1B_1B,AA_1D_1D$$, то его центр $$O_1$$ равноудален от указанных граней, то есть лежит на биссекторной плоскости двугранного угла c ребром $$AA_1$$, то есть на плоскости $$AA_1C_1C$$ (с учетом того, что $$ABCDA_1B_1C_1D_1$$ – куб).

Так первый шар касается граней $$ABCD,AA_1D_1D$$, то его центр $$O_1$$ равноудален от указанных граней, то есть лежит на биссекторной плоскости двугранного угла c ребром $$AD$$, то есть на плоскости $$AB_1C_1D$$ (с учетом того, что $$ABCDA_1B_1C_1D_1$$ – куб).

Но тогда точка $$O_1$$ лежит на прямой пересечения плоскостей $$AA_1C_1C,AB_1C_1D$$, то есть на $$AC_1$$ (естественно, раз шар находится внутри куба, то $$O_1$$ – точка отрезка $$AC_1$$).

Рассуждая аналогичным образом, приходим к тому, что и точка $$O_2$$ лежит на отрезке $$AC_1$$.

б) Очевидно, $$A_1C_1=13\sqrt2$$, $$AC_1=13\sqrt3$$. Очевидно, в силу симметрии, $$AO_1=C_1O_2$$ и $$AO_1=C_1O_2=\frac{13\sqrt3-2r}{2}$$, где $$r$$ – радиусы шаров.

Пусть, например, $$K_2$$ – точка касания второго шара с гранью $$A_1B_1C_1D_1$$ ($$K_2$$ принадлежит $$A_1C_1$$).

Треугольники $$AA_1C_1,O_2K_2C_1$$ подобны по двум углам, тогда $$\frac{AA_1}{O_2K_2}=\frac{AC_1}{O_2C_1}$$; $$\frac{13}{r}=\frac{13\sqrt2}{\frac{13\sqrt3-2r}{2}}$$; $$\frac{1}{r}=\frac{2\sqrt2}{13\sqrt3-2r}$$; $$2\sqrt2 r=13\sqrt3-2r$$; $$r(2\sqrt2+2)=13\sqrt3$$; $$r=\frac{13\sqrt3}{2\sqrt2+2}$$.

 

Задание 3425

В одном основании прямого кругового цилиндра с высотой 12 и радиусом основания 6 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.

а) Докажите, что диагонали этого сечения равны между собой.
б) Найдите объём пирамиды CABNM.
Ответ: $$144+72\sqrt{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

а)

1) Опустим $$BN\perp$$ основанию $$\Rightarrow$$ $$BN\perp CD$$

2) Проведем $$MN\parallel AB$$ $$\Rightarrow$$ $$CD\parallel MN$$ $$\Rightarrow$$ $$(ABNM)$$ - ИСКОМАЯ

3) т.к. $$MN\parallel AB$$ и $$AB=MN$$ $$\Rightarrow$$ ABNM - прямоугольник $$\Rightarrow$$ $$MB=AN$$ ч.т.д.

б) $$V_{CABNM}=\frac{1}{3}CR\cdot S_{ABNM}=\frac{1}{3}(CO+OR)\cdot AB\cdot BN$$

$$AB=CO=6$$; $$BN=12$$

 из $$\bigtriangleup OMN$$ - равносторонний:

$$OR=\frac{\sqrt{3}}{2}OM$$ $$(\angle M=60^{\circ})$$ $$\Rightarrow$$ $$OR=\frac{\sqrt{3}}{2}\cdot6=3\sqrt{3}$$

$$V_{CABNM}=\frac{1}{3}\cdot(6+3\sqrt{3})\cdot6\cdot12=144+72\sqrt{3}$$

Задание 4357

Радиус основания конуса равен 6, а его высота равна 8. Плоскость сечения содержит вершину конуса и хорду основания, длина которой равна 4. Найдите расстояние от центра основания конуса до плоскости сечения.

Ответ:

Задание 4358

В правильную четырёхугольную пирамиду, боковое ребро которой равно 10, а высота равна 6, вписана сфера. (Сфера касается всех граней пирамиды.) Найдите площадь этой сферы.

Ответ:

Задание 4359

Высота цилиндра равна 5, а радиус основания 10. Найдите площадь сечения цилиндра плоскостью, проходящей параллельно оси цилиндра на расстоянии 6 от неё.

Ответ:

Задание 4360

Радиус основания конуса с вершиной P равен 6, а длина его образующей равна 9. На окружности основания конуса выбраны точки A и B, делящие окружность на две дуги, длины которых относятся как 1 : 5. Найдите площадь сечения конуса плоскостью ABP.

Ответ:

Задание 4361

Две параллельные плоскости, расстояние между которыми 2, пересекают шар. Одна из плоскостей проходит через центр шара. Отношение площадей сечений шара этими плоскостями равно 0,84. Найдите радиус шара.

Ответ:

Задание 4362

Диаметр окружности основания цилиндра равен 26, образующая цилиндра равна 21. Плоскость пересекает его основания по хордам длины 24 и 10. Расстояние между этими хордами равно $$\sqrt{730}$$

а) Докажите, что центры оснований цилиндра лежат по разные стороны от этой плоскости.
б) Найдите угол между этой плоскостью и плоскостью основания цилиндра.
Ответ:

Задание 4363

В правильную шестиугольную пирамиду, боковое ребро которой равно 10, а высота равна 6, вписана сфера. (Сфера касается всех граней пирамиды.) Найдите площадь этой сферы.

Ответ:
 

Задание 4573

В правильной шестиугольной пирамиде $$PABCDEF$$ боковое ребро наклонено к основанию под углом $$\alpha=\arctan\frac{\sqrt{3}}{2}$$.

А) Докажите, что плоскости АРВ и DPE перпендикулярны.
Б) Найдите отношение радиуса сферы, касающейся всех граней пирамиды, к радиусу сферы, проходящей через все вершины пирамиды.
Ответ: $$\frac{6\sqrt{2}-6}{7}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 5289

В конусе с вершиной в точке Р высота $$PO=\sqrt{7}$$. В его основании проведена хорда АВ, отстоящая от точки О на расстоянии, равном 3. Известно, что радиус основания конуса равен 5.

А) Докажите, что расстояние от точки Р до прямой АВ вдвое меньше длины отрезка АВ.
Б) Найдите радиус сферы, описанной около пирамиды РОАВ.
Ответ: $$\frac{2}{3}\sqrt{43}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

А) 1) Пусть $$(PC)\perp (AB)$$, $$c \in (AB)$$, тогда по теореме о 3-х перпендикулярах: $$(OC)\perp (AB)$$, $$\left | OC \right |=3$$

   2) Из $$\Delta OPC:\left | PC \right |=\sqrt{\left | PO \right |^{2}+\left | OC \right |^{2}}=4$$

   3) С другой стороны : $$\left | AB \right |=2\left | BC \right |=8=2\left | PC \right |$$ ($$\Delta BOC$$ - равнобедренный, соедовательно, высота является еще и медианой)

Б) 1) Пусть Q-центр сферы, описанной около пирамиды  POAB . Тогда , в силу симметрии, $$Q \in (OPC)$$. Пусть $$D \in (OP)$$, $$\left | PD \right |=\left | DO \right |$$, тогда $$\left | OQ \right |:{2} (QD)\perp (PO)$$ . Так как $$(AB)\perp (OCP)$$ и $$\left | CB \right |=\left | AC \right |$$, то $$(OD)\left | \right |(CO)$$

     2) Рассмотрим систему координат :O- начало, ось Oz-вдоль [OP], (Ox) вдоль [OC), $$(Oy)\left | \right |[BA)$$. Тогда :

$$Q=(x;0;\frac{\sqrt{7}}{2})$$;$$O=(0;0;0)$$;$$A=(3;4;0)$$

Отсюда: $$x^{2}+\frac{7}{4}=R^{2}=(x-3)^{2}+4^{2}+\frac{7}{4}\Leftrightarrow$$ $$(x-x+3)(2x-3)=16\Leftrightarrow$$ $$x=\frac{25}{6}\Rightarrow$$ $$R^{2}=\frac{625}{36}+\frac{7}{4}=$$$$\frac{172}{9}\Rightarrow$$ $$R=\frac{2}{3}\sqrt{43}$$

 

Задание 6972

В пирамиде SBCD каждое ребро равно 3. На ребре SB взята точка А так, что SA:AB=1:2.

А) В каком отношении плоскость ACD делит объем пирамиды?
Б) Найдите радиус сферы, описанной около пирамиды SACD.
Ответ: А)2:1 Б)$$\frac{3}{2}\sqrt{\frac{3}{2}}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

   A) 1) Пусть SO - высота SBCD. Опустим $$AM\perp (BCD)$$, тогда $$\DeltaAMB\sim \Delta SOB$$: $$\frac{AM}{SO}=\frac{AB}{SB}=\frac{2}{3}$$

        2) $$V_{SBCD}=\frac{1}{3} SO*S_{BCD}$$; $$V_{ABCD}=\frac{1}{3} AM*S_{BCD}\Rightarrow$$$$V_{ABCD}=\frac{AM}{SO}*V_{SBCD}=\frac{2}{3}V_{SBCD}\Rightarrow$$, пусть V - оставшаяся часть: $$V=\frac{1}{3}V_{SBCD}\Rightarrow$$ $$\frac{V_{ABCD}}{V}=\frac{2}{1}$$

      Б) 1) $$CA=AD\Rightarrow$$ $$\Delta ACD$$ - равнобедренный. Из $$\Delta SAC$$: $$CA=\sqrt{CS^{2}+SA^{2}-2 CS*SA *\cos S}=\sqrt{7}$$

        2) Рассмотрим пирамиду SADC, введем ортогальную систему координат , как показано на рисунке, где N - центр, описанной окружности около $$\Delta SCD$$

        3) Центр сферы будет лежать на оси Oz. Пусть Q - центр сферы, тогда $$Q (0;0;z)$$ и QS=QA (как радиусы сферы). Зададим координаты QS и QA; $$A(NA_{x}; O; AA_{x})$$, где $$A_{x}$$ - проекция A на (SDC) ; $$S(NS;0;0)$$

        4) из $$\Delta CSD$$: $$SH=SD* \sin D=3*\frac{\sqrt{3}}{2}$$; $$SN=\frac{2}{3} SH=\sqrt{3}\Rightarrow$$ $$S(\sqrt{3}; 0;0)$$

   Из $$\Delta ADC$$: $$AH=\sqrt{AD^{2}-HD^{2}}=\frac{\sqrt{19}}{2}$$; Из $$\Delta ASH$$: $$\cos S=\frac{AS^{2}+SH^{2}-AH^{2}}{2 AS*SH}=\frac{1}{\sqrt{3}}\Rightarrow$$ $$\sin S=\frac{\sqrt{2}}{\sqrt{3}}\Rightarrow$$ $$SA_{x}=AS*\cos S=\frac{1}{\sqrt{3}}\Rightarrow$$ $$NA_{x}=NS-SA_{x}=\frac{2\sqrt{3}}{3}$$; $$AA_{x}=SA*\sin S=\frac{\sqrt{2}}{\sqrt{3}}$$. Тогда A $$(\frac{2\sqrt{3}}{3};0; \frac{\sqrt{2}}{\sqrt{3}})$$, следовательно:

   $$QS(\sqrt{3}-0;0-0; 0-z)=(\sqrt{3};0;-z)$$ и $$QA(\frac{2\sqrt{3}}{3}-0;0-0;\frac{\sqrt{2}}{\sqrt{3}}+z)=(\frac{2\sqrt{3}}{3};0; \frac{\sqrt{2}}{\sqrt{3}}+z)$$

   Тогда длины: $$\left | QS \right |=\sqrt{(\sqrt{3})^{2}+(-z)^{2}}$$ и $$\left | QA \right |=\sqrt{(\frac{2\sqrt{3}}{3})^{2}+(\frac{\sqrt{2}}{\sqrt{3}}+z)^{2}}$$. В итоге получим: 

   $$QS^{2}=QA^{2}\Leftrightarrow$$ $$3+z^{2}=\frac{4}{3}+\frac{2}{3}+\frac{2\sqrt{2}}{\sqrt{3}}z+z^{2}\Leftrightarrow$$ $$\frac{2\sqrt{2}}{\sqrt{3}}z=1\Leftrightarrow$$ $$z=\frac{\sqrt{3}}{2\sqrt{2}}$$

   Тогда $$QS=\sqrt{(\sqrt{3})^{2}+(\frac{\sqrt{3}}{2\sqrt{2}})^{2}}=$$$$\sqrt{\frac{27}{8}}=\frac{3}{2}\sqrt{\frac{3}{2}}$$

 

Задание 7323

В правильной четырехугольной пирамиде SABCD с вершиной S длина перпендикуляра, опущенного из основания Н высоты пирамиды SH на грань SDC равна $$\sqrt{6}$$ , а угол наклона бокового ребра SB к плоскости основания равен 60.

А) Найдите радиус сферы, описанной около пирамиды SABCD
Б) Через середину высоты SH пирамиды проведена плоскость, параллельная основанию ABCD. Найдите отношение площади сечения описанного около пирамиды шара к площади сечения пирамиды этой плоскостью.
Ответ: А)$$\frac{2\sqrt{42}}{3}$$ Б)$$\frac{5 \pi}{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

A)  1) Пусть $$AB=x$$,  $$\Delta ADC$$: $$AC=\sqrt{AD^{2}+DC^{2}}=x\sqrt{2}\Rightarrow$$ $$AH=\frac{x\sqrt{2}}{2}$$

     2) из $$\Delta SAH$$: $$\angle ASH=90-\angle SAH=30\Rightarrow$$ $$AS=2AH=x\sqrt{2}\Rightarrow$$ $$\Delta SAC$$ - равносторонний

     3) Пусть O - центр сферы $$\Rightarrow$$ OA – радиус , но это и радиус описанной около $$\Delta ASC$$.

     4) из $$\Delta SAH$$: $$SH=SA*\sin SAH=x\sqrt{2}*\frac{\sqrt{3}}{2}=\frac{x\sqrt{6}}{2}$$; $$SO=\frac{2}{3}SH$$ $$\Rightarrow$$ $$SO=\frac{2}{3}*\frac{x\sqrt{6}}{2}=\frac{x\sqrt{6}}{3}$$

     5) из $$\Delta SHF$$: $$HF=\frac{1}{2} AD=\frac{x}{2}\Rightarrow$$ $$SF=\sqrt{SH^{2}+HF^{2}}=$$$$\sqrt{\frac{x^{2}*6}{4}+\frac{x^{2}}{4}}=$$$$\frac{x}{2}*\sqrt{7}$$

     6) $$HM*SF=SH*HF\Leftrightarrow$$ $$\sqrt{6}*\frac{x\sqrt{7}}{2}=$$$$\frac{x\sqrt{6}}{2}*\frac{x}{2}\Rightarrow$$ $$\frac{x}{2}=\sqrt{7}\Rightarrow$$ $$x=2\sqrt{7}$$

     7) $$SO=\frac{2\sqrt{7}*\sqrt{6}}{3}=\frac{2\sqrt{42}}{3}$$

Б)  1) Пусть $$A _{1}B_{1}C_{1}D_{1}$$ – сечение пирамиды, т.к. проведено через середину высоты и параллельно основанию, то $$\frac{S_{A_{1}B_{1}C_{1}D_{1}}}{S_{ABCD}}=\frac{1}{4}$$; $$S_{ABCD}=x^{2}=28\Rightarrow$$ $$S_{A_{1}B_{1}C_{1}D_{1}}=7$$

     2) $$SO=\frac{2}{3} SH$$; $$SL=\frac{1}{2}SH$$ , где L-середина SH , тогда $$SL=\frac{3}{4} SO$$. Пусть S-площадь диаметрального сечения сферы, $$S_{1}$$-сечение через L. Пусть ON-радиус , при этом $$LN\perp OS$$ , тогда $$OL=SO-SL =\frac{1}{4} SO\Rightarrow$$ из $$\Delta OLN$$: $$LN=\sqrt{ON^{2}-OL^{2}}=$$$$\sqrt{SO^{2}-(\frac{SO}{4})^{2}}=$$$$\frac{\sqrt{15}}{4}SO\Rightarrow$$ $$LN=\frac{\sqrt{15}}{4}*\frac{2\sqrt{42}}{3}=$$$$\frac{\sqrt{5}*\sqrt{14}}{2\sqrt{3}}$$ $$\Rightarrow$$ $$S_{1}=\frac{15*14 \pi}{4*3}=\frac{35 \pi}{2}$$

     3) $$\frac{S_{1}}{S_{A_{1}B_{1}C_{1}D_{1}}}=\frac{35 \pi}{2}:7=\frac{5 \pi}{2}$$

Задание 7422

Радиус основания конуса с вершиной S и центром основания О равен 5, а его высота равна $$\sqrt{51}$$ . Точка М – середина образующей SA конуса, а точки N и В лежат на основании конуса, причем прямая MN параллельна образующей конуса SB.

А) Докажите, что угол ANO – прямой
Б) Найдите угол между прямой ВМ и плоскостью основания конуса, если АВ=8
Ответ: 30
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9229

Точки A, B и C лежат на окружности основания конуса с вершиной 8, причём A и C диаметрально противоположны. Точка M - середина BC.

а) Докажите, что прямая SM образует с плоскостью ABC такой же угол, как и прямая AB с плоскостью SBC.

б) Найдите угол между прямой SA и плоскостью SBC, если AB=6, BC=8 и SC=$$5\sqrt{2}$$.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9246

Точки A, B и C лежат на окружности основания конуса с вершиной 8, причём A и C диаметрально противоположны. Точка M - середина BC.

а) Докажите, что прямая SM образует с плоскостью ABC такой же угол, как и прямая AB с плоскостью SBC.

б) Найдите угол между прямой SA и плоскостью SBC, если AB=4, BC=6 и SC=$$4\sqrt{2}$$.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9661

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А, В и С, а на окружности другого основания - точка C1, причём СС1 - образующая цилиндра, а АС - диаметр основания. Известно, что $$\angle ACB$$=45°, $$AB=3\sqrt{2}$$, СС1=6.

а) Докажите, что угол между прямыми АС1 и ВС равен 60°.
б) Найдите расстояние от точки В до прямой АС1
Ответ: $$1,5\sqrt{6}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 9801

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А, В и С, а на окружности другого основания - точка С1 причём СС1 - образующая цилиндра, а АС - диаметр основания. Известно, что $$\angle ACB$$=30°, АВ=$$\sqrt{2}$$ , СС1=4.

а) Докажите, что угол между прямыми АС1 и ВС равен 60°.
б) Найдите площадь боковой поверхности цилиндра.
Ответ: $$8\sqrt{2}\pi$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10168

Радиус основания конуса с вершиной S и центром основания О равен 6, а его высота равна $$\sqrt{33}$$. Точка М – середина образующей SA конуса, а точки N и В лежат на основании конуса, причем MN параллельна образующей конуса SB.

а) Докажите, что ON – биссектриса угла АОВ
б) Найдите угол между прямой ВМ и плоскостью основания конуса, если AB=$$4\sqrt{3}$$
Ответ: $$arctg \frac{1}{2}$$
 

Задание 10841

Радиус основания конуса равен 12, а высота конуса равна 5.

а) Постройте сечение конуса плоскостью, проходящей через вершину конуса и взаимно перпендикулярные образующие.
б) Найдите расстояние от плоскости сечения до центра основания конуса.
Ответ: $$\frac{5\sqrt{119}}{13}$$
Скрыть

а) Взаимно перпендикулярные образующие дают прямой угол, следовательно, искомое сечение - прямоугольный треугольник ASB с гипотенузой AB и катетами AS и BS (см. рисунок).

б) Расстояние от плоскости сечения до центра основания конуса O есть отрезок OK (см. рисунок). Сначала найдем длину отрезка AB из прямоугольного треугольника ABS. Отрезки $$AS=SB=13$$ и по теореме Пифагора имеем: $$AB=\sqrt{2\cdot {13}^2}=13\sqrt{2}$$.

Теперь найдем длину ON из прямоугольного треугольника AON. Так как треугольник AOB равнобедренный, то высота ON также является медианой, следовательно, катет $$AN=AB:2$$, и ON равна: $$ON=\sqrt{AO^2-\frac{AB^2}{4}}=\sqrt{144-\frac{169}{2}}=\sqrt{\frac{119}{2}}$$.

Найдем длину отрезка SN из прямоугольного треугольника ASB. Можно заметить, что SN - это высота, проведенного из прямого угла, а отрезки AN и BN - это радиусы описанной окружности вокруг треугольника. Следовательно, SN - это тоже радиус и $$SN=NB=\frac{13\sqrt{2}}{2}$$.

Отрезок OK является высотой прямоугольного треугольника SON. Найдем его высоту из формулы площади $$S=\frac{1}{2}\cdot OK\cdot SN\to OK=\frac{2S}{SN}$$, где $$S=\frac{1}{2}OS\cdot ON$$ - формула площади для прямоугольного треугольника, т.е. $$S=\frac{1}{2}\cdot 5\cdot \sqrt{\frac{119}{2}}=\frac{5\sqrt{119}}{2\sqrt{2}}$$ и расстояние OK равно $$OK=\frac{5\sqrt{119}}{\sqrt{2}}\cdot \frac{2}{13\sqrt{2}}=\frac{5\sqrt{119}}{13}$$.

 

Задание 11000

Дан прямой круговой конус с вершиной М. Осевое сечение конуса - треугольник с углом $$120{}^\circ $$ при вершине М. Образующая конуса равна $$2\sqrt{3}$$. Через точку М проведено сечение конуса, перпендикулярное одной из образующих.

А) Докажите, что получившийся в сечении треугольник - тупоугольный

Б) Найдите расстояние от центра О основания конуса до плоскости сечения.

Ответ: $$\frac{\sqrt{3}}{2}$$
 

Задание 12373

Радиус основания конуса равен 12, а высота конуса равна 5.

а) Постройте сечение конуса плоскостью, проходящей через вершину конуса и взаимно перпендикулярные образующие.
б) Найдите расстояние от плоскости сечения до центра основания конуса.
Ответ: $$\frac{5\sqrt{119}}{13}$$
 

Задание 12593

Точки А, В и С лежат на окружности основания конуса с вершиной S, причём А и С диаметрально противоположны. Точка М - середина ВС.

а) Докажите, что прямая SM образует с плоскостью АВС такой же угол, как и прямая АВ с плоскостью SBC.

б) Найдите угол между прямой SA и плоскостью SBC, если $$AB\ =\ 6,\ BC\ =\ 8\ и\ SC\ =\ 5\sqrt{2}.$$

Ответ: $$arcsin\frac{3}{\sqrt{17}}$$
 

Задание 12613

Точки А, В и С лежат на окружности основания конуса с вершиной S, причём А и С диаметрально противоположны. Точка М - середина ВС.

а) Докажите, что прямая SM образует с плоскостью АВС такой же угол, как и прямая АВ с плоскостью SBC.

б) Найдите угол между прямой SA и плоскостью SBC, если $$AB=\ 4,\ BC=\ 6\ и\ SC\ =\ 4\sqrt{2}.$$

Ответ: $$arcsin\sqrt{\frac{19}{46}}$$
 

Задание 12672

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А, В и С, а на окружности другого основания - точка $$C_1$$, причём $$CC_1$$ - образующая цилиндра, а АС - диаметр основания. Известно, что $$\angle ACB\ =\ 45{}^\circ ,\ AB=З\sqrt{2},\ CC_1\ =\ 6.$$

а) Докажите, что угол между прямыми $$AC_1$$ и ВС равен 60$${}^\circ$$. 

б) Найдите расстояние от точки В до прямой $$AC_1$$

Ответ: $$1,5\sqrt{6}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12693

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А, В и С, а на окружности другого основания - точка $$C_1$$, причём $$CC_1$$ - образующая цилиндра, а АС - диаметр основания. Известно, что $$\angle ACB=\ 30{}^\circ $$, $$AB=\sqrt{2}$$ , $${CC}_1=4$$

а) Докажите, что угол между прямыми $$AC_1$$ и ВС равен 60$${}^\circ$$.

б) Найдите площадь боковой поверхности цилиндра.

Ответ: $$8\sqrt{2} \pi $$
 

Задание 12713

Точки А, В и С лежат на окружности основания конуса с вершиной S, причём А и С диаметрально противоположны. Точка М - середина ВС.

а) Докажите, что прямая SM образует с плоскостью АВС такой же угол, как и прямая АВ с плоскостью SBC.

б) Найдите угол между прямой SA и плоскостью SBC, если $$AB=\ 6,\ BC\ =\ 10,\ SC\ =\ 4\sqrt{3}.$$

Ответ: $$arcsin\sqrt{\frac{21}{46}}$$
 

Задание 12733

Высота цилиндра равна 3, а радиус основания равен 13.

а) Постройте сечение цилиндра плоскостью, проходящей параллельно оси цилиндра, так, чтобы площадь этого сечения равнялась 72.

б) Найдите расстояние от плоскости сечения до центра основания цилиндра.

Ответ: 5
 

Задание 14248

В основании пирамиды $$PABC$$ лежит равнобедренный треугольник $$ABC$$ $$(AC=BC)$$. Все боковые ребра пирамиды попарно равны. Точка $$K$$ – середина $$AB$$. В эту пирамиду вписана сфера.

а) Докажите, что точка касания сферы с гранью $$APB$$ лежит на прямой $$PK$$.
б) Найдите радиус сферы, если известно, что $$AB=6$$, $$BC=5$$, $$KP=4$$.
Ответ: $$\frac{15\sqrt{39}}{48+25\sqrt{3}}$$.
 

Задание 14255

В конусе с вершиной в точке $$P$$ высота равна 1, а образующая равна 2. В основании конуса провели диаметр $$CD$$ и перпендикулярную ему хорду $$AB$$. Известно, что хорда $$AB$$ удалена от центра основания на расстояние, равное 1.

а) Докажите, что треугольник $$PAB$$ прямоугольный.
б) Найдите сумму объемов пирамид $$CAPB$$ и $$DAPB$$.
Ответ: $$\frac{2\sqrt6}{3}$$.
 

Задание 14275

В основании прямой призмы $$ABCA_{1}B_{1}C_{1}$$ лежит равнобедренный треугольник $$ABC$$, в котором $$AB=AC$$.

А) Докажите, что объем пирамиды $$A_{1}BCC_{1}B_{1}$$ составляет 2/3 объема призмы.
Б) Найдите радиус сферы, описанной около пирамиды $$A_{1}BCC_{1}B_{1}$$, если известно, что $$AB=5$$, $$BC=6$$, $$AA_{1}=15$$.
Ответ: $$\frac{65}{8}$$