Перейти к основному содержанию

ЕГЭ Профиль

(C4) Планиметрическая задача

Окружности и системы окружностей

 
Аналоги к этому заданию:

Задание 13394

Точки А, В, С, D и Е лежат на окружности в указанном порядке, причём ВС=CD=DE, а AC $$\perp$$ BE. Точка К — пересечение прямых BE и AD.

а) Докажите, что прямая СЕ делит отрезок KD пополам.
б) Найдите площадь треугольника АВК, если AD=4, $$DC=\sqrt{3}$$ .
Ответ: $$\frac{25\sqrt{39}}{64}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 13375

Точки А, В, С, D и Е лежат на окружности в указанном порядке, причём АЕ=ED=CD, а прямые АС и BE перпендикулярны. Отрезки АС и BD пересекаются в точке Т.

а) Докажите, что прямая ЕС пересекает отрезок TD в его середине.
б) Найдите площадь треугольника АВТ, если BD=6, $$AE=\sqrt{6}$$
Ответ: $$\frac{8\sqrt{}5}{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 12715

Точка В лежит на отрезке АС. Прямая, проходящая через точку А, касается окружности с диаметром ВС в точке М и второй раз пересекает окружность с диаметром АВ в точке К. Продолжение отрезка МВ пересекает окружность с диаметром АВ в точке D.

а) Докажите, что прямые AD и МС параллельны.

б) Найдите площадь треугольника DBC, если $$AK\ =\ 3$$ и $$MK\ =\ 12.$$

Ответ: 30
 
Аналоги к этому заданию:

Задание 9510

Две окружности касаются друг друга внешним образом в точке G. Первая окружность с центром в точке Q касается двух параллельных прямых a и b . Вторая ‐ имеет центр в точке О, касается прямой a, а общая касательная окружностей, проходящая через точку G, пересекает прямую в точке D, а прямую ‐ в точке А. Прямая АО перпендикулярна прямым a и b

а) Докажите, что радиусы окружностей относятся как 1:2
б) Найдите площадь четырехугольника AODQ, если радиус большей окружности равен 8.
Ответ: $$72\sqrt{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Аналоги к этому заданию:

Задание 4747

Из середины катета прямоугольного треугольника на его гипотенузу опущен перпендикуляр, длина которого равна 1. Найдите радиус окружности, вписанной в прямоугольный треугольник, если длина одного из его катетов равна 4.

Ответ:
Аналоги к этому заданию:

Задание 4720

Дана окружность радиуса 4 с центром в точке О, расположенной на биссектрисе угла, равного 60°. Найдите радиус окружности, вписанной в данный угол и касающейся данной окружности внешним образом, если известно, что расстояние от точки О до вершины угла равно 10.

Ответ:
Аналоги к этому заданию:

Задание 4719

Окружность радиуса $$6\sqrt{2}$$ вписана в прямой угол. Вторая окружность также вписана в этот угол и пересекается с первой в точках M и N. Известно, что расстояние между центрами окружностей равно 8. Найдите MN.

Ответ:
Аналоги к этому заданию:

Задание 4718

Окружность S проходит через вершину C прямого угла и пресекает его стороны в точках, удаленных от вершины C на расстояния 6 и 8. Найдите радиус окружности, вписанной в данный угол и касающийся окружности S.

Ответ:
Аналоги к этому заданию:

Задание 4717

Прямая касается окружностей радиусов R и r в точках A и B. Известно, что расстояние между центрами равно a причем r

Ответ:
Аналоги к этому заданию:

Задание 4716

Две окружности, радиусы которых равны 9 и 4, касаются внешним образом. Найдите радиус третьей окружности, которая касается двух данных окружностей и их общей внешней касательной.

Ответ:
Аналоги к этому заданию:

Задание 4715

В окружности проведены хорды PQ и CD, причём PQ = PD = CD = 8, CQ = 6. Найдите CP.

Ответ:
Аналоги к этому заданию:

Задание 4714

Окружности радиусов 11 и 21 с центрами O1 и O2 соответственно касаются внешним образом в точке C, AO1 и BO2 — параллельные радиусы этих окружностей, причём ∠AO1O2 = 60°. Найдите AB.

Ответ:
Аналоги к этому заданию:

Задание 4713

Радиусы окружностей с центрами O1 и O2 равны соответственно 1 и 3. Найдите радиус третьей окружности, которая касается двух данных и прямой O1O2, если O1O2 = 14.

Ответ:
Аналоги к этому заданию:

Задание 4712

Расстояния от общей хорды двух пересекающихся окружностей до их центров относятся как 2 : 5. Общая хорда имеет длину $$2\sqrt{3}$$, а радиус одной из окружностей в два раза больше радиуса другой окружности. Найдите расстояние между центрами окружностей.

Ответ:
Аналоги к этому заданию:

Задание 4711

Найдите длину отрезка общей касательной к двум окружностям, заключенного между точками касания, если радиусы окружностей равны 31 и 17, а расстояние между центрами окружностей равно 50.

Ответ:
Аналоги к этому заданию:

Задание 4710

Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих окружностей. Найдите расстояние между центрами окружностей, если BC = 7, BD = 3.

Ответ:
Аналоги к этому заданию:

Задание 4709

Центр O окружности радиуса 4 принадлежит биссектрисе угла величиной 60°. Найдите радиус окружности, вписанной в данный угол и касающейся данной окружности, если известно, что расстояние от точки O до вершины угла равно 10.

Ответ:
Аналоги к этому заданию:

Задание 4708

На стороне прямого угла с вершиной A взята точка O, причём AO = 7. С центром в точке O проведена окружность S радиуса 1. Найдите радиус окружности, вписанной в данный угол и касающейся окружности S.

Ответ:
Аналоги к этому заданию:

Задание 4707

Расстояние между центрами окружностей радиусов 2 и 8 равно 15. Этих окружностей и их общей внутренней касательной касается третья окружность. Найдите её радиус.

Ответ:
Аналоги к этому заданию:

Задание 4706

Окружности радиусов 2 и 3 с центрами O1 и O2 соответственно касаются в точке A. Прямая, проходящая через точку A, вторично пересекает меньшую окружность в точке B, а большую — в точке C. Найдите площадь треугольника BCO2, если ∠ABO1 = 30°.

Ответ: