Перейти к основному содержанию

ЕГЭ Профиль

Стереометрия

Конус

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 1098

В шар вписан конус так, что центр основания конуса совпадает с центром шара. Найдите площадь боковой поверхности конуса, если известно, что площадь поверхности шара равна $$10\sqrt{2}$$

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
Площадь поверхности шара: $$S_1=4\pi R^{2}$$
Площадь боковой поверхности конуса: $$S=\pi R*l$$, где R - радиус шара, а в нашем случае и основания конуса, а l - образующая конуса
OA=OB=R
Значит $$BA = \sqrt{OA^{2}+OB^{2}}=R\sqrt{2}$$. То есть $$l=R\sqrt{2}$$.
Значит площадь боковой поверхности конуса:
$$S=\pi R*R\sqrt{2}=\pi R^{2}\sqrt{2}=\frac{S_{1}\sqrt{2}}{4}=$$
$$\frac{S_{1}\sqrt{2}}{4}=\frac{10*\sqrt{2}\sqrt{2}}{4}=5$$

 

Задание 2493

Площадь основания конуса равна $$16\pi $$, высота – 6. Найдите площадь осевого сечения конуса.

Ответ: 24
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Sосн$$=16\pi=\pi R^{2}\Rightarrow R^{2}=16$$ $$\Rightarrow R=4$$

Sсечен$$=\frac{1}{2}\cdot 8\cdot 6=24$$

 

Задание 3112

Площадь боковой поверхности конуса равна 60. Параллельно основанию конуса проведено сечение, делящее высоту пополам. Найдите площадь боковой поверхности усеченного конуса.

Ответ: 45
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Sверхнего=$$\frac{S}{4}=\frac{60}{4}=15$$ (т.к. $$k=\frac{1}{2}$$; $$\frac{S_{1}}{S_{2}}=k^{2}$$)

$$60-15=45$$

Задание 3918

Объем ко­ну­са равен 16. Через се­ре­ди­ну вы­со­ты па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, ко­то­рое яв­ля­ет­ся ос­но­ва­ни­ем мень­ше­го ко­ну­са с той же вер­ши­ной. Най­ди­те объем мень­ше­го ко­ну­са.

Ответ: 2

Задание 3919

Най­ди­те объем V ко­ну­са, об­ра­зу­ю­щая ко­то­ро­го равна 2 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 30°. В от­ве­те ука­жи­те $$\frac{V}{\pi}$$.

Ответ: 1

Задание 3920

Во сколь­ко раз умень­шит­ся объем ко­ну­са, если его вы­со­та умень­шит­ся в 3 раза, а ра­ди­ус ос­но­ва­ния оста­нет­ся преж­ним?

Ответ: 3

Задание 3921

Во сколь­ко раз уве­ли­чит­ся объем ко­ну­са, если ра­ди­ус его ос­но­ва­ния уве­ли­чит­ся в 1,5 раза, а вы­со­та оста­нет­ся преж­ней?

Ответ: 2,25

Задание 3922

Вы­со­та ко­ну­са равна 6, об­ра­зу­ю­щая равна 10. Най­ди­те его объем, де­лен­ный на $$\pi$$.

Ответ: 128

Задание 3923

Диа­метр ос­но­ва­ния ко­ну­са равен 6, а угол при вер­ши­не осе­во­го се­че­ния равен 90°. Вы­чис­ли­те объем ко­ну­са, де­лен­ный на π.

Ответ: 9

Задание 3924

Конус по­лу­ча­ет­ся при вра­ще­нии рав­но­бед­рен­но­го пря­мо­уголь­но­го тре­уголь­ни­ка ABC во­круг ка­те­та, рав­но­го 6. Най­ди­те его объем, де­лен­ный на $$\pi$$.

Ответ: 72

Задание 3925

Длина окруж­но­сти ос­но­ва­ния ко­ну­са равна 3, об­ра­зу­ю­щая равна 2. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.

Ответ: 3

Задание 3926

Во сколь­ко раз уве­ли­чит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если его об­ра­зу­ю­щая уве­ли­чит­ся в 3 раза, а ра­ди­ус ос­но­ва­ния оста­нет­ся преж­ним?

Ответ: 3

Задание 3927

Во сколь­ко раз умень­шит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если ра­ди­ус его ос­но­ва­ния умень­шит­ся в 1,5 раза, а об­ра­зу­ю­щая оста­нет­ся преж­ней?

Ответ: 1,5

Задание 3928

Вы­со­та ко­ну­са равна 6, об­ра­зу­ю­щая равна 10. Най­ди­те пло­щадь его пол­ной по­верх­но­сти, де­лен­ную на $$\pi$$.

Ответ: 144

Задание 3929

Пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са в два раза боль­ше пло­ща­ди ос­но­ва­ния. Най­ди­те угол между об­ра­зу­ю­щей ко­ну­са и плос­ко­стью ос­но­ва­ния. Ответ дайте в гра­ду­сах.

Ответ: 60

Задание 3930

Пло­щадь пол­ной по­верх­но­сти ко­ну­са равна 12. Па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, де­ля­щее вы­со­ту в от­но­ше­нии 1:1, счи­тая от вер­ши­ны ко­ну­са. Най­ди­те пло­щадь пол­ной по­верх­но­сти отсечённого ко­ну­са.

Ответ: 3

Задание 3931

Ра­ди­ус ос­но­ва­ния ко­ну­са равен 3, вы­со­та равна 4. Най­ди­те пло­щадь пол­ной по­верх­но­сти ко­ну­са, де­лен­ную на $$\pi$$.

Ответ: 24

Задание 3932

Най­ди­те объем V части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те $$\frac{V}{\pi}$$.

Ответ: 87,75

Задание 3933

Най­ди­те объем V части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те $$\frac{V}{\pi}$$.

Ответ: 243

Задание 3934

Най­ди­те объем V части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те $$\frac{V}{\pi}$$.

Ответ: 216

Задание 3935

Най­ди­те объем V части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те $$\frac{V}{\pi}$$.

Ответ: 607,5

Задание 3936

Вы­со­та ко­ну­са равна 4, а диа­метр ос­но­ва­ния — 6. Най­ди­те об­ра­зу­ю­щую ко­ну­са.

Ответ: 5

Задание 3937

Вы­со­та ко­ну­са равна 4, а длина об­ра­зу­ю­щей — 5. Най­ди­те диа­метр ос­но­ва­ния ко­ну­са.

Ответ: 6

Задание 3938

Диа­метр ос­но­ва­ния ко­ну­са равен 6, а длина об­ра­зу­ю­щей — 5. Най­ди­те вы­со­ту ко­ну­са.

Ответ: 4

Задание 3939

В со­су­де, име­ю­щем форму ко­ну­са, уро­вень жид­ко­сти до­сти­га­ет $$\frac{1}{2}$$ вы­со­ты. Объём жид­ко­сти равен 70 мл. Сколь­ко мил­ли­лит­ров жид­ко­сти нужно до­лить, чтобы пол­но­стью на­пол­нить сосуд?

Ответ: 490

Задание 3940

Пло­щадь ос­но­ва­ния ко­ну­са равна 16π, вы­со­та — 6. Най­ди­те пло­щадь осе­во­го се­че­ния ко­ну­са.

Ответ: 24

Задание 3941

Пло­щадь ос­но­ва­ния ко­ну­са равна 18. Плос­кость, па­рал­лель­ная плос­ко­сти ос­но­ва­ния ко­ну­са, делит его вы­со­ту на от­рез­ки дли­ной 3 и 6, счи­тая от вер­ши­ны. Най­ди­те пло­щадь се­че­ния ко­ну­са этой плос­ко­стью.

Ответ: 2

Задание 3942

Вы­со­та ко­ну­са равна 8, а длина об­ра­зу­ю­щей — 10. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

Ответ: 48

Задание 3943

Диа­метр ос­но­ва­ния ко­ну­са равен 12, а длина об­ра­зу­ю­щей — 10. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

Ответ: 48

Задание 3945

Около ко­ну­са опи­са­на сфера (сфера со­дер­жит окруж­ность ос­но­ва­ния ко­ну­са и его вер­ши­ну). Центр сферы сов­па­да­ет с цен­тром ос­но­ва­ния ко­ну­са. Ра­ди­ус сферы равен $$10\sqrt{2}$$. Най­ди­те об­ра­зу­ю­щую ко­ну­са.

Ответ: 20
 

Задание 6082

Площадь боковой поверхности конуса равна 16 см2. Радиус основания конуса уменьшили в 4 раза, а образующую увеличили в 2 раза. Найдите площадь боковой поверхности получившегося конуса. Ответ дайте в см2

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$S=\pi *R*l$$- площадь боковой поверхности конуса. Пусть $$R_{1}$$ и $$l_{1}$$ - радиус и образующая начального конуса , тогда $$S_{1} =\pi*R_{1}*L_{1}$$, и $$R_{2}=\frac{R_{1}}{4}$$; $$L_{2}=2L_{1}$$, где $$R_{2}$$ и $$L_{2}$$ –нового. $$S_{2}=\pi *R_{2}*l_{2}=\pi *\frac{R_{1}}{4}*2*L_{1}=$$$$\frac{1}{2}*\pi *R_{1}*L_{1}=\frac{1}{2}*S_{1}=\frac{1}{2}*16=8$$

 

Задание 6129

В сосуд, имеющий форму конуса, налили 20 мл жидкости до половины высоты сосуда. Сколько жидкости нужно долить в сосуд, чтобы заполнить его доверху?

Ответ: 140
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть $$V_{1}$$- объем жидкости,$$V_{2}$$- объем сосуда.$$r_{1}; h_{1}$$- радиус и высота первого и $$r_{2}; h_{2}$$- второго

Из подобия $$\Delta ABC$$ и $$AB_{1}C_{1}$$:

$$\frac{AB}{AB_{1}}=\frac{1}{2}\Rightarrow$$$$r_{1}=\frac{1}{2}r_{2}$$

$$h_{1}=\frac{1}{2}h_{2}$$

$$V_{1}=\frac{1}{3}\pi r_{1}^{2}h_{1}=$$$$\frac{1}{3}\pi (\frac{1}{2}r_{2})^{2}*\frac{1}{2}*h_{2}=$$$$\frac{1}{8}*\frac{1}{3}\pi r_{2}^{2}h_{2}=\frac{1}{8}V_{2}.$$

Следовательно, $$V_{2}=8V_{1}=160$$, а долить надо 160-20=140.

 
 

Задание 6367

Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть $$V_{1}$$ - объем описанного, $$V_{2}$$ - вписанного. Т.к. высота у них одна, то $$\frac{V_{1}}{V_{2}}=\frac{S_{1}}{S_{2}}$$. Пусть $$a$$-сторона основания (квадрата)

Из квадрата : $$\frac{1}{2}a=R_{2}$$

$$\sqrt{(\frac{a}{2})^{2}+(\frac{a}{2})^{2}}=$$$$\frac{a}{\sqrt{2}}=R_{1}$$

$$\frac{S_{1}}{S_{2}}=(\frac{R_{1}}{R_{2}})^{2}=$$$$(\frac{a}{\sqrt{2}}*\frac{2}{a})^{2}=2$$

 

Задание 7215

В шар вписан конус так, что центр основания конуса совпадает с центром шара. Найдите объем конуса, если объем шара равен 120.

Ответ: 30
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Объем шара $$V=\frac{4}{3} \pi R^{3}=120$$

При этом объем конуса: $$V_{1}=\frac{1}{3}Sh$$, где $$S=\pi R^{2}$$ и $$h=R\Rightarrow$$ $$V_{1}=\frac{1}{3} \pi R^{3}=\frac{V}{4}=30$$

 

Задание 7677

Площадь основания конуса равна 45. Плоскость, параллельная плоскости основания конуса, делит его высоту на отрезки длиной 4 и 8, считая от вершины. Найдите площадь сечения конуса этой плоскостью.

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9482

Площадь боковой поверхности конуса равна 30. Параллельно основанию конуса проведено сечение, делящее высоту в отношении 2:3, считая от вершины конуса. Найдите площадь боковой поверхности отсечённого конуса.

Ответ: 4,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10128

Площадь боковой поверхности конуса равна 16 см2. Радиус основания конуса уменьшили в 4 раза, а образующую увеличили в 2 раза. Найдите площадь боковой поверхности получившегося конуса. Ответ дайте в см2.

Ответ: 8
 

Задание 10385

Полная поверхность усеченного конуса равна $$572\pi$$ м2, а длины радиусов оснований равны 6 м и 14 м. Определить (в метрах) длину высоты усеченного конуса.

Ответ: 15
 

Задание 10435

Площадь основания кругового конуса равна $$64\pi$$ см2.Образующая конуса длиннее его высоты на 2 см. Найти отношение площади боковой поверхности конуса к площади его основания.

Ответ: 2,125
 

Задание 12306

В сосуде, имеющем форму конуса, уровень жидкости достигает 0,25 высоты. Объём жидкости равен 5 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд?

Ответ: 315
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12387

Цилиндр и конус имеют общие основание и высоту. Объём цилиндра равен 162. Найдите объём конуса.

Ответ: 54
 

Задание 12407

Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности цилиндра равна $$27\sqrt{2}.$$ Найдите площадь боковой поверхности конуса.

Ответ: 27
 

Задание 12427

Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём шара равен 188. Найдите объём конуса.

Ответ: 47
 

Задание 12727

Высота конуса равна 12, а длина образующей равна 15. Найдите диаметр основания конуса.

Ответ: 18
 

Задание 12888

Площадь боковой поверхности конуса равна 30. Параллельно основанию конуса проведено сечение, делящее высоту в отношении 2:3, считая от вершины конуса. Найдите площадь боковой поверхности отсечённого конуса.

Ответ: 4,8
 

Задание 13684

Высота конуса равна 18, а длина образующей равна 30. Найдите площадь осевого сечения этого конуса.

Ответ: 432
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13767

Диаметр основания конуса равен 32, а длина образующей равна 20. Найдите площадь осевого сечения этого конуса.

Ответ: 192
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!