Перейти к основному содержанию

ЕГЭ Профиль

Стереометрия

Конус

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 1098

В шар вписан конус так, что центр основания конуса совпадает с центром шара. Найдите площадь боковой поверхности конуса, если известно, что площадь поверхности шара равна $$10\sqrt{2}$$

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
Площадь поверхности шара: $$S_1=4\pi R^{2}$$
Площадь боковой поверхности конуса: $$S=\pi R*l$$, где R - радиус шара, а в нашем случае и основания конуса, а l - образующая конуса
OA=OB=R
Значит $$BA = \sqrt{OA^{2}+OB^{2}}=R\sqrt{2}$$. То есть $$l=R\sqrt{2}$$.
Значит площадь боковой поверхности конуса:
$$S=\pi R*R\sqrt{2}=\pi R^{2}\sqrt{2}=\frac{S_{1}\sqrt{2}}{4}=$$
$$\frac{S_{1}\sqrt{2}}{4}=\frac{10*\sqrt{2}\sqrt{2}}{4}=5$$

 

Задание 2493

Площадь основания конуса равна $$16\pi $$, высота – 6. Найдите площадь осевого сечения конуса.

Ответ: 24
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Sосн$$=16\pi=\pi R^{2}\Rightarrow R^{2}=16$$ $$\Rightarrow R=4$$

Sсечен$$=\frac{1}{2}\cdot 8\cdot 6=24$$

 

Задание 3112

Площадь боковой поверхности конуса равна 60. Параллельно основанию конуса проведено сечение, делящее высоту пополам. Найдите площадь боковой поверхности усеченного конуса.

Ответ: 45
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Sверхнего=$$\frac{S}{4}=\frac{60}{4}=15$$ (т.к. $$k=\frac{1}{2}$$; $$\frac{S_{1}}{S_{2}}=k^{2}$$)

$$60-15=45$$

Задание 3918

Объем ко­ну­са равен 16. Через се­ре­ди­ну вы­со­ты па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, ко­то­рое яв­ля­ет­ся ос­но­ва­ни­ем мень­ше­го ко­ну­са с той же вер­ши­ной. Най­ди­те объем мень­ше­го ко­ну­са.

Ответ: 2

Задание 3919

Най­ди­те объем V ко­ну­са, об­ра­зу­ю­щая ко­то­ро­го равна 2 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 30°. В от­ве­те ука­жи­те $$\frac{V}{\pi}$$.

Ответ: 1

Задание 3920

Во сколь­ко раз умень­шит­ся объем ко­ну­са, если его вы­со­та умень­шит­ся в 3 раза, а ра­ди­ус ос­но­ва­ния оста­нет­ся преж­ним?

Ответ: 3

Задание 3921

Во сколь­ко раз уве­ли­чит­ся объем ко­ну­са, если ра­ди­ус его ос­но­ва­ния уве­ли­чит­ся в 1,5 раза, а вы­со­та оста­нет­ся преж­ней?

Ответ: 2,25

Задание 3922

Вы­со­та ко­ну­са равна 6, об­ра­зу­ю­щая равна 10. Най­ди­те его объем, де­лен­ный на $$\pi$$.

Ответ: 128

Задание 3923

Диа­метр ос­но­ва­ния ко­ну­са равен 6, а угол при вер­ши­не осе­во­го се­че­ния равен 90°. Вы­чис­ли­те объем ко­ну­са, де­лен­ный на π.

Ответ: 9

Задание 3924

Конус по­лу­ча­ет­ся при вра­ще­нии рав­но­бед­рен­но­го пря­мо­уголь­но­го тре­уголь­ни­ка ABC во­круг ка­те­та, рав­но­го 6. Най­ди­те его объем, де­лен­ный на $$\pi$$.

Ответ: 72

Задание 3925

Длина окруж­но­сти ос­но­ва­ния ко­ну­са равна 3, об­ра­зу­ю­щая равна 2. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.

Ответ: 3

Задание 3926

Во сколь­ко раз уве­ли­чит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если его об­ра­зу­ю­щая уве­ли­чит­ся в 3 раза, а ра­ди­ус ос­но­ва­ния оста­нет­ся преж­ним?

Ответ: 3

Задание 3927

Во сколь­ко раз умень­шит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если ра­ди­ус его ос­но­ва­ния умень­шит­ся в 1,5 раза, а об­ра­зу­ю­щая оста­нет­ся преж­ней?

Ответ: 1,5

Задание 3928

Вы­со­та ко­ну­са равна 6, об­ра­зу­ю­щая равна 10. Най­ди­те пло­щадь его пол­ной по­верх­но­сти, де­лен­ную на $$\pi$$.

Ответ: 144

Задание 3929

Пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са в два раза боль­ше пло­ща­ди ос­но­ва­ния. Най­ди­те угол между об­ра­зу­ю­щей ко­ну­са и плос­ко­стью ос­но­ва­ния. Ответ дайте в гра­ду­сах.

Ответ: 60