ЕГЭ Профиль
Задание 3332
В трапеции ABCD BC||AD, ∠ABC=90. Прямая, перпендикулярная стороне CD, пересекает сторону АВ в точке M, а сторону CD – в точке N.
Задание 3863
Площадь трапеции ABCD равна 30. Точка Р - середина боковой стороны АВ. Точка R на боковой стороне CD выбрана так, что $$2CD=3RD$$. Прямые AR и PD пересекаются в точке Q, $$AD=2BC$$.
А) 1) $$RD=\frac{2CD}{3}\Rightarrow CR=\frac{1}{3}CD$$
2) Построим $$AR\cap BC=M$$
$$\Rightarrow\bigtriangleup ARD\sim\bigtriangleup CMR$$ (по 2м углам)
$$\frac{CR}{RD}=\frac{CM}{AD}=\frac{1}{2}$$
$$\Rightarrow$$ $$CM=\frac{1}{2}AD=BC\Rightarrow BM=AD$$
$$\Rightarrow ABMD$$ - параллелограмм
3) Тогда: $$\bigtriangleup APQ\sim\bigtriangleup MQD$$:
$$\frac{AP}{MD}=\frac{AQ}{QM}=\frac{1}{2}$$
$$\Rightarrow AQ=\frac{1}{3}AM$$; $$QM=\frac{2}{3}AM$$
4) из п.2 $$\frac{MR}{AR}=\frac{1}{2}$$ $$\Rightarrow$$ $$MR=\frac{1}{3}AM$$
Тогда $$QR=QM-MR=\frac{2}{3}AM-\frac{1}{3}AM=\frac{1}{3}AM$$
$$\Rightarrow$$ $$AQ=QM$$
ч.т.д.
б) 1) $$S_{ABCD}=30=S$$
т.к. $$BC=CM$$, то $$S_{CMD}=\frac{1}{2}\cdot\frac{1}{2}BM\cdot h$$,
где $$h$$ - высота $$ABMD$$:
$$S_{CMD}=\frac{1}{4}BM\cdot h=\frac{1}{4}S$$
$$\Rightarrow$$ $$S_{ABCD}=\frac{3}{4}S=30$$
$$\Rightarrow S=40$$
2) $$\frac{AQ}{QM}=\frac{1}{2}$$ $$\Rightarrow$$
$$S_{QMD}=\frac{2}{3}S_{AMD}=\frac{2}{3}\cdot\frac{1}{2}S=\frac{40}{3}$$
$$\bigtriangleup APQ\sim\bigtriangleup QMD$$:
$$k=\frac{1}{2}\Rightarrow$$
$$\frac{S_{APQ}}{S_{QMD}}=\frac{1}{4}\Rightarrow$$
$$S_{APQ}=\frac{1}{4}S_{QMD}=\frac{1}{4}\cdot\frac{40}{3}=\frac{10}{3}$$
Задание 4020
Из середины D гипотенузы АВ прямоугольного треугольника АВС проведен луч, перпендикулярный к гипотенузе и пересекающий один из катетов. На нем отложен отрезок DE, длина которого равна половине отрезка АВ. Длина отрезка СЕ равна 1 и совпадает с длиной одного из катетов.
а) 1) Строим окружность с диаметром $$AB\Rightarrow\angle C=90^{\circ}$$
$$AD=DE=R\Rightarrow E$$ лежит на окружности
2) По условию $$BC=CE\Rightarrow$$
$$\angle ACE=\frac{1}{2}\angle ADE=45^{\circ}$$(вписанный угол равен половине центрального, опирающегося на ту же дугу)
б) 1) Т.к. $$\angle СDB=45^{\circ}\Rightarrow \angle CAB=22,5=\frac{45}{2}$$
$$\tan A=\frac{BC}{AC}\Leftrightarrow\tan\frac{45}{2}=\frac{1}{AC}$$
$$\tan 45=\tan2\cdot\frac{45}{2}=\frac{2\tan\frac{45}{2}}{1-\tan^{2}\frac{45}{2}}$$
2) Пусть $$\tan\frac{45}{2}=x$$
$$1=\frac{2x}{1-x^{2}}\Leftrightarrow$$
$$1-x^{2}=2x\Leftrightarrow$$
$$x^{2}+2x-1=0$$
$$D=4+4=8$$
$$x_{1}=\frac{-2+\sqrt{8}}{2}=\sqrt{2}-1$$
$$x_{2}=\frac{-2-\sqrt{8}}{2}=-\sqrt{2}-1$$
$$AC=1\div\tan\frac{45}{2}=\frac{1}{\sqrt{2}-1}$$
3) $$S_{ABC}=\frac{1}{2}\cdot\frac{1}{\sqrt{2}-1}=\frac{\sqrt{2}+1}{2(\sqrt{2}^{2}-1^{2})}=\frac{1+\sqrt{2}}{2}$$
Задание 4575
Треугольник АВС (АВ<АC) вписан в окружность. На стороне АС отмечена точка Е так, что АЕ=АВ. Серединный перпендикуляр к отрезку СЕ пересекает дугу ВС, не содержащую точки А, в точке К.
Задание 4598
Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.
Задание 4599
В треугольнике АВС проведена биссектриса АМ. Прямая, проходящая через вершину В перпендикулярно АМ, пересекает сторону АС в точке N. АВ = 6; ВС = 5; АС = 9.
Задание 4600
Две окружности касаются внутренним образом. Третья окружность касается первых двух и их линии центров.
Задание 4602
Медианы АА1 и ВВ1 и CC1 треугольника ABC пересекаются в точке М. Точки А2, В2 и С2 — середины отрезков MA, MB и МС соответственно.
Задание 4606
Точка О — центр окружности, вписанной в треугольник ABC. На продолжении отрезка AO за точку О отмечена точка K так, что BK = OK.
Задание 4607
Точка О — центр окружности, описанной около остроугольного треугольника ABC. На продолжении отрезка AO за точку О отмечена точка K так, что $$\angle BAC + \angle AKC = 90$$
Задание 4608
В прямоугольном треугольнике ABC с прямым углом C известны стороны AC = 12, BC = 5. Окружность радиуса $$\frac{1}{2}$$ с центром O на стороне BC проходит через вершину C. Вторая окружность касается катета AC, гипотенузы треугольника, а также внешним образом касается первой окружности.
Задание 4609
Окружность с центром O проходит через вершины B и C большей боковой стороны прямоугольной трапеции ABCD и касается боковой стороны AD в точке T. Точка O лежит внутри трапеции ABCD.
Задание 4610
Окружность, построенная на медиане BM равнобедренного треугольника ABC как на диаметре, второй раз пересекает основание BC в точке K.
Задание 4611
Дана равнобедренная трапеция KLMN с основаниями KN и LM. Окружность с центром O, построенная на боковой стороне KL как на диаметре, касается боковой стороны MN и второй раз пересекает большее основание KN в точке H, точка Q — середина MN.
Задание 4613
Отрезок, соединяющий середины M и N оснований BC и AD соответственно трапеции ABCD, разбивает её на две трапеции, в каждую из которых можно вписать окружность.
Задание 4614
На отрезке BD взята точка C. Биссектриса BL равнобедренного треугольника ABC с основанием BC является боковой стороной равнобедренного треугольника BLD с основанием BD.
Задание 4618
Две окружности пересекаются в точках P и Q. Прямая, проходящая через точку P, второй раз пересекает первую окружность в точке A, а вторую — в точке D. Прямая, проходящая через точку Q параллельно AD, второй раз пересекает первую окружность в точке B, а вторую — в точке C.
Задание 4619
На диагонали параллелограмма взяли точку, отличную от её середины. Из неё на все стороны параллелограмма (или их продолжения) опустили перпендикуляры.
Задание 4620
В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона FH лежит на отрезке BC, а вершина E — на отрезке AB.
Задание 4623
В остроугольном треугольнике ABC провели высоту BH из точки H на стороны AB и BC опустили перпендикуляры HK и HM соответственно.
а) Докажите, что треугольник MBK подобен треугольнику ABC.
б) Найдите отношение площади треугольника MBK к площади четырёхугольника AKMC, если BH = 2, а радиус окружности, описанной около треугольника ABC равен 4.
Задание 4624
На сторонах AD и BC параллелограмма ABCD взяты соответственно точки M и N , причём M — середина AD, а BN : NC = 1 : 3.
Задание 4625
Точка M — середина стороны AD параллелограмма ABCD . Из вершины A проведены два луча, которые разбивают отрезок BM на три равные части.
Задание 4626
Окружность с центром O, вписанная в треугольник ABC, касается стороны BC в точке P и пересекает отрезок BO в точке Q. При этом отрезки OC и QP параллельны.
Задание 4627
Около равнобедренного треугольника ABC с основанием BC описана окружность. Через точку C провели прямую, параллельную стороне AB. Касательная к окружности, проведённая в точке B, пересекает эту прямую в точке K.
Задание 4671
Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Известно, что $$\angle BAC = \angle OBC + \angle OCB$$
Задание 4672
Прямая, проходящая через вершину В, прямоугольника ABCD, перпендикулярная диагонали АС и пересекает сторону АD в точке M, равноудаленной от вершин В и D.
а) Докажите, что ∠ABM = ∠DBC = ∠MBD.
б) Найдите расстояние от точки О, точки пересечения диагоналей, до отрезка СМ, если BC = 42.
Задание 4673
Одна окружность вписана в прямоугольную трапецию, а вторая касается большей боковой стороны и продолжений оснований.
а) Докажите, что расстояние между центрами окружностей равно большей боковой стороне трапеции.
б) Найдите расстояние от вершины одного из прямых углов трапеции до центра второй окружности, если точка касания первой окружности с большей боковой стороной трапеции делит её на отрезки, равные 2 и 50.
Задание 4674
К двум непересекающимся окружностям равных радиусов проведены две параллельные общие касательные. Окружности касаются одной из этих прямых в точках A и B/ Через точку C, лежащую на отрезке AB, проведены касательные к этим окружностям, пересекающие вторую прямую в точках D и E, причём отрезки CA и CD касаются одной окружности, а отрезки CB и CE — другой.
а) Докажите, что периметр треугольника CDE вдвое больше расстояния между центрами окружностей.
б) Найдите DE, если радиусы окружностей равны 5, расстояние между их центрами равно 18, а AC = 8.
Задание 4676
К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно.
а) Докажите, что периметр треугольника AMN равен стороне квадрата.
б) Прямая MN пересекает прямую CD в точке P. В каком отношении делит сторону BC прямая, проходящая через точку P и центр окружности, если AM : MB = 1 : 3?
Задание 4677
Точка M лежит на стороне BC выпуклого четырёхугольника ABCD, причём B и C — вершины равнобедренных треугольников с основаниями AM и DM соответственно, а прямые AM и MD перпендикулярны.
а) Докажите, что биссектрисы углов при вершинах B и C четырёхугольника ABCD, пересекаются на стороне AD.
б) Пусть N — точка пересечения этих биссектрис. Найдите площадь четырёхугольника ABCD, если известно, что BM : MC = 3 : 4, а площадь четырёхугольника, стороны которого лежат на прямых AM, DM, BN и CN, равна 24.
Задание 4679
В треугольнике АВС угол АВС равен 60°. Окружность, вписанная в треугольник, касается стороны AC в точке M.
а) Докажите, что отрезок BM не больше утроенного радиуса вписанной в треугольник окружности.
б) Найдите $$\sin \angle BMC$$ если известно, что отрезок ВМ в 2,5 раза больше радиуса вписанной в треугольник окружности.
Задание 4680
В трапеции ABCD точка E — середина основания AD, точка M — середина боковой стороны AB. Отрезки CE и DM пересекаются в точке O.
а) Докажите, что площади четырёхугольника AMOE и треугольника COD равны.
б) Найдите, какую часть от площади трапеции составляет площадь четырёхугольника AMOE, если BC = 3, AD = 4.
Задание 4682
Дана трапеция ABCD с боковой стороной AB, которая перпендикулярна основаниям. Из точки А на сторону CD опущен перпендикуляр AH. На стороне AB взята точка E так, что прямые СЕ и СD перпендикулярны.
а) Доказать, что прямые BH и ED параллельны.
б) Найти отношение BH к ED, если $$\angle BCD = 135^{\circ}$$
Задание 4683
В прямоугольном треугольнике АВС с прямым углом С точки М и N — середины катетов АС и ВС соответственно, СН — высота.
а) Докажите, что прямые МН и NH перпендикулярны.
б) Пусть Р — точка пересечения прямых АС и NH, а Q — точка пересечения прямых BC и МН. Найдите площадь треугольника PQM, если АН = 12 и ВН = 3.
Задание 4685
Сторона CD прямоугольника ABCD касается некоторой окружности в точке M. Продолжение стороны AD пересекает окружность в точках P и Q, причём точка P лежит между точками D и Q. Прямая BC касается окружности, а точка Q лежит на прямой BM.
а) Докажите, что ∠DMP = ∠CBM.
б) Известно, что CM = 17 и CD = 25. Найдите сторону AD.
Задание 4686
В прямоугольном треугольнике ABC точки M и N — середины гипотенузы AB и катета BC соответственно. Биссектриса угла BAC пересекает прямую MN в точке L.
а) Докажите, что треугольники AML и BLC подобны.
б) Найдите отношение площадей этих треугольников, если $$\cos \angle BAC = \frac{7}{25}$$
Задание 4687
Окружность с центром O вписана в угол, равный 60°. Окружность большего радиуса с центом O1 также вписана в этот угол и проходит через точку O.
Задание 4688
Точки B1 и C1 лежат на сторонах соответственно AC и AB треугольника ABC, причём AB1 : B1C = AC1 : C1B. Прямые BB1 и CC1 пересекаются в точке O.
Задание 4689
На катетах AC и BC прямоугольного треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M — середина гипотенузы AB, H — точка пересечения прямых CM и DK.
а) Докажите, что $$CM \perp DK$$.
б) Найдите MH, если известно, что катеты треугольника ABC равны 130 и 312.
Задание 4691
Точки P, Q, W делят стороны выпуклого четырехугольника ABCD в отношении AP : PB = CQ : QB = CW : WD = 3 : 4, радиус окружности, описанной около треугольника PQW, равен 10, PQ = 16, QW = 12, угол PWQ — острый.
а) Докажите, что треугольник PQW — прямоугольный.
б) Найдите площадь четырёхугольника ABCD.
Задание 4692
Параллелограмм и окружность расположены так, что сторона AB касается окружности, CD является хордой, а стороны DA и BC пересекают окружность в точках P и Q соответственно.
а) Докажите, что около четырехугольника ABQP можно описать окружность.
б) Найдите длину отрезка DQ, если известно, что AP = a, BC = b, BQ = c.
Задание 4695
Точка M — середина гипотенузы AB прямоугольного треугольника ABC. Серединный перпендикуляр к гипотенузе пересекает катет BC в точке N.
а) Докажите, что ∠CAN = ∠CMN.
б) Найдите отношение радиусов окружностей, описанных около треугольников ANB и CBM, если $$ tg \angle BAC =\frac{4}{3}$$
Задание 4696
Точка E — середина боковой стороны CD трапеции ABCD. На стороне AB взяли точку K, так, что прямые CK и AE параллельны. Отрезки CK и BE пересекаются в точке O.
а) Докажите, что CO = KO.
б) Найти отношение оснований трапеции BC и AD, если площадь треугольника BCK составляет $$\frac{9}{100}$$ площади трапеции ABCD.
Задание 4697
Две окружности с центрами O1 и O2 пересекаются в точках A и B, причём точки O1 и O2 лежат по разные стороны от прямой AB. Продолжения диаметра CA первой окружности и хорды CB этой окружности пересекают вторую окружности в точках D и E соответственно.
Задание 4699
Две окружности касаются внутренним образом в точке A, причём меньшая окружность проходит через центр O большей. Диаметр BC большей окружности вторично пересекает меньшую окружность в точке M, отличной от A. Лучи AO и AM вторично пересекают большую окружность в точках P и Q соответственно. Точка C лежит на дуге AQ большей окружности, не содержащей точку P.
а) Докажите, что прямые PQ и BC параллельны.
б) Известно, что $$\sin \angle AOC = \frac{\sqrt{15}}{4}$$ Прямые PC и AQ пересекаются в точке K. Найдите отношение QK : KA
Задание 4701
В трапеции АBCD угол BAD прямой. Окружность, построенная на большем основании АD как на диаметре, пересекает меньшее основание BC в точке C и M.
а) Докажите, что угол BАM равен углу CАD.
б) Диагонали трапеции АBCD пересекаются в точке O. Найдите площадь треугольника АOB, если АB = 6, а BC = 4BM.
Задание 4774
В треугольнике АВС точка D есть середина АВ, точка Е лежит на стороне ВС, причем $$BE=\frac{1}{3}AC$$ . Отрезки АЕ и CD пересекаются в точке О.
Задание 4865
Задание 4916
АК ‐ биссектриса треугольника АВС, причем ВК:КС=2:7. Из точек В и К проведены параллельные прямые, которые пересекают сторону АС в точках D и F соответственно, причем AD:FC=3:14
Задание 5011
На стороне ВС треугольника АВС отмечена точка К. Оказалось, что отрезок АК пересекает медиану ВD в точке Е так, что АЕ=ВС.
а) 1) По т. Менелая: $$\frac{AE}{EK}\cdot\frac{BK}{BC}\cdot\frac{CD}{DA}=1$$; $$AE=BC$$; $$CD=DA$$ $$\Rightarrow$$ $$\frac{BK}{EK}\cdot\frac{1}{1}\cdot\frac{1}{1}=1$$ $$\Rightarrow$$ $$BK=EK$$
ч.т.д.
б) 1) Пусть $$BK=EK=x$$; $$AK=7+x$$; $$KC=7-x$$; $$AC=8$$
$$\bigtriangleup ABC$$: $$\cos C=\frac{AC^{2}+BC^{2}-AB^{2}}{2AC\cdot BC}=\frac{64+49-169}{2\cdot8\cdot7}=-\frac{1}{2}$$ $$\Rightarrow$$ $$\angle C=120^{\circ}$$; $$\bigtriangleup AKC$$: $$AK^{2}=AC^{2}+KC^{2}-2AC\cdot KC\cdot\cos C$$ $$\Leftrightarrow$$ $$(7+x)^{2}=8^{2}+(7-x)^{2}-2\cdot8\cdot(7-x)(-\frac{1}{2})$$; $$49+14x+x^{2}=64+49-14x+x^{2}+56-8x$$; $$36x=120$$ $$\Leftrightarrow$$ $$x=\frac{120}{36}=\frac{10}{3}$$ $$\Rightarrow$$ $$KC=7-\frac{10}{3}=\frac{11}{3}$$;
2) По т. Менелая: $$\frac{BE}{ED}\cdot\frac{AD}{AC}\cdot\frac{CK}{KB}=1$$; $$\frac{BE}{ED}\cdot\frac{4}{8}\cdot\frac{11}{3}\cdot\frac{3}{10}=1$$; $$\frac{BE}{ED}=\frac{20}{11}$$ $$\Rightarrow$$ $$\frac{BE}{ED}=\frac{20}{31}$$
3) $$\frac{S_{BEK}}{S_{BDC}}=\frac{BE\cdot BK}{BD\cdot BC}=\frac{20}{31}\cdot\frac{10}{3\cdot7}=\frac{200}{651}$$ $$\Rightarrow$$ $$S_{BEK}=\frac{200}{651}S_{BDC}$$ $$\Rightarrow$$ $$S_{DEKC}=\frac{451}{651}S_{BDC}$$;
4) $$S_{BDC}=\frac{1}{2}S_{ABC}=\frac{1}{2}\cdot\frac{1}{2}\cdot8\cdot7\cdot\frac{\sqrt{3}}{2}=7\sqrt{3}$$; $$S_{DEKC}=\frac{451\cdot7\sqrt{3}}{651}=\frac{451\sqrt{3}}{93}$$
Задание 5059
Дана трапеция ABCD с основаниями AD и ВС. Диагонали АС и BD пересекаются в точке О, а прямые АВ и CD – в точке К. Прямая КО пересекает стороны ВС и AD в точках М и N соответственно, и угол BAD равен $$30^{\circ}$$. Известно, что в трапеции ABMN и NMCD можно вписать окружность.
А) 1) $$AB\cap DC=K$$; $$AC\cap DB=O$$. По замечательному свойству трапеции середины AD и BC лежат на прямой $$KO\Rightarrow$$ M и N – середины BC и AD. По условию в трапеции ABMN и NMCD можно вписать окружность $$\Rightarrow$$ $$\left\{\begin{matrix}BM+AN=AB+MN\\MC+ND=CD+MN\end{matrix}\right.$$. А так как BM=MC, AC=ND, AB=CD, ABCD -равнобедренная трапеция. Тогда $$\Delta AKD$$ - равнобедренный и $$\angle AKD=120$$ - тупой угол
Б) 1) Пусть AD=a, BC=b; $$\frac{S_{AKD}}{S_{BKC}}=(\frac{a}{b})^{2}\Rightarrow$$ $$S_{AKD}=(\frac{a}{b})^{2}S_{BKC}$$; $$S_{ABCD}=S_{AKD}-S_{BKC}=(\frac{a}{b})^{2}S_{BKC}=((\frac{a}{b})^{2}-1)S_{BKC}$$. Тогда $$\frac{S_{BKC}}{S_{ABCD}}=\frac{1}{(\frac{a}{b})^{2}-1}$$
2) $$AB+MN=BM+AN=\frac{a+b}{2}$$;$$MN=BF=\frac{1}{2}AB$$, т.к. $$MN\perp AD \angle BAD=30\Rightarrow$$ $$\frac{3}{2}AB=\frac{a+b}{2}$$, откуда $$AB=\frac{a+b}{3}$$.
3) С другой стороны $$AB=\frac{AF}{\cos 30}=\frac{a-b}{2}:\frac{\sqrt{3}}{2}=\frac{a-b}{\sqrt{3}}$$
4) Тогда $$\frac{a+b}{3}=\frac{a-b}{\sqrt{3}}$$, откуда найдем $$\frac{a}{b}=\frac{\sqrt{3}+1}{\sqrt{3}-1}$$
5) $$\frac{S_{BKC}}{S_{ABCD}}=\frac{1}{(\frac{\sqrt{3}+1}{\sqrt{3}-1})^{2}-1}=$$$$\frac{(\sqrt{3-1})^{2}}{(\sqrt{3}+1)^{2}-(\sqrt{3}-1)^{2}}=$$$$\frac{4-2\sqrt{3}}{2*2\sqrt{3}}=$$$$\frac{2-\sqrt{3}}{2\sqrt{3}}=\frac{2\sqrt{3}-3}{6}$$
Задание 6043
На диагонали LN параллелограмма KLMN отмены точки Р и Q, причем LP=PQ=QN
а)1) Построим MQ:NQ=PL;
$$NM=KL \angle QLM=\angle KLP\Rightarrow \Delta KLP=\Delta QMN$$ и $$MQ=KP$$
2)Аналогично, построим MP из равенства $$\Delta LMP$$ и $$\Delta KQN$$ MP=KQ;
3)из п.1 и п.2= KPMQ-паралелограмм $$\Rightarrow MP\left | \right |KQ$$,тогда по т. Фалеса т.к. PQ=QN, то MS=SN , аналогично : $$\angle P=PQ$$, тогда $$\angle R=RM$$;
б )1) Пусть $$S_{KLMN}=S$$,тогда $$S_{MLN}=\frac{1}{2}*S$$.
2) $$\frac{S_{RLP}}{S_{MLN}}=\frac{RL*LP}{ML*LN}=$$$$\frac{\frac{1}{2}*ML*\frac{1}{3}*LN}{ML*LN}=$$$$\frac{1}{6}\Rightarrow S_{RLP}=\frac{1}{6}*S_{MLN}$$.
3)Аналогично п2: $$S_{QNS}=\frac{1}{6}*S_{MNL}\Rightarrow S_{MRPQS}=S_{MLN}-2*\frac{1}{6}*S_{MNK}=$$$$\frac{2}{3}*S_{MKN}=\frac{1}{2}*\frac{2}{3}*S=\frac{1}{3}*S$$.
4)$$\frac{S_{KLMN}}{S_{MRPQS}}=\frac{1}{3}*S=\frac{3}{1}$$
Задание 6090
В четырехугольнике ABCD диагонали AC и BD пересекаются в точке K. Точки L и M являются соответственно серединами сторон BC и AD . Отрезок LM содержит точку K . Четырехугольник ABCD таков, что в него можно вписать окружность.
А) 1)Пусть BC не параллельна AD. Построим $$a \left | \right |AD ;a\cap AD=P$$; $$MK\cap BP=L_{1}$$ и $$BL_{1}=L_{1}P$$ (свойство трапеции)
2) $$BL=LC; BL_{1}=L_{1}P\Rightarrow LL_{1}$$-средняя линия. $$\Delta BCP$$ и $$LL_{1}\left | \right |PC$$ и $$LM\left | \right |AC$$, но $$LM\cap AC=K\Rightarrow BC\left | \right |AP ABCD$$-трапеция.
б) 1) $$\Delta BCK\sim \Delta AKD\Rightarrow \frac{LK}{KM}=\frac{BC}{AD}=\frac{1}{3}$$ Пусть BC=x; AD=3x.
2)Т.к. окружность можно вписать ,то $$AD+BC=AB+CD\Rightarrow CD=4x-3$$
3) Из C проведем $$CQ\left | \right |AB(CQ\cap AD=Q)$$, $$CQ=AB=3 BC=AQ=x\Rightarrow QD=2x$$.
4)Из $$\Delta ADC$$: $$\cos\angle D=\frac{3x^{2}+(4x-3)^{2}-13}{2*3x(4x-3)}$$
Из $$\Delta QDC$$: $$\cos\angle D=\frac{(2x)^{2}+(4x-3)^{2}-9}{2*2x*(4x-3)}$$
$$\frac{9x^{2}+(4x-3)^{2}-13}{2*3x(4x-3)}=$$$$\frac{4x^{2}+(4x-3)-9}{2*2x(4x-3)}\Leftrightarrow$$$$\frac{25x^{2}-24x-4}{3}=\frac{20x^{2}-24x}{2}\Leftrightarrow$$$$25x^{2}-24x-4=30x^{2}-36x\Leftrightarrow$$$$5x^{2}-12x+4=0\Leftrightarrow$$$$\left [\begin{matrix}x_{1}=2 & & \\x_{2}=0,4 & &\end{matrix}\right.$$
Т. К. 4x-3> 0, то $$x_{2}$$ не подходит $$\Rightarrow x=2$$, тогда BC=2 QD=4 CD=5.
5 ) Из $$\Delta QCD: QC^{2}+QD^{2}=3^{2}+4^{2}=25=CD^{2}\Rightarrow \Delta QCD$$- прямоугольный $$QC\perp AP\Rightarrow r=\frac{1}{2}*QC=1,5$$.
Задание 6137
Точка M пересечения медиан треугольника ABC , вершина A и середины сторон AB и AC лежат на одной окружности.
a)1) Пусть $$CM\cap AB=Q; BM\cap AC=P$$, тогда QP-средняя линия $$\Rightarrow QP\left | \right |BC\Rightarrow \Delta QPM\sim \Delta BMC \angle BPQ=\angle PBC$$
2) $$\angle QPM=\angle QAM$$(вписанные и опираются на одну дугу)$$\Rightarrow \angle QAM=\angle MBK \angle BKA$$-общий $$\Rightarrow \Delta ABK\sim \Delta MBK$$.
b)1)Пусть MK=x,тогда по свойству имеем MA=2x.Из подобия $$\Delta ABK$$ и $$\Delta MBK$$
$$\frac{BK}{KM}=\frac{AK}{BK}\Rightarrow BK^{2}=AK*KM.$$
2)$$BK=\frac{1}{2}BC=3\sqrt{3}$$,тогда $$(3\sqrt{3})^{2}=3x*x\Rightarrow$$ x=3,тогда AK=9.
Задание 6375
В треугольнике АВС угол С тупой, а точка D выбрана на продолжении АВ за точку В так, что $$\angle ACD=135$$ точка D' симметрична точке D относительно прямой ВС, точка D'' симметрична точке D’ относительно прямой АС и лежит на прямой ВС. Известно, что $$\sqrt{3}BC=CD''$$, AC=6.
A) 1) Пусть $$\angle {D}'CO=\alpha$$ .Т.к. $${D}'Q=QD$$, CQ-общая и $$\angle {D}'QC=90$$, то $$\Delta C{D}'Q=\Delta CQD$$ и $$\angle QCD=\alpha$$
2) из $$\Delta ACD :\angle ACB=135-\alpha$$
$$\angle AC{D}'=135-2\alpha =\angle {D}''CA$$(аналогично п.1)
$$\angle {D}''CA+ACQ=180$$
$$135-2\alpha +135-\alpha =180$$
$$3\alpha =90\Leftrightarrow$$ $$\alpha=30$$
3) Пусть $${D}''C=x$$, тогда $$C{D}'=x=CD$$.Т.к. $$\angle {D}'CD=2\alpha=60$$ и $$C{D}'=CD$$, $$\Delta C{D}'D$$-равносторонний .Тогда $$CQ=C{D}'\sin 60=\frac{\sqrt{3x}}{2}$$
4) $$BC=\frac{C{D}''}{\sqrt{3}}=\frac{\sqrt{3}x}{3}$$.Тогда $$BQ=CQ-CB=$$$$\frac{\sqrt{3}x}{2}-\frac{\sqrt{3}x}{3}=\frac{\sqrt{3}x}{6}$$, $$\frac{CB}{BQ}=\frac{\sqrt{3}x}{3}:\frac{\sqrt{3}x}{6}=2:1$$
а т.к. $$CQ\perp DB$$, то CQ- медиана, тогда B-точка пересечения медиан $$\Rightarrow CN\perp C{D}'$$ и $$\angle BDC=\angle BD{D}'\Rightarrow$$ $$\Delta CBD$$-равнобедренный.
Б) 1) $$\angle ACB=135-\alpha=105$$ , $$\angle ABC=180-120=60.$$
По т. Синусов из $$\Delta ACB$$: $$\frac{AC}{\sin \beta }=\frac{OB}{\sin \alpha }\Leftrightarrow$$ $$CB=\frac{6*\sin 15}{\sin 60}=4\sqrt{3}\sin 15$$
2) $$S_{ABC}=\frac{1}{2}AC*CB*\sin C=$$$$\frac{1}{2}*6*4\sqrt{3}\sin 15 *\sin 105=$$$$12\sqrt{3}*\sin 15*\cos 15=$$$$12\sqrt{3}*\frac{1}{2}*\sin 30=3\sqrt{3}$$
Задание 6470
В треугольнике АВС на сторонах АВ и ВС расположены точки Е и D соответственно так, что AD – биссектриса треугольника АВС, DE – биссектриса треугольника ABD, AE=ED=9/16, CD=3/4.
A) 1) $$\angle EAD=\angle DAC$$(AD-биссектриса ), $$AE=ED\Rightarrow$$ $$\angle EAD=\angle EDA\Rightarrow$$ $$\angle EDA=\angle DAC$$, $$ED\left | \right |AC$$
2) из п.1 $$\Delta EBD\sim \Delta ABC\Rightarrow$$ $$\angle BDE=\angle BCA$$.Но $$\angle BDC=\angle EDA=\angle DAC$$, тогда $$\angle DCA=\angle DAC\Rightarrow$$ $$AD=DC=\frac{3}{4}$$
3) $$\frac{EA}{AD}=\frac{AD}{AC}\Rightarrow$$ $$AC=\frac{AD^{2}}{EA^{2}}=$$$$\frac{(\frac{3}{4})^{2}}{\frac{9}{16}}=1$$
Б) 1) Пусть EB=x; BD=y. Из подобия п.2 :
$$\left\{\begin{matrix}\frac{EB}{AB}=\frac{ED}{AC}\\\frac{BD}{DC}=\frac{ED}{AC}\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\frac{x}{\frac{9}{16}+x}=\frac{\frac{9}{16}}{1}\\\frac{y}{y+\frac{3}{4}}=\frac{\frac{9}{16}}{1}\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}16x=9x+\frac{81}{16}\\16y=9y+\frac{27}{4}\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x=\frac{81}{7*16}\\y=\frac{27}{4*7}\end{matrix}\right.$$
Тогда: $$AB=\frac{9}{16}+\frac{81}{7*16}=$$$$\frac{63+81}{7*16}=\frac{9}{7}$$
$$BC=\frac{3}{4}+\frac{27}{4*7}=$$$$\frac{21+27}{4*7}=\frac{12}{7}$$
2) $$S=\sqrt{p(p-a)(p-b)(p-c)}$$
$$p=\frac{1+\frac{9}{7}+\frac{12}{7}}{2}=2$$
$$S=\sqrt{2(2-\frac{9}{7}(2-\frac{12}{7})(2-1)}=$$$$\frac{2}{7}\sqrt{5}$$
Задание 7223
Площадь трапеции ABCD равна 6. Пусть Е – точка пересечения продолжений боковых сторон этой трапеции. Через точку Е и точку пересечения диагоналей трапеции проведена прямая, которая пересекает меньшее основание ВС в точке Р, а большее основание AD – в точке Q. Точка F лежит на отрезке ЕС, причем EF:FC=EP:EQ=1:3.
A) 1) Пусть P и Q не середины . $$\Delta PMC\sim \Delta AMQ$$$$\Rightarrow$$ $$\frac{PC}{AQ}=\frac{PM}{MQ}(1)$$
$$\Delta BPM\sim \Delta MQD\Rightarrow$$$$\frac{BP}{QD}=\frac{PM}{MQ}(2)$$
$$\Delta EPC\sim \Delta EQD\Rightarrow$$$$\frac{PC}{QD}=\frac{EP}{EQ}(3)$$
$$\Delta EBP\sim \Delta EAQ\Rightarrow$$$$\frac{BP}{AQ}=\frac{EP}{EQ}(4)$$
2) из (1) и (2) : $$\frac{PC}{AQ}=\frac{BP}{QD}(*)$$; Из (3) и (4) : $$\frac{PC}{QD}=\frac{BP}{AQ}(**)$$
Поделим (*) на (**): $$\frac{QD}{AQ}=\frac{AQ}{QD}\Rightarrow$$ $$QD=AQ\Rightarrow BP=PC$$
Б) 1) т.к. BP=PC и AQ=QD, то $$S_{BPQA}=S_{PCDQ}=\frac{S_{ABCD}}{2}=3$$
2) $$\frac{S_{ECP}}{S_{EDQ}}=$$$$(\frac{EP}{EQ})^{2}=$$$$\frac{1}{9}\Rightarrow$$ $$S_{ECP}=\frac{1}{9} S_{EDQ}$$ $$\Rightarrow$$$$S_{PCDQ}=\frac{8}{9}*S_{EDQ}\Rightarrow$$$$S_{ECP}=\frac{1}{8} S_{PCDQ}=\frac{3}{8}$$
3) $$\frac{S_{EFP}}{S_{ECP}}=\frac{EF*EP}{EC*EP}=$$$$\frac{1}{4}\Rightarrow$$ $$S_{EFP}=\frac{1}{4}*\frac{3}{8}=\frac{3}{32}$$
Задание 7784
В прямоугольном треугольнике ABC точка М – середина гипотенузы АВ, ВС>АС. На катете ВС взята точка К такая, что $$\angle$$MKC=$$\angle$$BAC
Задание 8239
В трапеции ABCD отношение оснований $$\frac{AD}{BC}=\frac{5}{2}$$. Точка М лежит на АВ, площадь трапеции ABCD равна 20.
А) 1) Пусть $$BC=2x$$, тогда $$AD=5x$$; $$MN=y\cdot k$$; $$NH\perp BC$$ и $$NH\pepr AD$$ $$\Rightarrow$$ $$\bigtriangleup NBM\sim\bigtriangleup AMH$$. Пусть $$\frac{BM}{MA}=k$$ $$\Rightarrow$$ $$MH=y$$. Пусть $$NH=h=y(k+1)$$
2) $$S_{ABCD}=\frac{2x+5x}{2}\cdot y(k+1)=3,5xy(k+1)=20=3/5xh$$
$$S_{BCM}=\frac{1}{2}2x\cdot ky=xky$$. $$S_{AMD}=\frac{1}{2}5x\cdot y=2,5xy$$
Тогда $$S_{CMD}=3,5xy(k+1)-xky-2,5xy=2,5kxy+xy=1,5kxy+xy(k+1)=1,5kxy+\frac{20}{3,5}$$
3) Учтем, что $$xky\rightarrow max$$, когда $$ky=h$$ $$\Rightarrow$$ $$max(S_{BCM})=xh=\frac{20}{3,5}$$ $$\Rightarrow$$ $$max(S_{CMD})=\frac{1,5\cdot20}{3,5}+\frac{20}{3,5}=\frac{50}{3,5}=\frac{100}{7}<1,5$$
Б) 1) $$S_{MCD}=9$$ $$\Rightarrow$$ $$S_{MBC}+S_{AMD}=11$$ $$\Rightarrow$$ $$\left\{\begin{matrix}xky+2,5xy=11&\\3,5xy(k+1)=20&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}xy(k+2,5)=11(1)&\\xy(3,5k+3,5)=20(2)&\end{matrix}\right.$$
Поделим $$(1)$$ на $$(2)$$: $$\frac{k+2,5}{3,5k+3,5}=\frac{11}{20}$$ $$\Leftrightarrow$$ $$20k+50=38,5k+38,5$$
$$18,5k=11,5$$ $$\Rightarrow$$ $$k=\frac{11,5}{18,5}=\frac{23}{37}=\frac{MB}{AM}$$ $$\Rightarrow$$ $$\frac{AM}{MB}=\frac{37}{23}$$
Задание 8326
Высоты равнобедренного остроугольного треугольника АВС, в котором АВ=ВС, пересекаются в точке О. АО=5, а длина высоты AD равна 8.
А) 1) Пусть $$BK;CH;AD$$ - высоты, $$BO=x$$; $$OK=y$$
2) $$AO=5$$ $$\Rightarrow$$ $$OD=3$$; $$\angle AOK=\angle BOD$$ $$\Rightarrow$$ $$\bigtriangleup AOK\sim\bigtriangleup BOD$$ $$\Rightarrow$$ $$\frac{AO}{BO}=\frac{OK}{OD}$$ $$\Rightarrow$$ $$\frac{5}{x}=\frac{y}{3}$$; $$xy=15$$
3) $$OH=OD=3$$ $$\Rightarrow$$ из $$\bigtriangleup AHO$$: $$AH=\sqrt{5^{2}-3^{2}}=4$$
Из $$\bigtriangleup AOK$$: $$AK=\sqrt{25-y^{2}}$$ $$\Rightarrow$$ $$AC=2\sqrt{25-y^{2}}$$
Из $$\bigtriangleup AHC$$: $$4(25-y^{2})-16=8^{2}$$ $$\Rightarrow$$ $$4(25-y^{2})=80$$ $$\Rightarrow$$ $$25-y^{2}=20$$ $$\Rightarrow$$ $$y^{2}=5$$ $$\Rightarrow$$ $$y=\sqrt{5}$$ $$\Rightarrow$$ $$x=3\sqrt{5}$$ $$\Rightarrow$$ $$BK=4\sqrt{5}$$ $$\Rightarrow$$ $$AC=2\sqrt{25-5}=4\sqrt{5}$$
Б) $$S=\frac{1}{2}\cdot4\sqrt{5}\cdot4\sqrt{5}=40$$
Задание 8345
В прямоугольном треугольнике ABC точка M — середина гипотенузы AB, BC > AC. На катете BC взята точка K такая, что $$\angle MKC=\angle BAC$$
А) 1) Пусть $$\angle B$$ в $$\bigtriangleup ABC$$ равен $$\alpha$$, тогда $$\angle BAC=90^{\circ}-\alpha$$
2) $$BM=MA=CM$$ по свойству прямоугольного треугольника $$\Rightarrow$$ $$\angle MCA=90^{\circ}-\alpha$$ $$\Rightarrow$$ $$\angle BCM=90^{\circ}-(90^{\circ}-\alpha)=\alpha$$
3) $$\angle MKC=90^{\circ}-\alpha$$ $$\Rightarrow$$ из $$\bigtriangleup CKM$$: $$\angle KMC=180^{\circ}-(90^{\circ}-\alpha+\alpha)=90^{\circ}$$
Б) 1) $$CK\cdot CB=CM\cdot CN$$ (свойство секущих) $$\Rightarrow$$ $$\frac{CK}{CN}=\frac{CM}{CB}$$; $$\angle C$$ - общий $$\Rightarrow$$ $$\bigtriangleup CKM\sim\bigtriangleup CBN$$ $$\Rightarrow$$ $$\angle KMC=\angle CBN=90^{\circ}$$ $$\Rightarrow$$ $$\bigtriangleup CBN$$ - прямоугольный
2) $$\angle BCN=\angle BCA$$ $$\angle CBN=\angle BCA$$; $$CB$$ - общая $$\Rightarrow$$ $$\bigtriangleup CBN=\bigtriangleup BCA$$ $$\Rightarrow$$ $$BN=CA$$, но $$BN\parallel CA$$ (т.к. обе перпендикулярны $$CB$$) $$\Rightarrow$$ $$CBNA$$ - прямоугольник $$\Rightarrow$$ $$\angle ANB=90^{\circ}$$
Задание 9231
На гипотенузе AB и катетах BC и AC прямоугольного треугольника ABC отмечены точки М, N и К соответственно, причём прямая NK параллельна прямой AB и BM=BN=1/2 KN. Точка Р - середина отрезка KN.
а) Докажите, что четырёхугольник BCPM - равнобедренная трапеция.
б) Найдите площадь треугольника ABC, если BM=1 и $$\angle BCM=15^{\circ}$$.
Задание 9248
На гипотенузе AB и катетах BC и AC прямоугольного треугольника ABC отмечены точки М, N и К соответственно, причём прямая NK параллельна прямой AB и BM=BN=1/2 KN. Точка Р - середина отрезка KN.
а) Докажите, что четырёхугольник BCPM - равнобедренная трапеция.
б) Найдите площадь треугольника ABC, если BM=2 и $$\angle BCM=30^{\circ}$$.
Задание 9365
Окружность с центром в точке О пересекает каждую из сторон трапеции ABCD в двух точках. Четыре получившиеся хорды окружности равны.
а) Докажите, что биссектрисы всех углов трапеции пересекаются в одной точке.
б) Найдите высоту трапеции, если окружность пересекает боковую сторону АВ в точках К и L так, что АК=19,KL=12, LB=3.
Задание 10075
Точки Р и Q расположены на стороне ВС треугольника АВС так, что $$BP:PQ:QC=1:2:3$$ . Точка R делит сторону АС этого треугольника так, что AR:RC=1:2. Точки S и T – точки пересечения прямой BR с прямыми AР и АQ соответственно.
Задание 10195
Пятиугольник ABCDE вписан в окружность единичного радиуса. Известно, что $$AB=\sqrt{2}$$, $$\angle ABE=\frac{\pi}{4}$$, $$\angle EBD=\frac{\pi}{6}$$; BC=CD
Задание 10393
В остроугольном треугольнике АВС проведены биссектриса AD и медиана ВЕ. Точки M и N являются ортогональными проекциями на сторону АВ точек D и Е соответственно, причем $$\frac{AM}{MB}=\frac{9}{1}$$, $$\frac{AN}{NB}=\frac{2}{3}$$ .
Задание 10900
Диагональ АС прямоугольника ABCD с центром О образует со стороной АВ угол 30$${}^\circ$$. Точка Е лежит вне прямоугольника, причём $$\angle BEC=120{}^\circ $$.
а) По теореме о внешнем угле треугольника $$\angle BOC=2\angle BAO=2\cdot 30{}^\circ =60{}^\circ $$. Поэтому $$\angle BEC+\angle BOC=120{}^\circ +60{}^\circ =180{}^\circ $$.
Значит, точки В, Е, С и О лежат на одной окружности. Вписанные в эту окружность углы СВЕ и СОЕ опираются на одну и ту же дугу, следовательно, $$\angle CBE=\angle COE$$.
б) По теореме косинусов $$BC=\sqrt{BE^2+CE^2-2BE\cdot CE\cdot {\cos 120{}^\circ \ }}=\sqrt{{40}^2\cdot {24}^2-2\cdot 50\cdot 24\cdot (-\frac{1}{2})}=$$ $$=56$$.
Вписанные углы ВЕО и СЕО опираются на равные хорды ВО и СО, значит, ЕО - биссектриса угла ВЕС. Пусть М - точка её пересечения со стороной ВС. По формуле для биссектрисы треугольника $$EM=\frac{2BE\cdot CE\cdot {\cos \frac{1}{2}\angle BEC\ }}{BE+CE}=\frac{2\cdot 40\cdot 24\cdot {\cos 60{}^\circ \ }}{40+24}=15$$.
По свойству биссектрисы треугольника $$\frac{CM}{BM}=\frac{CE}{BE}=\frac{24}{40}=\frac{3}{5}$$, значит, $$CM=\frac{3}{8}BC=\frac{3}{8}\cdot 56=21$$. $$BM=35$$.
По теореме о произведении пересекающихся хорд $$EM\cdot MO=BM\cdot CM$$, откуда находим, что $$MO=\frac{BM\cdot CM}{EM}=\frac{35\cdot 21}{15}=49$$. Треугольники COM и AOK равны по стороне и двум прилежащим к ней углам, поэтому $$OK\ =\ OM$$. Следовательно, $$EK=EM+2OM=15+98=113$$.
Задание 11107
Прямая, параллельная основаниям BC и AD трапеции ABCD, пересекает боковые стороны AB и CD в точках M и N соответственно. Диагонали AC и BD пересекаются в точке O. Прямая MN пересекает стороны OA и OD треугольника AOD в точках K и L соответственно.
а) $$\triangle AMK\sim \triangle ABC$$ по двум углам ($$\angle BAC$$ - общий, $$\angle AMK=\angle ABC,$$ как соответственные при параллельных прямых MN и BC).
Аналогично $$\triangle DLN\sim \triangle DBC.$$ Отсюда $$\frac{MK}{BC}=\frac{AM}{AB}=\frac{DN}{DC}=\frac{LN}{BC};MK=LN.$$
б) $$MK:KL=1:3.$$
Пусть $$MK=x=LN,$$ то $$KL=3x,$$ тогда: $$\triangle ABD\sim \triangle MBL$$ (по двум углам): $$\frac{AD}{ML}=\frac{AB}{MB},\frac{AB}{MB}=\frac{8}{4x}=\frac{2}{x}(1)$$
$$\triangle ABC\sim \triangle AMK$$ (по двум углам): $$\frac{MK}{BC}=\frac{AM}{AB},\frac{AM}{AB}=\frac{x}{3}(2)$$
$$\frac{AM}{AB}=\frac{AB-MB}{AB}=1-\frac{MB}{AB};$$ Из $$\left(1\right)$$ следует $$\frac{MB}{AB}=\frac{x}{2}.$$
$$\frac{AM}{AB}=\frac{AB-MB}{AB}=1-\frac{MB}{AB}=1-\frac{x}{2}.$$ Значит, $$\frac{AM}{AB}=1-\frac{x}{2}(3)$$
Приравняем правые части $$(2)$$ и $$(3)$$ и найдем значение $$MN=5x:$$ $$\frac{x}{3}=1-\frac{x}{2};2x=6-3x;5x=6;MN=5x=6.$$
Задание 11127
Отрезок, соединяющий середины М и N оснований соответственно ВС и AD трапеции ABCD, разбивает её на две трапеции, в каждую из которых можно вписать окружность.
а) Докажите, что трапеция ABCD равнобедренная.
б) Известно, что радиус этих окружностей равен 4, а меньшее основание ВС исходной трапеции равно 14. Найдите радиус окружности, касающейся боковой стороны АВ, основания AN трапеции ABMN и вписанной в неё окружности.
а) Дана трапеция ABCD, в которой M - середина BC, а N - середина AD (см. рисунок ниже). Следовательно, $$BM=MC$$ и $$AN=ND (1)$$. По условию задания в трапецию ABMN можно вписать окружность, значит, суммы ее противоположных сторон равны: $$AB+MN\ =\ BM+AN$$, откуда $$MN\ =\ BM+AN-AB.$$ Аналогично для трапеции MCDN: $$CD+MN\ =\ MC+ND.$$ $$MN\ =\ MC+ND-CD.$$
Приравниваем два выражения для MN, имеем: $$BM+AN-AB\ =\ MC+ND-CD$$ и, учитывая равенство (1), получаем: $$AB\ =\ CD$$
Получаем равенство боковых сторон, значит, трапеция ABCD - равнобедренная.
б) Так как радиус вписанных окружностей равен 4, значит, высота трапеции $$MN=2\cdot 4=8.$$ Также по условию дана длина $$BC=14$$ и, следовательно, $$BM=BC:2=14:2=7.$$ Обозначим BF через x (см. рисунок ниже). Тогда $$BM_1=x\ $$как отрезки касательных.
Получаем, что $$M_1M=7-x$$, поэтому и $$MZ=7-x$$, $$NZ\ =\ MN-MZ\ =\ 8-(7-x)\ =\ x+1,$$ следовательно, $$N_1N=x+1$$ (так как соответствующие отрезки касательных равны). Так как $$MZ=ZN$$ (радиус $$O_1Z$$ вписанной окружности будет параллелен основаниям трапеции), имеем: $$7-x=x+1\to x=3.$$
Значит, $$BF=BM_1\ =\ 3$$. Рассмотрим прямоугольный треугольник $$BO_1A$$ (он прямоугольный, так как $$AO_1$$ и $$BO_1$$ - биссектрисы, а $$\angle A+\angle B=180{}^\circ $$, поэтому $$\angle BO_1A=90{}^\circ $$). Квадрат высоты $$OF_1$$, проведенной из прямого угла, равен: $$O_1F^2=BF\cdot FA\to FA=\frac{16}{3}$$ и по теореме Пифагора $$O_1A=\sqrt{O_1F^2-FA^2}=\sqrt{16+\frac{{16}^2}{9}}=\frac{20}{3}.$$
Обозначим радиус малой окружности $$AO=y$$, тогда $$OA=O_1A-OO_1=O_1A-\left(4+y\right)=\frac{8}{3}-y.$$
Учитывая, что треугольники $$AFO_1$$ и $$AYO$$ подобны по двум углам, можем записать отношение: $$\frac{y}{4}=\frac{AO}{AO_1}=\frac{\frac{8}{3}-y}{\frac{20}{3}}\to 32-12=20y\to y=1$$
Задание 11146
На отрезке BD взята точка С. Биссектриса BL равнобедренного треугольника АВС с основанием ВС является боковой стороной равнобедренного треугольника BLD с основанием BD.
а) Пусть $$\angle ABL=\angle ABL=\alpha ,$$ тогда $$\angle ACB=\angle ABC=2\alpha ,\ \angle D=\alpha $$ по свойству равнобедренного $$\triangle .$$ $$\angle ACB-$$ внешний в $$\angle DCL\to \angle CLD=\angle ACB-\angle CDL=\alpha =\angle CDL\to \triangle DCL-$$ равнобедренный по признаку.
б) 1) Пусть $$LH\bot BD,H\in BD.$$ В прямоугольном $$\triangle LCH:CH=x,{\cos 2\alpha \ }={\cos \angle ABC\ }=,\ CL=CH:{\cos 2\alpha \ }=5x=CD$$ ($$\triangle DCL-$$ равнобедренный).
2) В равнобедренном $$\triangle BLD$$ высота LH является медианой $$\to BH=DH=CH+CD=6x;$$ тогда $$BC=BH+CH=7x.$$
3) Пусть $$BM=CM=BC:2=3,5x;$$ AM - медиана, высота равнобедренного $$\triangle ABC,$$ тогда из прямоугольного $$\triangle AMC:AC=CM:{\cos 2\alpha \ }=3,5x\cdot 5=17,5x;AL=AC-CL=12,5x.$$
4) $$DL\cap AB=K.$$ Через точку С проведем $$CN\parallel DL,CN\cap AB=N.$$ По т. о пропорциональных отрезках:
- (для $$\angle DBK$$) $$\frac{BN}{NK}=\frac{BC}{CD}=\frac{7x}{5x}=\frac{7}{5}\to BN=7a,\ NK=5a\ \left(a>0\right);$$ тогда $$BK=BN+NK=12a.$$
- (для $$\angle CAN$$) $$\frac{AK}{NK}=\frac{AL}{CL}=\frac{12,5x}{5x}=\frac{125}{50}=\frac{5}{2}\to AK=\frac{5NK}{2}=\frac{25a}{2};$$ тогда $$\frac{AK}{BK}=\frac{25a}{2\cdot 12a}=\frac{25}{24}.$$
Задание 11378
В прямоугольнике ABCD диагонали пересекаются в точке О, а угол BDC равен 75°. Точка Р лежит вне прямоугольника, а угол АРВ равен 150°.
Задание 12284
В прямоугольнике ABCD диагонали пересекаются в точке О, а угол BDC равен 22,5$${}^\circ$$. Точка Р лежит вне прямоугольника, а угол ВРС равен 135$${}^\circ$$.
Задание 12314
На сторонах АС, АВ и ВС прямоугольного треугольника АВС с прямым углом С вне треугольника АВС построены равнобедренные прямоугольные треугольники АКС, ALB и ВМС с прямыми углами К, L и М соответственно.
Задание 12334
На сторонах АС, АВ и ВС прямоугольного треугольника АВС с прямым углом С вне треугольника АВС построены равнобедренные прямоугольные треугольники АКС, ALB и ВМС с прямыми углами К, L и М соответственно.
Задание 12375
На сторонах АС, АВ и ВС прямоугольного треугольника АВС с прямым углом С во внешнюю сторону построены равнобедренные прямоугольные треугольники АКС, ALB и ВМС с прямыми углами К, L и М соответственно.
Задание 12553
В треугольнике АВС все стороны различны. Прямая, содержащая высоту ВН треугольника АВС, вторично пересекает описанную около этого треугольника окружность в точке F. Отрезок BD - диаметр этой окружности.
а) Докажите, что $$AD\ =\ CF.$$
б) Найдите DF, если радиус описанной около треугольника АВС окружности равен 12, $$\angle BAC\ =\ 35{}^\circ $$, $$\angle ACB\ =\ 65{}^\circ .$$
Задание 12575
В треугольнике АВС все стороны различны. Прямая, содержащая высоту ВН треугольника АВС, вторично пересекает описанную около этого треугольника окружность в точке К. Отрезок BN - диаметр этой окружности.
а) Докажите, что АС и KN параллельны.
б) Найдите расстояние от точки N до прямой АС, если радиус описанной около треугольника АВС окружности равен $$6\sqrt{6}$$, $$\angle BAC\ =\ 30{}^\circ ,\ \angle ABC=\ 105{}^\circ .$$
Задание 12595
На гипотенузе АВ и катетах ВС и АС прямоугольного треугольника АВС отмечены точки М, N и К соответственно, причём прямая NK параллельна прямой АВ и $$BM\ =\ BN\ =\frac{1}{2}KN.$$ Точка Р - середина отрезка KN.
а) Докажите, что четырёхугольник ВСРМ - равнобедренная трапеция.
б) Найдите площадь треугольника АВС, если $$BM\ =\ 1$$ и $$\angle BCM\ =\ 15{}^\circ .$$
Задание 12615
На гипотенузе АВ и катетах ВС и АС прямоугольного треугольника АВС отмечены точки М, N и К соответственно, причём прямая NK параллельна прямой АВ и $$BM=BN\ =\frac{1}{2}KN.$$ Точка Р -середина отрезка KN.
а) Докажите, что четырёхугольник ВСРМ - равнобедренная трапеция.
б) Найдите площадь треугольника АВС, если $$BM\ =\ 2$$ и $$\angle BCM\ =\ 30{}^\circ .$$
Задание 12775
В трапеции ABCD основание AD в два раза меньше основания ВС. Внутри трапеции взяли точку М так, что углы ВАМ и CDM прямые.
а) Докажите, что $$BM\ =\ CM.$$
б) Найдите угол АВС, если угол BCD равен 57$${}^\circ$$, а расстояние от точки М до прямой ВС равно стороне AD
Задание 12816
В треугольнике АВС известно, что $$\angle BAC\ =\ 60{}^\circ ,\ \angle ABC=\ 45{}^\circ .$$ Продолжения высот треугольника АВС пересекают описанную около него окружность в точках М, N, Р.
а) Докажите, что треугольник MNP прямоугольный.
б) Найдите площадь треугольника MNP, если известно, что $$BC\ =\ 10.$$
Задание 14215
Дан правильный шестиугольник $$ABCDEF$$. Точка $$P$$ – середина стороны $$AF$$, точка $$K$$ – середина стороны $$AB$$.
Задание 14222
Дан квадрат $$ABCD$$. На сторонах $$AB$$ и $$BC$$ отмечены точки $$P$$ и $$K$$ соответственно, причем $$BP:AP=1:3$$, $$BK:CK=3:13$$.
Задание 14250
Дан квадрат $$ABCD$$. На сторонах $$AB$$ и $$BC$$ внешним и внутренним образом соответственно построены равносторонние треугольники $$ABK$$ и $$BCP$$.
Задание 14284
На стороне $$AC$$ треугольника $$ABC$$ отметили точку $$D$$ так, что $$BC=\sqrt{AC\cdot CD}$$
Задание 14299
Дана окружность. Продолжения диаметра $$AB$$ и хорды $$PK$$ пересекаются под углом $$30^{\circ}$$ в точке $$C$$. Известно, что $$CB:AB=1:4$$; $$AK$$ пересекает $$BP$$ в точке $$T$$.
Задание 14316
В параллелограмме $$ABCD$$ точка $$E$$ – середина стороны $$AD$$. Отрезок $$BE$$ пересекает диагональ $$AC$$ в точке $$P$$. $$AB=PD$$.
a) Пусть $$H$$ – середина $$PC$$. Так как треугольник $$PCD$$ равнобедренный ($$PD=AB$$ по условию и $$DC=AB$$ по свойству параллелограмма), то $$DH\perp AC$$. Треугольники $$BCP,EAP$$ подобны по двум углам. И коэффициент их подобия $$\frac{BC}{AE}$$ равен 2.
То есть, если $$AP=x$$, то $$PC=2x$$. При этом $$PH=CH=x$$.
Замечаем, что треугольники $$APE,AHD$$ подобны по двум пропорциональным сторонам $$AP,AH$$ и $$AE,AD$$ и углу между ними $$A$$.
Но тогда, например, $$\angle APE=\angle AHD$$, откуда $$PE\parallel HD$$. Стало быть, раз $$DH\perp AC$$, то $$EP\perp AC$$. Что и требовалось доказать.
б) Пусть $$PE=y$$, тогда в силу подобия треугольников $$APE,CPB$$ с коэффициентом 2 (о чем говорили в пункте а) $$BP=2y$$.
Применим теорему Пифагора к треугольникам
$$ABP,AEP$$: $$AB^2-BP^2=AE^2-PE^2$$; $$4-4y^2=\frac{9}{4}-y^2$$; $$y=\frac{\sqrt{21}}{6}$$.
Откуда $$AP=\sqrt{AB^2-BP^2}=\sqrt{16-\frac{21}{36}}=\frac{5}{3}$$.
Далее, $$S_{ABC}=\frac{AC\cdot BP}{2}=\frac{(3\cdot \frac{5}{3})\cdot (2\cdot \frac{\sqrt{21}}{6})}{2}=\frac{\sqrt{35}}{2}$$.
Откуда $$S_{ABCD}=2\cdot S_{ABC}=\sqrt{35}$$.
Задание 14320
Точка $$E$$ – середина боковой стороны $$CD$$ трапеции $$ABCD$$. На стороне $$AB$$ отмечена точка $$K$$ так, что $$CK\parallel AE$$. Прямые $$CK,BE$$ пересекаются в точке $$O$$.