Перейти к основному содержанию

ЕГЭ Профиль

Стереометрия

Призма

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 902

Дана правильная шестиугольная призма ABCDEFA1B1C1D1E1F1, площадь основания которой равна 12, а боковое ребро равно 6. Найдите объем многогранника с вершинами в точках AB1C1D1E1F1.

Ответ: 20
Скрыть

Рассмотрим новое основание. Оно представляет из себя пятиугольник. Площадь этого пятиугольника составляет 5/6 от площади шестиугольника, поэтому: площадь основания нового: 12 * 5/6=10

Объем пирамиды вычисляется как одна третья основания на высоту: объем = 1/3 * 6*10 = 20

 

Задание 2364

Найдите площадь боковой поверхности правильной шестиугольной призмы, описанной около цилиндра, радиус основания которого равен $$\sqrt{3}$$, а высота равна 3.

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 3153

Найдите объем призмы, в основаниях которой лежат правильные шестиугольники со сторонами 2, а боковые ребра равны $$2\sqrt{3}$$ и наклонены к плоскости основания под углом 30°. 

Ответ: 18
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Так как боковое ребро наклонено под углом в 30 градусов, то высота длина высоты равна произведению длины боковой стороны на синус 30 градусов: $$2\sqrt{3}*\frac{1}{2}=\sqrt{3}$$ Площадь правильного шестиугольника, сторона которого а, вычисляется по формуле: $$S=\frac{3a^{2}\sqrt{3}}{2}=\frac{3*2^{2}\sqrt{3}}{2}=6\sqrt{3}$$ Объем равен произведению площади основания на высоту: $$V=6\sqrt{3}*\sqrt{3}=18$$

Задание 3724

В сосуд, име­ю­щий форму пра­виль­ной тре­уголь­ной приз­мы, на­ли­ли 2300 см3 воды и по­гру­зи­ли в воду де­таль. При этом уро­вень воды под­нял­ся с от­мет­ки 25 см до от­мет­ки 27 см. Най­ди­те объем де­та­ли. Ответ вы­ра­зи­те в см3.

Ответ: 184

Задание 3725

В сосуд, име­ю­щий форму пра­виль­ной тре­уголь­ной приз­мы, на­ли­ли воду. Уро­вень воды до­сти­га­ет 80 см. На какой вы­со­те будет на­хо­дить­ся уро­вень воды, если ее пе­ре­лить в дру­гой такой же сосуд, у ко­то­ро­го сто­ро­на ос­но­ва­ния в 4 раза боль­ше, чем у пер­во­го? Ответ вы­ра­зи­те в см.

Ответ: 5

Задание 3726

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной ше­сти­уголь­ной приз­мы, сто­ро­на ос­но­ва­ния ко­то­рой равна 5, а вы­со­та – 10.

Ответ: 300

Задание 3727

Най­ди­те пло­щадь по­верх­но­сти пря­мой приз­мы, в ос­но­ва­нии ко­то­рой лежит ромб с диа­го­на­ля­ми, рав­ны­ми 6 и 8, и бо­ко­вым реб­ром, рав­ным 10.

Ответ: 248

Задание 3728

Най­ди­те бо­ко­вое ребро пра­виль­ной че­ты­рех­уголь­ной приз­мы, если сто­ро­на ее ос­но­ва­ния равна 20, а пло­щадь по­верх­но­сти равна 1760.

Ответ: 12

Задание 3729

Ос­но­ва­ни­ем пря­мой тре­уголь­ной приз­мы слу­жит пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми 6 и 8, бо­ко­вое ребро равно 5. Най­ди­те объем приз­мы.

Ответ: 120

Задание 3730

Гра­нью па­рал­ле­ле­пи­пе­да яв­ля­ет­ся ромб со сто­ро­ной 1 и ост­рым углом $$60^{\circ}$$. Одно из ребер па­рал­ле­ле­пи­пе­да со­став­ля­ет с этой гра­нью угол в $$60^{\circ}$$ и равно 2. Най­ди­те объем па­рал­ле­ле­пи­пе­да.

Ответ: 1,5

Задание 3731

Через сред­нюю линию ос­но­ва­ния тре­уголь­ной приз­мы, объем ко­то­рой равен 32, про­ве­де­на плос­кость, па­рал­лель­ная бо­ко­во­му ребру. Най­ди­те объем от­се­чен­ной тре­уголь­ной приз­мы.

Ответ: 8

Задание 3732

От тре­уголь­ной приз­мы, объем ко­то­рой равен 6, от­се­че­на тре­уголь­ная пи­ра­ми­да плос­ко­стью, про­хо­дя­щей через сто­ро­ну од­но­го ос­но­ва­ния и про­ти­во­по­лож­ную вер­ши­ну дру­го­го ос­но­ва­ния. Най­ди­те объем остав­шей­ся части.

Ответ: 4

Задание 3733

Ос­но­ва­ни­ем пря­мой тре­уголь­ной приз­мы слу­жит пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми 6 и 8, вы­со­та приз­мы равна 10. Най­ди­те пло­щадь ее по­верх­но­сти.

Ответ: 288

Задание 3734

Объём куба равен 12. Най­ди­те объём тре­уголь­ной приз­мы, от­се­ка­е­мой от куба плос-ко­стью, про­хо­дя­щей через се­ре­ди­ны двух рёбер, вы­хо­дя­щих из одной вер­ши­ны, и парал-лель­ной тре­тье­му ребру, вы­хо­дя­ще­му из этой же вер­ши­ны.

Ответ: 1,5

Задание 3735

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки ABCA1 пра­виль­ной тре­уголь­ной приз­мы ABCA1B1C1, пло­щадь ос­но­ва­ния ко­то­рой равна 2, а бо­ко­вое ребро равно 3.

Ответ: 2