Перейти к основному содержанию

ЕГЭ Профиль

Планиметрия: задачи, связанные с углами

Вписанные окружности

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 2898

Точка О является центром окружности, вписанной в прямоугольный треугольник ABC с прямым углом С. Луч АО пересекает катет ВС в точке Е. Найдите гипотенузу АВ, если $$AC=6\sqrt{3}$$ и $$\angle B$$ в 4 раза больше, чем $$\sqrt{EAC}$$.

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$AC=6\sqrt{3}$$ $$\angle B=4\angle EAC$$

AO - биссектриса  $$\angle A$$

$$\Rightarrow \angle CAE=x$$ $$\Rightarrow \angle A=2x$$; $$\angle B=4x$$

$$2x+4x=90$$ $$\Rightarrow x=15^{\circ}$$ $$\Rightarrow \angle A=30^{\circ}$$; $$\angle B=60^{\circ}$$

$$\sin B=\frac{AC}{AB}$$ $$\Rightarrow AB=\frac{AC}{\sin B}=\frac{6\sqrt{3}}{\frac{\sqrt{3}}{2}}=12$$

 

Задание 3196

Около окружности, радиус которой равен 3, описан многоугольник, периметр которого равен 16. Найдите его площадь.

Ответ: 24
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$S=p\cdot r=8\cdot3=24$$

Задание 3522

Пе­ри­метр тре­уголь­ни­ка равен 12, а ра­ди­ус впи­сан­ной окруж­но­сти равен 1. Най­ди­те пло­щадь этого тре­уголь­ни­ка.

Ответ: 6

Задание 3523

Около окруж­но­сти, ра­ди­ус ко­то­рой равен 3, опи­сан мно­го­уголь­ник, пе­ри­метр ко­то­ро­го равен 20. Най­ди­те его пло­щадь.

Ответ: 30

Задание 3524

Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в пра­виль­ный тре­уголь­ник, вы­со­та ко­то­ро­го равна 6.

Ответ: 2

Задание 3525

Ра­ди­ус окруж­но­сти, впи­сан­ной в пра­виль­ный тре­уголь­ник, равен 6. Най­ди­те вы­со­ту этого тре­уголь­ни­ка.

Ответ: 18

Задание 3526

Сто­ро­на пра­виль­но­го тре­уголь­ни­ка равна $$\sqrt{3}$$. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в этот тре­уголь­ник.

Ответ: 0,5

Задание 3527

Ра­ди­ус окруж­но­сти, впи­сан­ной в пра­виль­ный тре­уголь­ник, равен $$\frac{\sqrt{3}}{6}$$. Най­ди­те сто­ро­ну этого тре­уголь­ни­ка.

Ответ: 1

Задание 3528

Сто­ро­на ромба равна 1, ост­рый угол равен $$30^{\circ}$$. Най­ди­те ра­ди­ус впи­сан­ной окруж­но­сти этого ромба.

Ответ: 0,25

Задание 3529

Ост­рый угол ромба равен 30°. Ра­ди­ус впи­сан­ной в этот ромб окруж­но­сти равен 2. Най­ди­те сто­ро­ну ромба.

Ответ: 8

Задание 3530

Най­ди­те сто­ро­ну пра­виль­но­го ше­сти­уголь­ни­ка, опи­сан­но­го около окруж­но­сти, ра­ди­ус ко­то­рой равен $$\sqrt{3}$$.

Ответ: 2

Задание 3531

Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в пра­виль­ный ше­сти­уголь­ник со сто­ро­ной $$\sqrt{3}$$.

Ответ: 1,5

Задание 3532

Ка­те­ты рав­но­бед­рен­но­го пря­мо­уголь­но­го тре­уголь­ни­ка равны $$2+\sqrt{2}$$. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в этот тре­уголь­ник.

Ответ: 1

Задание 3533

В тре­уголь­ни­ке ABC сто­ро­ны AC = 4, BC = 3, угол C равен 90°. Най­ди­те ра­ди­ус впи­сан­ной окруж­но­сти.

Ответ: 1

Задание 3534

Бо­ко­вые сто­ро­ны рав­но­бед­рен­но­го тре­уголь­ни­ка равны 5, ос­но­ва­ние равно 6. Най­ди­те ра­ди­ус впи­сан­ной окруж­но­сти.

Ответ: 1,5