ЕГЭ Профиль
Задание 11424
Найдите все значения параметра а, при которых система $$\left\{\begin{matrix} \sqrt{x^{2}+2xy+2y^{2}}=\sqrt{x^{2}-y^{2}}\\ \frac{x^{8}}{(x^{2}+y^{2})^{2}}\cdot(a-x)=1 \end{matrix}\right.$$ имеет ровно четыре решения.
Ответ: $$(\frac{5\sqrt[5]{4}}{4};\frac{5\sqrt[5]{2028}}{12})$$
Задание 10825
Найдите все значения параметра $$a$$, при каждом из которых система уравнений $$\left\{ \begin{array}{c} \left|y\right|+\left|2x-x^2\right|=4 \\ y^2+{\left(2x-x^2\right)}^2=a^2 \end{array} \right.$$ будет иметь ровно 8 решений.
Ответ: $$(-\sqrt{10};-2\sqrt{2});(2\sqrt{2};\sqrt{10})$$
Аналоги к этому заданию:
Задание 8745
Найдите все значения параметра а, при которых система уравнений $$\left\{\begin{matrix}\frac{(\sqrt{12-x^{2}}-y)((x+4)^2+(y+4)^2-8(x+4)+x^2-y^2-24)}{2-x^{2}}=0\\ y=1-2a\end{matrix}\right.$$ имеет ровно два решения.
Ответ: $$(-\frac{2\sqrt{3}-1}{2};-\frac{\sqrt{10}-1}{2})\cup$$$$(-\frac{-\sqrt{10}-1}{2};-1);-\frac{3}{4};\frac{1}{2}$$