Перейти к основному содержанию

ЕГЭ Профиль

Планиметрия: задачи, связанные с углами

Центральные и вписанные углы

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

ThCJc-_FFYI
 

Задание 1096

В трапеции АВСD (АВ||СD) угол АBС равен 130°. Окружность с центром в точке В проходит через точки А, D и С. Найдите величину угла ADC. Ответ дайте в градусах.

Ответ: 115
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

∠ ABC - центральный, а значит дуга AC, на которую он опирается, равна его величине, то есть 130°. Значит дуга CA (противоположная) равна: 360° - 130° = 230°. ∠ ADC опирается на эту дугу и он вписанный, значит равен половине величины дуги на которую он опирается, то есть 230°/2 = 115°

Задание 1925

Цен­траль­ный угол AOB опи­ра­ет­ся на хорду AB дли­ной 6. При этом угол OAB равен 60°. Най­ди­те ра­ди­ус окруж­но­сти.

Ответ: 6
Скрыть

1) Треугольник AOB - равнобедренный (AO=OB - радиусы), тогда $$\angle OAB=\angle OBA=\frac{180-60}{2}=60^{\circ}$$, следовательно, OAB - равносторонний

2) Из п.1 получаем ,что AO=OB=AB=6

Задание 1926

В окруж­но­сти с цен­тром в точке О про­ве­де­ны диа­мет­ры AD и BC, угол OCD равен 30°. Най­ди­те ве­ли­чи­ну угла OAB.

Ответ: 30
Скрыть

1) Треугольники COD и AOD равны, так как CO=OD=OA=OB (радиусы) и $$\angle COD=\angle AOD$$ (вертикальные углы)

2) Тогда $$\angle OAB=\angle CDO=\angle OCD=30^{\circ}$$

Задание 1927

Най­ди­те гра­дус­ную меру ∠MON, если из­вест­но, NP — диа­метр, а гра­дус­ная мера ∠MNP равна 18°.

Ответ: 144
Скрыть

1) Треугольник MON - равнобедренный (MO=ON - радиусы), тогда $$\angle ONM=\angle OMN$$

2) $$\angle MON=180-2*18=144^{\circ}$$

Задание 1928

Най­ди­те ∠DEF, если гра­дус­ные меры дуг DE и EF равны 150° и 68° со­от­вет­ствен­но.

Ответ: 71
Скрыть

1) $$\smile DF=360-150-68=142^{\circ}$$

2) $$\angle DEF=\frac{142}{2}=71^{\circ}$$ (по свойству вписанного угла)

Задание 1929

Най­ди­те гра­дус­ную меру ACB, если из­вест­но, что BC яв­ля­ет­ся диа­мет­ром окруж­но­сти, а гра­дус­ная мера AOC равна 96°.

Ответ: 42
Скрыть

1) Треугольник OAC - ранвобедренный (OA=AC - радиусы), тогда $$\angle OAC=\angle OCA$$

2) $$\angle ACB=\angle ACO=\frac{180-96}{2}=42^{\circ}$$ 

Задание 1930

Най­ди­те ∠KOM, если из­вест­но, что гра­дус­ная мера дуги MN равна 124°, а гра­дус­ная мера дуги KN равна 180°.

Ответ: 56
Скрыть

1) Меньшая дуга $$KM=KN-MN=180-124=56^{\circ}$$

2) $$\angle KOM=\smile MM-56^{\circ}$$ (по свойству центрального угла)

Задание 1931

В окруж­но­сти с цен­тром O AC и BD — диа­мет­ры. Угол ACB равен 26°. Най­ди­те угол AOD. Ответ дайте в гра­ду­сах.

Ответ: 128
Скрыть

1) $$\angle AOD=\angle COB$$ (по свойству вертикальных углов)

2) $$\angle COB=\angle OBC$$ (треугольник COB - равнобедренный, так как CO и OB - радиусы)

3) Из треугольника COB: $$\angle COB=180-2*26=128^{\circ}$$, тогда и $$\angle AOD=128^{\circ}$$

Задание 1932

Пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми 5 см и 12 см впи­сан в окруж­ность. Чему равен ра­ди­ус этой окруж­но­сти?

Ответ: 6,5
Скрыть

1) Радиус описанной окружности около прямоугольного треугольника равен половине его гипотенузы. Пусть R - радиус описанной окружности

2) По теореме Пифагора из треугольника ABC: $$AC=\sqrt{12^{2}+5^{2}}=13$$, тогда $$R=\frac{1}{2}AC=6,5$$

Задание 1933

Точки A и B делят окруж­ность на две дуги, длины ко­то­рых от­но­сят­ся как 9:11. Най­ди­те ве­ли­чи­ну цен­траль­но­го угла, опи­ра­ю­ще­го­ся на мень­шую из дуг. Ответ дайте в гра­ду­сах.

Ответ: 162
Скрыть

1) Пусть меньшая дуга 9х, тогда большая дуга 11х

2) $$9x+11x=360\Leftrightarrow$$$$x=18$$ (по свойству градусной меры окружности), тогда меньшая дуга составляет $$9x=9*18=162$$

3) $$\angle AOB=\smile AOB=162^{\circ}$$ (по свойству центрального угла)

Задание 1934

В угол ве­ли­чи­ной 70° впи­са­на окруж­ность, ко­то­рая ка­са­ет­ся его сто­рон в точ­ках A и B. На одной из дуг этой окруж­но­сти вы­бра­ли точку C так, как по­ка­за­но на ри­сун­ке. Най­ди­те ве­ли­чи­ну угла ACB.

Ответ: 55
Скрыть

1) OA и OB перпенидулярны сторонам угла (по свойству касательной и радиуса в точку касания)

2) Из четырехугольника AEOB: $$\angle AOB=360-2*90-70=110^{\circ}$$ (по свойству суммы углов выпуклого четырехугольника)

3) $$\angle ACB=\frac{1}{2}\angle AOB=55^{\circ}$$ (по свойству вписанного и центрального угла)

Задание 3503

Чему равен ост­рый впи­сан­ный угол, опи­ра­ю­щий­ся на хорду, рав­ную ра­ди­у­су окруж­но­сти? Ответ дайте в гра­ду­сах.

Ответ: 30

Задание 3504

Чему равен тупой впи­сан­ный угол, опи­ра­ю­щий­ся на хорду, рав­ную ра­ди­у­су окруж­но­сти? Ответ дайте в гра­ду­сах.

Ответ: 150

Задание 3505

Най­ди­те впи­сан­ный угол, опи­ра­ю­щий­ся на дугу, ко­то­рая со­став­ля­ет $$\frac{1}{5}$$ окруж­но­сти. Ответ дайте в гра­ду­сах.

Ответ: 36

Задание 3506

Дуга окруж­но­сти AC, не со­дер­жа­щая точки B, со­став­ля­ет 200°. А дуга окруж­но­сти BC, не со­дер­жа­щая точки A, со­став­ля­ет 80°. Най­ди­те впи­сан­ный угол ACB. Ответ дайте в гра­ду­сах.

Ответ: 40

Задание 3507

В окруж­но­сти с цен­тром O от­рез­ки AC и BD — диа­мет­ры. Впи­сан­ный угол ACB равен 38°. Най­ди­те цен­траль­ный угол AOD. Ответ дайте в гра­ду­сах.

Ответ: 104

Задание 3508

В окруж­но­сти с цен­тром O от­рез­ки AC и BD — диа­мет­ры. Цен­траль­ный угол AOD равен 110°. Най­ди­те впи­сан­ный угол ACB. Ответ дайте в гра­ду­сах.

Ответ: 35

Задание 3509

Най­ди­те угол ACB, если впи­сан­ные углы ADB  и DAE опи­ра­ют­ся на дуги окруж­но­сти, гра­дус­ные ве­ли­чи­ны ко­то­рых равны со­от­вет­ствен­но $$118^{\circ}$$ и $$38^{\circ}$$. Ответ дайте в гра­ду­сах.

Ответ: 40

Задание 3510

Угол ACB равен 42°. Гра­дус­ная ве­ли­чи­на дуги AB окруж­но­сти, не со­дер­жа­щей точек D и E, равна 124°. Най­ди­те угол DAE. Ответ дайте в гра­ду­сах.

Ответ: 20
 

Задание 4180

На рисунке изображено колесо c семью спицами. Сколько спиц будет в колесе, если угол между соседними спицами в нём будет равен $$20^{\circ}$$?

Ответ: 18
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Количество спиц равно количеству углов, вся окружность $$360^{\circ}$$ $$\Rightarrow$$

$$n=\frac{360}{20}=18$$ - количество углов

 

Задание 5376

Радиус окружности равен 19. Найдите величину острого вписанного угла, опирающегося на хорду, равную $$19\sqrt{2}$$ . Ответ дайте в градусах.

Ответ: 45
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Из треугольника AOB : $$\cos O = \frac{OB^{2}+OA^{2}-AB^{2}}{2OA*OB}=$$$$\frac{19^{2}+19^{2}-(19\sqrt{2})^{2}}{2*19*19}=0$$. Следовательно, угол O составляет 90. Угол ACB - вписанный, опирается на ту же дугу, что и AOC, следовательно, в два раза меньше, то есть 45

Задание 5711

Точки ABC и D лежат на одной окруж­но­сти так, что хорды AB и СD вза­им­но перпендикулярны, а ∠BDC = 25°. Най­ди­те величину угла ACD.

Ответ:

Задание 5712

Треугольник ABC впи­сан в окруж­ность с цен­тром в точке O. Най­ди­те гра­дус­ную меру угла Cтре­уголь­ни­ка ABC, если угол AOB равен 48°.

Ответ:

Задание 5713

В угол C ве­ли­чи­ной 90° впи­са­на окруж­ность, ко­то­рая ка­са­ет­ся сто­рон угла в точ­ках A и B, точка O - центр окружности. Най­ди­те угол AOB. Ответ дайте в гра­ду­сах.

Ответ:
 

Задание 6127

Точки А и В делят окружность на две дуги, длины которых относятся как 7:8. Найдите величину центрального угла, опирающегося на меньшую из дуг. Ответ дайте в градусах.

Ответ: 168
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть AB-большая , AB' меньшая дуга, тогда AB+AB'=360 . Пусть AB=8x , тогда AB'=7x:

8x+7x=360 $$\Leftrightarrow$$ 15x=369 $$\Leftrightarrow x=24$$, тогда AB=192, AB'=168

Центральный угол равен величине дуги, на которую он опирается.

 

Задание 6365

Найдите вписанный угол, опирающийся на дугу, которая составляет 1/5 окружности.

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\cup AB=\frac{1}{5}*260=72$$ $$\angle ACB=\frac{1}{2}\cup AB=36$$(вписанный)

 

Задание 7213

В трапеции АВСD (АВ||СD) угол DCB равен 72о. Окружность с центром в точке В проходит через точки А, D и С. Найдите величину угла ADC. Ответ дайте в градусах.

Ответ: 126
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

    1) $$\angle ABC=180-\angle DCB=108$$ (по свойству трапеции) $$\Rightarrow$$ $$\smile ADC=\angle ABC=108$$ (по свойству центрального угла )

    2) $$\smile AC$$ (большая ) $$=360-108=252$$$$\Rightarrow$$ $$\angle ADC=\frac{\smile AC}{2}=126$$( по свойству вписанного угла )

 

Задание 7935

Четырехугольник ABCD вписан в окружность. Угол АВС равен 1400, угол CAD равен 840. Найдите угол ABD. Ответ дайте в градусах.

Ответ: 56
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9355

Найдите угол АСО, если его сторона СА касается окружности с центром О, отрезок СО пересекает окружность в точке В (см. рис.), а дуга АВ окружности, заключённая внутри этого угла, равна 17°. Ответ дайте в градусах.

Ответ: 73
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9375

Угол АСО равен 62°. Его сторона СА касается окружности с центром в точке О. Отрезок СО пересекает окружность в точке В (см. рис.). Найдите градусную меру дуги АВ окружности, заключённой внутри этого угла. Ответ дайте в градусах.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9793

Найдите центральный угол, если он на 28° больше острого вписанного угла, опирающегося на ту же дугу. Ответ дайте в градусах.

Ответ: 56
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10724

Четырёхугольник ABCD вписан в окружность. Угол ABD равен 25$${}^\circ$$, угол CAD равен 41$${}^\circ$$. Найдите угол ABC. Ответ дайте в градусах.

Ответ: 66
Скрыть Угол CAD и угол CBD - вписанные углы, опирающиеся на одну дугу, а значит, они равны 41$${}^\circ$$. Следовательно: $$\angle ABC=\angle ABD+\angle CBD=25{}^\circ +41{}^\circ =66{}^\circ $$
 

Задание 10744

Четырёхугольник ABCD вписан в окружность. Угол ABD равен 72$${}^\circ$$, угол CAD равен 58$${}^\circ$$. Найдите угол ABC. Ответ дайте в градусах.

Ответ: 130
Скрыть

$$\angle ABC=72{}^\circ $$ - вписанный в окружность угол.

Вписанный в окружность угол измеряется половиной дуги, на которую он опирается, следовательно, дуга $$AD=144{}^\circ $$. Угол $$\angle CAD=58{}^\circ $$ - вписанный в окружность угол, следовательно, дуга $$CD=116{}^\circ $$. Дуга $$AC=AD+DC=144{}^\circ +116{}^\circ =260{}^\circ $$.

Угол $$\angle ABC$$ - вписанный в окружность угол, который опирается на дугу АС, следовательно, $$\angle ABC=130{}^\circ $$.

 

Задание 11368

Четырёхугольник ABCD вписан в окружность. Угол АВС равен 106°, угол CAD равен 69°. Найдите угол ABD. Ответ дайте в градусах.

Ответ: 37
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12685

Найдите центральный угол, если он на 28$${}^\circ$$ больше острого вписанного угла, опирающегося на ту же дугу. Ответ дайте в градусах.

Ответ: 56
 

Задание 12826

Четырёхугольник ABCD вписан в окружность. Угол ABD равен 25$${}^\circ$$, угол CAD равен 41$${}^\circ$$. Найдите угол АВС. Ответ дайте в градусах.

Ответ: 66
Скрыть

Воспользуемся свойством: вписанный в окружность угол равен половине градусной меры дуги, на которую он опирается.

По условию задачи даны два угла: первый ABD опирается на дугу AD с градусной мерой $$25\cdot 2=50^{\circ}$$, второй – угол CAD опирается на дугу CD с градусной мерой $$41\cdot 2=82^{\circ}$$.

Следовательно, дуга AC=AD+DC будет иметь градусную меру $$50+82=132^{\circ}$$ , а угол ABC, который на него опирается равен $$132:2=66^{\circ}$$ .