Перейти к основному содержанию

ЕГЭ Профиль

Стереометрия

Пирамида

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 974

Объем пирамиды SABC равен 54. На ребрах SA, АВ и АС взяты точки М, N и Р соответственно так, что SM:MA= BN:NA=CP:PA=1:2. Найдите объем пирамиды МАNP.

Ответ: 16
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Треугольники AHS и AKM подобны (SH и MK высоты в пирамидах) и коэффициент подобия равен 2/3 (так как AM:MS = 2:1, значит AS составляет 3 (2+1)  части)

Аналогично треугольники APN и ACB подобны и коэффициент подобия равен 2/3. Пусть h - высота ABCS (SH), a h1 - высота ANPM (MK), S - площадь ABC, а S1 - площадь ANP.

Тогда, $$\frac{1}{3}Sh=54$$.

$$h_1=\frac{2}{3}h$$ 

$$S_1=\frac{4}{9}S$$ (так как площади относятся, как квадрат коэффициента подобия)

$$\frac{1}{3}S_1h_1=\frac{1}{3}*\frac{4}{9}S\frac{2}{3}h=\frac{8}{27}*\frac{1}{3}Sh=\frac{8}{27}*54=16$$

 

Задание 3198

Объем правильной четырехугольной пирамиды SABCD равен 60. Точка E – середина ребра SB. Найдите объем треугольной пирамиды EABC.

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$S_{ABC}=\frac{1}{2}S_{ABCD}$$ $$h_{2}=\frac{1}{2}h_{1}$$ $$V_{ABCDS}=\frac{1}{3}S_{ABCD}\cdot h_{1}$$ $$V_{ABCS}=\frac{1}{3}S_{ABC}\cdot h_{2}=\frac{1}{3}\cdot\frac{1}{2}S_{ABCD}=$$ $$=\frac{1}{4}V_{ABCD}=\frac{1}{4}\cdot60=15$$

 

Задание 3284

В правильной четырехугольной пирамиде боковое ребро равняется 4 и образует с плоскостью основания угол 30 . Найдите объём пирамиды. 

Ответ: 16
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Введем обозначения как показано на рисунке

∠SDH=30 (по условию), значит ∠HSD = 90 - 30 = 60. SH = 2 (катет, лежащий на против угла в 30 градусов равен половине гипотенузы)
$$HD = SD * \sin HSD = 4 * \frac{\sqrt{3}}{2}=2\sqrt{3}$$
$$BD = 2HD = 4\sqrt{3}$$
Из треугольника BAD : пусть BA = AD = x, тогда $$x^{2}+x^{2}=(4\sqrt{3})^{2}$$
Отсюда $$x^{2}=24$$ - площадь основания.
Тогда $$V = \frac{1}{3}S*h=\frac{1}{3}*24*2=16$$
 

Задание 3419

Найдите сторону основания правильной треугольной пирамиды, если её боковая поверхность равна 72, а высота равна 2.

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

 

1) $$S_{b}=72$$ $$DH=2$$

$$S_{DCB}=\frac{72}{3}=24$$

2) из $$\bigtriangleup ABC$$: $$HM=\frac{1}{3}AM$$

$$AM=\frac{\sqrt{3}AB}{2}$$

Пусть $$AB=x$$ $$\Rightarrow$$ $$AM=\frac{\sqrt{3}x}{2}$$ $$\Rightarrow$$ $$HM=\frac{\sqrt{3}x}{6}$$ $$\Rightarrow$$ $$DM=\sqrt{DH^{2}+HM^{2}}=\sqrt{2^{2}+\frac{3X^{2}}{36}}=\sqrt{4+\frac{x^{2}}{12}}$$

$$\Rightarrow$$ $$S_{BDC}=\frac{1}{2}\cdot DM\cdot BC$$ $$\Rightarrow$$ $$24=\frac{1}{2}x\cdot\sqrt{4+\frac{x^{2}}{12}}$$

$$48=x\cdot\sqrt{4+\frac{x^{2}}{12}}$$

$$2304=x^{2}\cdot(4+\frac{x^{2}}{12})$$  $$\Leftrightarrow$$

$$\frac{x^{4}}{12}+4x^{2}-2304=0$$

$$D=16+768=784$$

$$x^{2}=\frac{-4+28}{\frac{1}{6}}=24\cdot6$$ $$\Leftrightarrow x=12$$

Задание 3760

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC с вер­ши­ной S бис­сек­три­сы тре­уголь­ни­ка ABC пе­ре­се­ка­ют­ся в точке O. Пло­щадь тре­уголь­ни­ка ABC равна 2; объем пи­ра­ми­ды равен 6. Най­ди­те длину от­рез­ка OS.

Ответ: 9

Задание 3762

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де $$SABCD$$ точка $$O$$ – центр ос­но­ва­ния, $$S$$ – вер­ши­на, $$SO=15,BD=16$$. Най­ди­те бо­ко­вое ребро $$SA$$.

Ответ: 17

Задание 3767

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC точка M – се­ре­ди­на ребра ABS – вер­ши­на. Из­вест­но, что BC = 3, а пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды равна 45. Най­ди­те длину от­рез­ка SM.

Ответ: 10

Задание 3768

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC точка L — се­ре­ди­на ребра ACS — вер­ши­на. Из­вест­но, что BC = 6, а SL = 5. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды.

Ответ: 45

Задание 3769

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC точка K – се­ре­ди­на ребра BCS – вер­ши­на. Из­вест­но, что SK = 4, а пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды равна 54. Най­ди­те длину ребра AC.

Ответ: 9

Задание 3771

В пра­виль­ной тре­уголь­ной пи­ра­ми­де $$SABC$$ Q– се­ре­ди­на ребра $$AB$$, $$S$$ – вер­ши­на. Из­вест­но, что $$BC=7$$, а пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды равна 42. Най­ди­те длину от­рез­ка $$SQ$$.

Ответ: 4

Задание 3772

Сто­ро­ны ос­но­ва­ния пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды равны 10, бо­ко­вые ребра равны 13. Най­ди­те пло­щадь по­верх­но­сти этой пи­ра­ми­ды.

Ответ: 340

Задание 3773

Сто­ро­ны ос­но­ва­ния пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды равны 10, бо­ко­вые ребра равны 13. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти этой пи­ра­ми­ды.

Ответ: 360

Задание 3774

Объем па­рал­ле­ле­пи­пе­да $$ABCDA_{1}B_{1}C_{1}D_{1}$$ равен 9. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды $$ABCA_{1}$$.

Ответ: 1,5

Задание 3775

Во сколь­ко раз уве­ли­чит­ся объем пра­виль­но­го тет­ра­эд­ра, если все его ребра уве­ли­чить в два раза?

Ответ: 8

Задание 3776

Ос­но­ва­ни­ем пи­ра­ми­ды яв­ля­ет­ся пря­мо­уголь­ник со сто­ро­на­ми 3 и 4. Ее объем равен 16. Най­ди­те вы­со­ту этой пи­ра­ми­ды.

Ответ: 4