ЕГЭ Профиль
Задание 2993
Решите неравенство $$\log_{\frac{5-x}{4}}(x-2)\cdot \log_{x-2}(6x-x^{2})\geq \log_{\frac{5-x}{4}}(3x^{2}-10x+15)$$
$$\left\{\begin{matrix}\frac{5-x}{4}>0\\\frac{5-x}{4}\neq1\\x-2\neq1\\x-2>0\\6x-x^{2}>0\\3x^{2}-10x+15>0\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}5-x>0\Rightarrow x<5\\x\neq1; x\neq3\\x>2\\x\in(0;6)\end{matrix}\right.$$ $$3x^{2}-10x+15>0$$ $$D=100-12\cdot15>0$$ $$x\in(2; 5)$$ $$\log_{\frac{5-x}{4}}(x-2)\cdot \log_{x-2}(6x-x^{2})\geq \log_{\frac{5-x}{4}}(3x^{2}-10x+15)$$ $$\frac{1}{\log_{x-2}\frac{5-x}{4}}\cdot \log_{x-2}(6x-x^{2})\geq \log_{\frac{5-x}{4}}(3x^{2}-10x+15)$$ $$\log_{\frac{5-x}{4}}(6x-x^{2})\geq \log_{\frac{5-x}{4}}(3x^{2}-10x+15)$$ $$(\frac{5-x}{4}-1)(6x-x^{2}-(3x^{2}-10x+15))\geq0$$ $$\frac{5-x-4}{4}\cdot(6x-x^{2}-3x^{2}+10x-15))\geq0$$ $$(1-x)\cdot(-4x^{2}+16x-15)\geq0$$ $$(x-1)\cdot(4x^{2}-16x+15)\geq0$$ $$D=256-240=16$$ $$x_{1}=\frac{16+4}{8}=2,5$$ $$x_{2}=\frac{16-4}{8}=1,5$$
Задание 3036
Решите неравенство $$\log_{3}(2^{x}+1)+\log_{2^{x}+1}3\geq 2,5$$
$$\log_{3}(2^{x}+1)+\log_{2^{x}+1}3\geq 2,5$$ $$\left\{\begin{matrix}2^{x}+1>0\\2^{x}+1\neq1\end{matrix}\right.$$ $$\left\{\begin{matrix}2^{x}>-1\\2^{x}\neq0\end{matrix}\right.$$ $$x\in R$$ $$\log_{3}(2^{x}+1)=y$$ $$y+\frac{1}{y}\geq\frac{5}{2}$$ $$\frac{y^{2}+1}{y}-\frac{5}{2}\geq0$$ $$\frac{2y^{2}+2-5y}{2y}\geq0$$ $$y\neq0$$ $$D=25-16=9$$ $$y_{1}=\frac{5+3}{4}=2$$ $$y_{2}=\frac{5-3}{4}=\frac{1}{2}$$ $$\left\{\begin{matrix}y>0\\y\leq\frac{1}{2}\\y\geq2\end{matrix}\right.$$ $$\left\{\begin{matrix}\log_{3}(2^{x}+1)>0\\\log_{3}(2^{x}+1)\leq\frac{1}{2}\\\log_{3}(2^{x}+1)\geq2\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}2^{x}+1>1\\2^{x}+1\leq\sqrt{3}\\2^{x}+1\geq9\end{matrix}\right.$$ $$\left\{\begin{matrix}x\in R\\x\leq\log_{2}(\sqrt{3}-1)\\x\geq3\end{matrix}\right.$$
Задание 3862
Решите неравенство: $$\frac{3\log_{0,5}x}{2-\log_{0,5}x}\geq2\log_{0,5}x+1$$
$$\frac{3\log_{0,5}x}{2-\log_{0,5}x}\geq2\log_{0,5}x+1$$
ОДЗ: $$\left\{\begin{matrix}x>0\\\log_{0,5}x\neq2\end{matrix}\right.$$ $$\Leftrightarrow$$
$$\left\{\begin{matrix}x>0\\x\neq\frac{1}{4}\end{matrix}\right.$$
Пусть $$\log_{0,5}x=y$$
$$\frac{3y}{2-y}\geq2y+1$$
$$\frac{3y-(2y+1)(2-y)}{2-y}\geq0$$
$$\frac{3y-4y+2y^{2}-2+y}{2-y}\geq0$$
$$\frac{2y^{2}-2}{2-y}\geq0$$
$$\Leftrightarrow\frac{(y-1)(y+1)}{2-y}\geq0$$
$$\left\{\begin{matrix}y\leq-1\\\left\{\begin{matrix}y\geq1\\y<2\end{matrix}\right.\end{matrix}\right.$$
$$\left\{\begin{matrix}\log_{0,5}x\leq-1\\\left\{\begin{matrix}\log_{0,5}x\geq1\\\log_{0,5}x<2\end{matrix}\right.\end{matrix}\right.$$
$$\left\{\begin{matrix}x\geq2\\\left\{\begin{matrix}x\leq\frac{1}{2}\\x>\frac{1}{4}\end{matrix}\right.\end{matrix}\right.$$
Задание 4019
Решите неравенство $$(2^{2}+3\cdot2^{-x})^{2\log_{2}x-\log_{2}(x+6)}>1$$
$$(2^{2}+3\cdot2^{-x})^{2\log_{2}x-\log_{2}(x+6)}>1$$
$$(2^{2}+3\cdot2^{-x})^{2\log_{2}x-\log_{2}(x+6)}>(2^{2}+3\cdot2^{-x})^{0}$$
ОДЗ: $$\left\{\begin{matrix}x>0\\x+6>0\end{matrix}\right.\Leftrightarrow x>0$$
$$2^{x}+3\cdot2^{-x}>1$$ $$\Leftrightarrow$$
$$2^{x}+3\cdot2^{-x}-1>0$$ $$\Leftrightarrow$$
$$\frac{2^{2x}-2^{x}+3}{2^{x}}>0$$
Пусть $$2^{x}=y>0$$
$$\frac{y^{2}-y+3}{y}>0$$
$$D=1-12<0$$ $$\Rightarrow$$ всегда больше нуля
$$\left\{\begin{matrix}2^{x}+3\cdot2^{-x}>1\\2\log_{2}x-\log_{2}(x+6)>0\end{matrix}\right.\Leftrightarrow$$
$$\left\{\begin{matrix}\frac{2^{2x}-2^{x}+3}{2^{x}}>0\\2\log_{2}x>\log_{2}(x+6)\end{matrix}\right.\Leftrightarrow$$
$$\log_{2}x^{2}>\log_{2}(x+6)$$
$$(x^{2}-x-6)(2-1)>0$$
$$x^{2}-x-6>0$$
$$D=1+24=25$$
$$x_{1}=\frac{1+5}{2}=3$$
$$x_{2}=\frac{1-5}{2}=-2$$
С учетом ОДЗ: $$x>3$$
Задание 4189
Решите неравенство: $$\frac{\log_{8}x}{\log_{2}(1+2x)}\leq\frac{\log_{2}\sqrt[3]{1+2x}}{\log_{2}x}$$
ОДЗ: $$\left\{\begin{matrix}x>0\\1+2x>0\\x\neq1\\1+2x\neq1\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x>0\\x>-0,5\\x\neq1\\x\neq0\end{matrix}\right.$$ $$\Leftrightarrow$$ $$x\in(0;1)\cup(1;+\infty)$$; $$\frac{\frac{1}{3}\log_{2}x}{\log_{2}(1+2x)}\leq\frac{\frac{1}{3}\log_{2}(1+2x)}{\log_{2}x}$$; $$\log_{1+2x}x\leq\log_{x}(1+2x)$$;
Пусть $$\log_{1+2x}x=y$$; $$y\leq\frac{1}{y}$$; $$\frac{y^{2}-1}{y}\leq0$$ $$\Leftrightarrow$$ $$\frac{(y-1)(y+1)}{y}\leq0$$
$$\left\{\begin{matrix}y\leq-1\\\left\{\begin{matrix}y>0\\y\leq1\end{matrix}\right.\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}\log_{1+2x}x\leq-1(1)\\\left\{\begin{matrix}\log_{1+2x}x>0(2)\\\log_{1+2x}x\leq1(3)\end{matrix}\right.\end{matrix}\right.$$
1) $$\log_{1+2x}x\leq\log_{1+2x}\frac{1}{1+2x}$$; $$(x-\frac{1}{1+2x})(1+2x-1)\leq0$$; $$\frac{x+2x^{2}-1}{1+2x}\cdot2x\leq0$$; $$\frac{2x(x-0,5)(x+1)}{1+2x}\leq0$$
$$x\in[-1;-0,5)\cup[0;0,5]$$
2) $$\log_{1+2x}x>0$$; $$(x-1)(1+2x-1)>0$$; $$(x-1)\cdot2x>0$$
$$x\in(-\infty;0)\cup(1;+\infty)$$
3) $$\log_{1+2x}x\leq1$$; $$\log_{1+2x}x\leq\log_{1+2x}(1+2x)$$; $$(x-1-2x)(1+2x)\leq0$$; $$(-x-1)(2x+1)\leq0$$
$$x\in(-\infty;-1]\cup[-0,5;+\infty)$$
Найдем пересечение 2 и 3 и объединим результаты с 1: $$x\in(-\infty;0,5]\cup(1;+\infty;)$$
Ответ с учетом ОДЗ: $$x\in(0;0,5]\cup(1;+\infty;)$$
Задание 4397
Решите неравенство: $$-3\log_{(x-1)}\frac{1}{3}+\log_{\frac{1}{3}}(x-1)>2|\log_{\frac{1}{3}}(x-1)|$$
ОДЗ: $$\left\{\begin{matrix}x-1>0\\x-1\neq1\end{matrix}\right.$$ $$\Leftrightarrow$$ $$x\in(1;2)\cup(2;+\infty)$$
$$\frac{-3}{\log_{\frac{1}{3}}(x-1)}+\log_{\frac{1}{3}}(x-1)-2|\log_{\frac{1}{3}}(x-1)|>0$$. Пусть $$\log_{\frac{1}{3}}(x-1)=y$$;
$$-\frac{3}{y}+y-2|y|>0$$ $$\left\{\begin{matrix}\left\{\begin{matrix}y\geq0\\-\frac{3}{y}-y>0\end{matrix}\right.(1)\\\left\{\begin{matrix}y<0\\-\frac{3}{y}+3y>0\end{matrix}\right.(2)\end{matrix}\right.$$ $$\Leftrightarrow$$
1) $$\left\{\begin{matrix}y\geq0\\\frac{-3-y^{2}}{y}>0\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}y\geq0\\-y^{2}>3\end{matrix}\right.$$ $$\Leftrightarrow$$ нет решений
2) $$\left\{\begin{matrix}y<0\\\frac{-1+y^{2}}{y}>0\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}y<0\\y^{2}<1\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}y<0\\y\in(-1;0)\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}\log_{\frac{1}{3}}(x-1)>-1\\\log_{\frac{1}{3}}(x-1)<0\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x-1<3\\x-1>1\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x<4\\x>2\end{matrix}\right.$$
Задание 4670
Решите неравенство: $$2\log _{25}(1+x)(3-x)-\frac{1}{2}\log _{\sqrt{5}}(1+x)> \log _{ \frac{1}{5}} \frac{1}{2}$$
Напишем ОДЗ: $$\left\{\begin{matrix}(1+x)(3-x)> 0\\ 1+x> 0 \end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix} -1< x< 3\\ x> -1 \end{matrix}\right.\Leftrightarrow $$$$-1< x< 3$$
$$2\log _{25}(1+x)(3-x)-\frac{1}{2}\log _{\sqrt{5}}(1+x)> \log _{ \frac{1}{5}} \frac{1}{2}\Leftrightarrow $$$$2\log _{5^{2}}(1+x)(3-x)-\frac{1}{2}\log _{5^{\frac{1}{2}}}(1+x)> \log _{ 5^{-1}} 2^{-1}\Leftrightarrow $$$$2*\frac{1}{2}\log _{5}(1+x)(3-x)-\frac{1}{2}*2\log _{5}(1+x)> (-1)*(-1)\log _{ 5} 2\Leftrightarrow $$$$\log _{5}(1+x)(3-x)-\log _{5}(1+x)> \log _{ 5} 2\Leftrightarrow $$$$\log _{5} \frac{(1+x)(3-x)}{(1+x)}> \log _{ 5} 2\Leftrightarrow $$$$(3-x)> 2\Leftrightarrow x< 1$$
C учетом ОДЗ : $$-1< x< 1$$
Задание 4820
Решите неравенство: $$\log_{10-x^{2}} (\frac{16}{5}x-x^{2})< 1$$
Область допустимых значений неравенства задаётся системой :
$$\left\{\begin{matrix}10-x^{2}>0\\10-x^{2}\neq 1\\\frac{16}{5}x-x^{2}>0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}-\sqrt{10}<x<\sqrt{10}\\x\neq \pm 3\\x(x-\frac{16}{5})<0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\sqrt{10}<x<\sqrt{10}\\x\neq \pm 3\\0<x<\frac{16}{5}\end{matrix}\right.\Leftrightarrow$$ $$x \in (0;3)\cup (3;\sqrt{10})$$
Решение: $$\log_{10-x^{2}}(\frac{16}{5}x-x^{2})<1\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}10-x^{2}>1\\\frac{16}{5}x-x^{2}<10-x^{2}\end{matrix}\right.\\\left\{\begin{matrix}0<10-x^{2}<1\\\frac{16}{5}x-x^{2}>10-x^{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}-3<x<3\\\frac{16}{5}x<10\end{matrix}\right.\\\left\{\begin{matrix}-\sqrt{10}<x<\sqrt{10}\\\left\{\begin{matrix}x>3\\x<-3\end{matrix}\right.\\\frac{16}{5}x>10\end{matrix}\right.\end{matrix}\right.\Leftrightarrow$$$$\left[\begin{matrix}\left\{\begin{matrix}-3<x<3\\x<\frac{25}{8}\end{matrix}\right.\\\left\{\begin{matrix}-\sqrt{10}<x<\sqrt{10}\\\left\{\begin{matrix}x>3\\x<-3\end{matrix}\right.\\x>\frac{25}{8}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}-3<x<\frac{25}{8}\\\frac{25}{8}<x<\sqrt{10}\end{matrix}\right.$$
С учетом области допустимых значений неравенства получаем $$x \in (0;3)\cup (\frac{25}{8};\sqrt{10})$$
Задание 4864
Решите неравенство : $$\log_{4} (x-1) * \log_{x-1} (x+2)> \log_{4}^{2} (x+2)$$
Найдем ОДЗ:$$\left\{\begin{matrix}x-1> 0\\ x-1 \neq 1\\ x+2>0\end{matrix}\right.\Leftrightarrow $$$$ x\in (1;2)\cup (2;+\infty )$$
Далее преобразуем неравенство используя свойства логарифмов:
$$\frac{1}{\log_{(x-1)} (4)} * \log_{x-1} (x+2)-\log_{4}^{2} (x+2)> 0\Leftrightarrow $$$$\frac{ \log_{x-1} (x+2)}{\log_{(x-1)} (4)}-\log_{4}^{2} (x+2)> 0 \Leftrightarrow $$$$\log_{4} (x+2)-\log_{4}^{2} (x+2)> 0 \Leftrightarrow $$$$\left\{\begin{matrix}\log_{4} (x+2)> 0\\ \log_{4} (x+2)< 1\end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix}x> -1\\x< 2\end{matrix}\right.$$
С учетом ОДЗ получаем: $$\left\{\begin{matrix}x> 1\\x< 2\end{matrix}\right.$$
Задание 4915
Решите неравенство $$\log_{x-2}\frac{1}{5}\geq\log_{\frac{x-3}{x-5}}\frac{1}{5}$$
Задание 4962
Решите неравенство $$\log_{3}\log_{\frac{9}{16}}(x^{2}-4x+3)\leq0$$
Задание 5010
Решите неравенство $$\frac{7\cdot4^{x}+2^{x^{2}+1}}{3-2^{2x-x^{2}}}\geq2^{2x+3}$$
$$\frac{7\cdot2^{2x}+\cdot2^{x^{2}}}{3-\frac{2^{2x}}{2^{x^{2}}}}\geq2^{2x}\cdot8$$
Пусть $$2^{2x}=a>0$$; $$2^{x^{2}}=b>0$$
$$\frac{7a+2b}{3-\frac{a}{b}}\geq8a$$; $$\frac{(7a+2b)b}{3b-a}\geq\frac{8a(3b-a)}{3b-a}$$; $$3\cdot2^{x^{2}}-2^{2x}=2^{\log_{2}3}\cdot2^{x^{2}}-2^{2x}=2^{x^{2}+\log_{2}3}-2^{2x}$$ $$\Rightarrow$$ всегда$$>0$$
$$x^{2}+\log_{2}3-2x=0$$
$$D=4-4\log_{2}3=\log_{2}16-\log_{2}81<0$$
$$7ab+2b^{2}\geq24ab-8a^{a}$$; $$2b^{2}-17ab+8a^{2}\geq0$$ $$|\div a^{2}$$;
$$2(\frac{b}{a})^{2}-17\frac{b}{a}+8\geq0$$
$$D=289-64=225$$;
$$\frac{b}{a}=\frac{17+15}{4}=8$$; $$\frac{b}{a}=\frac{17-15}{4}=\frac{1}{2}$$;
$$\left\{\begin{matrix}\frac{b}{a}\geq8\\\frac{b}{a}\leq\frac{1}{2}\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}\frac{2^{x^{2}}}{2^{2x}}\geq8\\\frac{2^{x^{2}}}{2^{2x}}\leq\frac{1}{2}\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}2^{x^{2}-2x}\geq2^{3}\\2^{x^{2}-2x}\leq2^{-1}\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x^{2}-2x\geq3\\x^{2}-2x\leq-1\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x^{2}-2x-3\geq0\\x^{2}-2x+1\leq0\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}(x-3)(x+1)\geq0\\(x-1)^{2}\leq0\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x\geq3\\x<-1\\x=1\end{matrix}\right.$$
Задание 5058
Решите неравенство: $$\sqrt{\log_{9}(3x^{2}-4x+2)}+1>\log_{3}(3x^{2}-4x+2)$$
Пусть $$t=\sqrt{\log_{9}(3x^{2}-4x+2)}=$$$$\sqrt{\log_{3^{2}}(3x^{2}-4x+2)}=$$$$\sqrt{\frac{\log_{3}(3x^{2}-4x+2)}{2}}$$, $$t\geq 0$$ тогда: $$\sqrt{\log_{3}(3x^{2}-4x+2)}=2t^{2}$$.
Неравенство примет вид: $$t+1>2t^{2}\Leftrightarrow$$ $$2t^{2}-t-1<0$$; $$y=2t^{2}-t-1$$, графиком является парабола, ветви направлены вверх ;$$t_{1,2}=\frac{1\pm 3}{4}=-\frac{1}{2};1$$ $$0\leq t\leq 1$$.
Вернёмся к переменной : $$0\leq \sqrt{\log_{9}(3x^{2}-4x+2)}<1\Leftrightarrow$$ $$0\leq \log_{9}(3x^{2}-4x+2)<1\Leftrightarrow$$ $$\log_{9}1\leq \log_{9}(3x^{2}-4x+2)<\log_{9}9\Leftrightarrow$$ $$\left\{\begin{matrix}3x^{2}-4x+2\geq 1\\3x^{2}-4x+2<9\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}3x^{2}-4x+1\geq 0\\3x^{2}-4x-7<0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}3(x-\frac{1}{3})(x-1)\geq 0\\3(x+1)(x-\frac{7}{3})<0\end{matrix}\right.$$$$\left\{\begin{matrix}x \in (-\infty;\frac{1}{3}] \cup [1;+\infty)\\ x\in(-1;\frac{7}{3})\end{matrix}\right.$$
В итоге получим: $$x\in (-1 ;\frac{1}{3}]\cup [1;\frac{7}{3}).$$
Задание 5142
Решите неравенство $$\log_{x^{2}-3}(x^{2}+6)\geq\log_{x^{2}-3}7+\log_{x^{2}-3}x$$
Область допустимых значений неравенства задается системой:
$$\left\{\begin{matrix}x>0\\x^{2}-3>0\\x^{2}-3\neq 1\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x>0\\\left[\begin{matrix}x>\sqrt{3}\\x<-\sqrt{3}\end{matrix}\right.\\x\neq \pm 2\end{matrix}\right.\Leftrightarrow$$ $$x \in (\sqrt{3}2)\cup (2+\infty )$$
Решение: $$\log_{x^{2}-3}(x^{2}+6)\geq \log_{x^{2}-3}7+\log_{x^{2}-3}x\Leftrightarrow$$ $$\log_{x^{2}-3}(x^{2}+6)\geq \log_{x^{3}-3}(7x)\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}x^{2}-3>1\\x^{2}+6\geq 7x\end{matrix}\right.\\\left\{\begin{matrix}0<x^{2}-3<1\\x^{2}+6\leq 7x\end{matrix}\right.\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\left\{\begin{matrix}x^{2}-4>0\\x^{2}-7x+6\geq 0(1)\end{matrix}\right.\\\left\{\begin{matrix}x^{2}-3>0\\x^{2}-4<0\\x^{2}-7x+6\leq 0(2)\end{matrix}\right.\end{matrix}\right.$$
Решим каждую из систем (1) ,(2) в отдельности:
(1): $$\left\{\begin{matrix}(x-2)(x+2)>0\\(x-1)(x-6)\geq 0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\left[\begin{matrix}x>2\\x<-2\end{matrix}\right.\\\left[\begin{matrix}x\geq 6\\x\leq 1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}x<-2\\x\geq 6\end{matrix}\right.$$
(2): $$\left\{\begin{matrix}\left[\begin{matrix}x>\sqrt{3}\\x<-\sqrt{3}\end{matrix}\right.\\-2<x<2\\1\leq x\leq 6\end{matrix}\right.\Leftrightarrow$$ $$\sqrt{3}<x<2$$
В итоге решением будет ялвяться: $$\left[\begin{matrix}x<-2\\x\geq 6\\\sqrt{3}<x<2\end{matrix}\right.$$
С учетом области допустимых значений неравенства окончательно получим : $$x \in (\sqrt{3}; 2)\cup [6;+\infty )$$
Задание 5195
Решите неравенство $$\log_{64x}4\cdot\log^{2}_{0,5}(8x)\leq3$$
$$\log_{64x}4*\log_{0,5}^{2}(8x)\leq 3$$
ОДЗ: $$\left\{\begin{matrix}64x>0\\64x\neq 1\\8x>0 \end{matrix}\right.\Leftrightarrow$$$$\left\{\begin{matrix}x>0\\x \neq \frac{1}{64}\\\end{matrix}\right.$$$$x\in (10 \frac{1}{64})\cup (\frac{1}{64}+\infty)$$
$$\frac{1}{\log_{4}64} +\log_{2}^{2}(8x)\leq 3\Leftrightarrow$$$$\frac{1}{\log_{4}64+\log_{4}x}*(\log_{2}8+\log_{2}x)^{2}\leq 3\Leftrightarrow$$$$\frac{1}{3+\frac{1}{2}\log_{2}x}*(3+\log_{2}x)^{2}\leq 3$$
Замена $$\log_{2}x=y$$
$$\frac{1}{3+0,5 y}(3+y)^{2}-3\leq 0\Leftrightarrow$$$$\frac{9+6y+y^{2}-9-1,5y}{3+0,5 y}\leq 0\Leftrightarrow \frac{y^{2}+4,5 y}{0,5y+3}\leq 0\Leftrightarrow$$$$\frac{y(y+4,5)}{0,5y+3}\leq 0\Leftrightarrow$$
$$\left\{\begin{matrix}y<-6\\\left\{\begin{matrix}y\geq -4,5\\y\leq 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix}\log_{2}x<-6\\\left\{\begin{matrix}\log_{2}x\geq -4,5\\log_{2}x\leq 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix}x<\frac{1}{64}\\\left\{\begin{matrix}x\geq \frac{1}{\sqrt{512}}\\x\leq 1\end{matrix}\right.\end{matrix}\right.$$
С учетом ОДЗ:
$$x\in (0 ;\frac{1}{64})\cup [\frac{1}{16\sqrt{2}};1]$$
Задание 5242
Решите неравенство $$\log_{x^{2}}(3-x)\leq\log_{x+2}(3-x)$$
$$\log _{x^{2}}(3-x)\leq \log_{x+2}(3-x)$$
Найдем область определения функции:
$$\left\{\begin{matrix}x^{2}>0 \\x^{2}\neq1 \\3-x>0\\x+2>0\\x+2 \neq1 \end{matrix}\right.\Leftrightarrow$$$$\left\{\begin{matrix}x\neq 0 \\x \neq \pm 1 \\x<3 \\x>-2 \end{matrix}\right.\Leftrightarrow$$$$x \in (-2-;1)\cup (-1;0)\cup (0;1)\cup (1;3)$$
$$\frac{1}{\log _{3-x}x^{2}}-\frac{1}{\log_{3-x}(x+2)}\leq 0\Leftrightarrow$$$$\frac{\log_{3-x}(x+2)-\log_{3-x}x^{2}}{\log_{3-x}x^{2}*\log_{3-x}(x+2)}\leq 0\Leftrightarrow$$$$\frac{\log_{3-x}\frac{x+2}{x^{2}}}{\log_{3-x}x^{2}*\log_{3-x}(x+2)}\leq 0\Leftrightarrow$$$$\frac{\log_{x^{2}} \frac{x+2}{x^{2}}}{\log_{3-x}(x+2)}\leq 0$$
Воспользуемся методом рационализации:
$$(\frac{x+2}{x^{2}}-1)(x^{2}-1)(3-x-1)(x+2-1)\leq 0\Leftrightarrow$$$$\frac{x+2-x^{2}-1}{x^{2}}*(x-1)(x+1)(2-x)(x+1)\leq 0\Leftrightarrow$$$$\frac{-(x+1)(x-2)}{x^{2}}*(x-1)(x+1)^{2}(2-x)\leq 0\Leftrightarrow$$$$\frac{(x+1)^{3}(x-2)^{2}(x-1)}{x^{2}}\leq 0$$
С учетом области определения: $$x \in (-1;0)\cup (0;1)\cup 2$$
Задание 5290
Решите неравенство $$\frac{(\log_{2}x^{4}+1)\cdot(\log_{2}x-3)-\log_{2}x+2}{\log_{2}^{2}x-5\cdot\log_{2}x+6}\geq\frac{\log_{2}^{2}x-\log_{2}x^{3}+1}{3-\log_{2}x}$$
Найдем ОДЗ:
$$\left\{\begin{matrix}\log_{2}^{2}x-5\cdot\log_{2}x+6\neq 0\\3-\log_{2}x\neq 0\\ x> 0\end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix} \log_{2}x\neq 2\\ \log_{2}x\neq 3\\ x> 0\end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix}x\neq 4\\ x\neq 8\\ x> 0\end{matrix}\right.\Leftrightarrow $$$$x\in(0;4)\cup (4;8)\cup (8;+\infty )$$
Введем замену: $$\log_{2} x = y$$. Тогда неравенство примет вид:
$$\frac{(4y+1)\cdot(y-3)-y+2}{y^{2}-5y+6}\geq\frac{y^{2}-3y+1}{3-y}\Leftrightarrow $$$$\frac{4y^{2}-12y+y-3-y+2}{(y-3)(y-2)}-\frac{y^{2}-3y+1}{-(y-3)}\geq0\Leftrightarrow $$$$\frac{4y^{2}-12y-1}{(y-3)(y-2)}+\frac{(y^{2}-3y+1)(y-2)}{(y-3)(y-2)}\geq 0\Leftrightarrow $$$$\frac{4y^{2}-12y-1+y^{3}-2y^{2}-3y^{2}+6y+y-2}{(y-3)(y-2)}\geq 0\Leftrightarrow$$$$\frac{y^{3}-y^{2}-5y-3}{(y-3)(y-2)}\geq 0$$
Рассмотрим числитель данной дроби. Методом подбора найдем корень (рассматривая целочисленные делители свободного члена, то есть (-3): получим, что $$y=-1$$ является корнем, выделим данный множитель (метод деления вы можете найти в видео, прикрепленному к данному варианту):
$$\frac{(y+1)(y^{2}-2y-3)}{(y-3)(y-2)}\geq 0\Leftrightarrow$$$$\frac{(y+1)(y-3)(y+1)}{(y-3)(y-2)}\geq 0\Leftrightarrow$$ $$\frac{(y+1)^{2}}{y-2}\geq 0\Leftrightarrow$$$$\left [ \begin{matrix}y\geq 2\\ y=-1\end{matrix}\right.$$
Вернемся к обратной замене:
$$\left [ \begin{matrix}\log_{2}x \geq 2\\ \log_{2}x=-1\end{matrix}\right.\Leftrightarrow$$$$\left [ \begin{matrix}x \geq 4\\ x=\frac{1}{2} \end{matrix}\right.$$
C учетом ОДЗ получаем: $$x \in \left \{ \frac{1}{2} \right \} \cup (4;8) \cup (8; +\infty)$$
Задание 5338
Решите неравенство $$(\log_{x} 2 -1)\log_{2} 2x \leq \frac{3}{2}$$
ОДЗ: $$\left\{\begin{matrix}x> 0\\ x\neq 1\end{matrix}\right.\Leftrightarrow$$$$ x \in (0;1)\cup (1;+\infty )$$
Выполним преобразования, используя формулы: $$\log_{a} b = \frac{1}{\log_{b} a} ; log_{c} ab = \log_{c}a + \log_{c} b$$ $$(\frac{1}{\log_{2}x}-1)(\log_{2}2+\log_{2}x)\leq \frac{3}{2}$$
Введем замену $$\log_{2}x=y$$
$$(\frac{1}{y}-1)(1+y)\leq \frac{3}{2}\Leftrightarrow$$$$ \frac{2(1-y)(y+1)-3y}{2y}\leq 0\Leftrightarrow $$$$\frac{-2y^{2}-3y+2}{2y}\leq 0 |\cdot (-1) \Leftrightarrow$$$$ \frac{2y^{2}+3y-2}{y}\geq 0\Leftrightarrow $$$$\frac{2(y-0,5)(y+2)}{y}\geq 0\left[\begin{matrix}\left\{\begin{matrix}y\geq -2\\ y< 0\end{matrix}\right.\\ y\geq 0,5\end{matrix}\right.$$
Найдем промежутки, на которых будут положительные значения:
Выполним обратную замену:
$$\left[\begin{matrix}\left\{\begin{matrix}\log_{2}x\geq -2\\ \log_{2}x< 0\end{matrix}\right.\\ \log_{2}x\geq 0,5\end{matrix}\right.\Leftrightarrow $$$$\left[\begin{matrix}\left\{\begin{matrix}x\geq \frac{1}{4}\\x< 1\end{matrix}\right.\\x\geq \sqrt{2}\end{matrix}\right.\Leftrightarrow $$
С учетом ОДЗ получим: $$x \in \left [\frac{1}{4};1 \right )\cup \left [ \sqrt{2};+\infty \right )$$
Задание 5386
Решите неравенство: $$(x^{2}-8x+15)(2^{x-3}+2^{3-x}-2)\sqrt{x-1} \leq 0$$
Расположим на множители выражение в скобках : $$x^{2}-8x+15=(x-3)(x+5),$$ $$x_{1,2}=4\pm 1={3;5}$$
Пусть $$2^{x-3}=t, t>0, 2^{3-x}=2^{-(x-3)}=\frac{1}{2^{x-3}}=\frac{1}{t}$$, тогда :
$$(t+\frac{1}{t}-2)^{-1}=$$$$(\frac{t^{2}-2t+1}{t})=$$$$(\frac{(t-1)^{2}}{t})^{-1}=$$$$\frac{t}{(t-1)^{2}}>0$$ при $$t\neq 1$$(т.к. $$t>0$$)
Таким образом , второй множитель в левой части неравенства при $$2^{x-3}\neq 1\Leftrightarrow$$ $$x-3\neq 0\Leftrightarrow$$ $$x\neq 3$$ всегда положителен и $$\Rightarrow$$ не влияет на знак неравенства , поэтому неравенство равносильно :
$$\left\{\begin{matrix}(x-3)(x-5)\sqrt{x-1}\leq 0\\x\neq 3\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\left[\begin{matrix}(x-3)(x-5)\sqrt{x-1}=0,(1)\\(x-3)(x-5)\sqrt{x-1}<0,(2)\end{matrix}\right.\\x\neq 3\end{matrix}\right.$$
(1): $$\left\{\begin{matrix}(x-3)(x-5)\sqrt{x-1}=0\\x\neq 3\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\left[\begin{matrix}x-3=0\\x-5=0\\x-1=0\end{matrix}\right.\\x-1\geq 0\\x\neq 3\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\left[\begin{matrix}x=3\\x=5\\x=1\end{matrix}\right.\\x\geq 1\\x\neq 3\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x=5\\x=1\end{matrix}\right.$$
(2): $$\left\{\begin{matrix}(x-3)(x-5)\sqrt{x-1}<0\\x\neq 3\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}(x-3)(x-5)<0\\x-1>0\\x\neq 3\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}3<x<5\\x>1\end{matrix}\right.\Leftrightarrow$$ $$3<x<5$$
Объединяя результаты (1) и (2) получим , что неравенство выполняется при $$x \in {1}\cup (3; 5]$$
Задание 6042
Решите неравенство: $$\frac{3^{2x}-54*(\frac{1}{3})^{2(x+1)}-1}{x+3}\leq 0$$
$$\frac{3^{2x}-54*\frac{1}{3}^{2*\left ( x+1 \right )}-1}{x+3}\leq 0$$
ОДЗ: $$x+3\neq 0\Leftrightarrow x\neq -3\Leftrightarrow$$$$ x\in \left ( -\infty ;-3 \right )\bigcup \left ( -3;+\infty \right )$$
$$\frac{3^{2x}-54*\frac{1}{3}^{2x+2}}{x+3}\leq 0$$
$$\frac{3^{2x}-54*\frac{1}{9}*\frac{1}{3}^{2x}-1}{x+3}\leq 0$$
Замена: $$3^{2x} =y\Rightarrow \frac{1}{3}^{2x}=\frac{1}{y}$$
$$y-\frac{6}{y}-1=\frac{y^{2}-y-6}{y}=\frac{\left ( y-3 \right )*\left ( y+2 \right )}{y}$$
Обратная замена:$$y=3^{2x}$$
$$\frac{\left ( 3^{2x}-3 \right )*\left ( 3^{2x}+2 \right )}{3^{2x*\left ( x+3 \right )}}\leq 0|*\frac{3^{2x}}{3^{2x}+2}$$
$$\frac{3^{2x}-3}{x+3}\leq 0\Leftrightarrow \frac{2x-1}{x+3}\leq 0$$
Отметим значения ,когда числитель равен и знаменатель не равен нулю. Расставим знаки значений, которые принимает выражение слева от нуля на полученных промежутках:
Нам необходимы неполжительные значения. Тогда ответом будет $$x \in (-3;0,5]$$
Задание 6089
Решите неравенство: $$\frac{\log_{9} x-\log_{18} x}{\log_{18} (2-x)-\log_{36} (2-x)}=\log_{36} 9$$
$$\frac{\log_{9}x-\log_{18}x}{\log_{18}(2-x)-\log_{36}(2-x)}\leq \log_{36} 9$$
$$\left\{\begin{matrix}x> 0 & \\2-x> 0 \\ \log_{18} (2-x)-\log_{36}(2-x)\neq 0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x> 0 \\x< 2 \\2-x\neq 1\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x> 0 & \\x< 2\\x\neq 1\end{matrix}\right.\Leftrightarrow x\in ( 0; 1)\cup (1;2)$$
Рассмотрим промежутки по отдельности и воспользуемся свойствами логарифмических функций:
При $$x\in (0; 1) : (a)\log_{9}x-\log_{18}x< 0$$, $$(b)\log_{18}(2-x)-\log_{36}(2-x)> 0\Rightarrow$$ $$(f)\frac{\log_{9}x-\log_{18}x}{\log_{18}(2-x)-\log_{36}(2-x)}< 0$$.
Аналогично $$x\in (1;2) (a) > 0; (b) < 0\Rightarrow f< 0$$, но $$\log_{36}9 >0$$ при всех х из полученных промежутков, следовательно, неравенство выполняется в обоих случаях и $$\Rightarrow x\in (0;1)\cup (1;2)$$.
Задание 6136
Решите неравенство $$\log_{\frac{1}{3}} \frac{x-4}{x+4}-\log_{\frac{x+4}{x-4}} 3> 0$$
$$log_{\frac{1}{3}}\frac{x-4}{x+4}-log_{\frac{x+4}{x-4}}3> 0$$
ОДЗ:
$$\left\{\begin{matrix}\frac{x-4}{x+4} > 0& & \\\frac{x-4}{x+4}\neq 1 & &\end{matrix}\right.x\in (-\infty ;-4)\cup (4; +\infty )$$
$$log_{3}\frac{x+4}{x-4}-\frac{1}{log_{3}\frac{x+4}{x-4}}> 0$$
Введем замену:
$$log_{3}\frac{x+4}{x-4}=a$$
Получим:
$$a-\frac{1}{a}> 0\Rightarrow \frac{a^{2}-1}{a}> 0$$
$$\left[\begin{matrix}\left\{\begin{matrix}a>-1\\ a<0\end{matrix}\right.\\ a>1\end{matrix}\right.$$
Тогда:
$$\left[\begin{matrix}\left\{\begin{matrix}\log_{3} \frac{x+4}{x-4}>-1\\ log_{3}\frac{x+4}{x-4}<0\end{matrix}\right.\\ log_{3}\frac{x+4}{x-4}>1\end{matrix}\right.\Leftrightarrow$$$$\left[\begin{matrix}\left\{\begin{matrix}\frac{x+4}{x-4}>\frac{1}{3}\\ \frac{x+4}{x-4}<1\end{matrix}\right.\\ \frac{x+4}{x-4}>3\end{matrix}\right.\Leftrightarrow$$$$\left[\begin{matrix}\left\{\begin{matrix}\frac{2x+16}{x-4}>0\\ \frac{8}{x-4}<0\end{matrix}\right.\\ \frac{-2x+16}{x-4}>0\end{matrix}\right.$$
Отметим решение внутренней системы (первые два неравенства):
Отметим решение третьего неравенства:
Отметим решение всей совокупности:
С учетом ОДЗ видим, что конечное решение будет: $$(-\infty ; -8)\cup (4;8)$$
Задание 6184
Решите неравенство $$\frac{4}{(\frac{1}{3})^{x-1}-9}-\frac{1}{(\frac{1}{3})^{x}-1}-3^{x-1}> 0$$
$$\frac{4}{(\frac{1}{3})^{x-1}-9}-\frac{1}{(\frac{1}{3}^{x})-1}-3^{x-1}>0$$
$$\frac{4}{3 (\frac{1}{3})^{x}-9}-\frac{1}{(\frac{1}{3})^{x}-1}-(\frac{1}{3})^{-x}*\frac{1}{3}>0$$
Замена: $$(\frac{1}{3})^{x}=y>0$$
$$\frac{4}{3y-9}-\frac{1}{y-1}-\frac{1}{3y}>0$$
$$\frac{4(3y(y-1))-3y(3y-9)-(3y-9)(y-1)}{3y(y-1)(3y-9)}>0$$
$$\frac{12y^{2}-12y-9y^{2}+27 y-3y^{2}+3y+9y-9}{3y(y-1)(3y-9)}>0$$
$$\frac{27y-9}{3y(y-1)(3y-9)}>0\Leftrightarrow \frac{3y-1}{y(y-1)(y-3)}>0$$
Построим координатную прямую, отметим нули данного выражения, расставим знаки значений, которые принимает данное выражение на полученных промежутках:
С учетом , что $$y>0$$ имеем:
$$\left[\begin{matrix}\left\{\begin{matrix}y>\frac{1}{3}\\y<1\end{matrix}\right.\\y>3\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}3^{-x}>3^{-1}\\3^{-x}<3^{0}\end{matrix}\right.\\3^{-x}>3^{1}\end{matrix}\right.\Leftrightarrow $$$$\left[\begin{matrix}\left\{\begin{matrix}x<1 \\x>0\end{matrix}\right. \\x<-1\end{matrix}\right.$$
Тогда $$x\in (-\infty ;-1)\cup(0;1)$$
Задание 6231
Решите неравенство $$x*3^{log_{\frac{1}{9}(16x^{4}-8x^{2}+1)}}<\frac{1}{3}$$
Область определения:
$$16x^{4}-8x^{2}+1>0\Leftrightarrow (4 x^{2}-1)^{2}>0\Leftrightarrow$$$$x^{2}\neq \frac{1}{4}\Leftrightarrow x\neq \pm \frac{1}{2}$$
Решим данное неравенство:
$$x*3^{log_{\frac{1}{9}(4x^{2}-1)^{2}}}*3<1$$
$$x*3^{2*(-\frac{1}{2})log_{3}\left | 4x^{2}-1 \right |)}*3<1$$
$$x*\frac{1}{\left | 4x^{2}-1 \right |}*3<1$$
$$\frac{3x-\left | 4x^{2}-1 \right |}{\left | 4x^{2}-1 \right |}<0$$
Умножим обе части на $$\left | 4x^{2}-1 \right |$$ так как оно положительно при любой х:
$$3x<\left | 4x^{2}-1 \right |\Leftrightarrow$$ $$\left[\begin{matrix}4x^{2}-1>3x & & \\4x^{2}-1 <-3x \end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}4x^{2}-1+3x>0 & & \\4x^{2}-1-3x <0 \end{matrix}\right.\Leftrightarrow$$$$\left[\begin{matrix}(x-1)(x+\frac{1}{4})>0 & & \\(x+1)(x-\frac{1}{4})<0 & &\end{matrix}\right.$$
Получаем $$x\in (-\infty ;-\frac{1}{4})\cup (-\frac{1}{4}; \frac{1}{4})\cup (1;+\infty )$$
С учетом области определения получим:
$$x\in (-\infty ;-\frac{1}{2})(-\frac{1}{2}; -\frac{1}{4})\cup (-\frac{1}{4}; \frac{1}{4})\cup (1;+\infty )$$
Задание 6279
Решите неравенство $$\frac{1}{x}\log _{7}(\frac{9}{2}-2*7^{-x})>1$$
Ограничения для логарифмируемой функции:
$$\frac{9}{2}-27^{-x}>0\Leftrightarrow 2*7^{-x}<\frac{9}{2}\Leftrightarrow$$ $$7^{-x}<\frac{9}{4}\Leftrightarrow$$ $$7^{-x}<7^{\log_{7}\frac{9}{4}}\Leftrightarrow$$ $$x>-\log_{7}\frac{9}{4}=\log _{7}\frac{4}{9}$$
Решим неравенство:
$$\frac{\log_{7}(\frac{9}{2}-2*7^{-x})-x}{x}>0\Leftrightarrow \frac{\log _{7}(\frac{9}{2}-2*7^{-x})*7^{-x}}{x}>0$$$$\Leftrightarrow \frac{\frac{9}{2}*7^{-x}-1}{x}>0$$
Рассмотрим числитель : пусть $$7^{-x}=y>0$$
$$\frac{9}{2}y-2y^{2}-1=0\Leftrightarrow$$$$4y^{2}-9y+2=0\Leftrightarrow$$$$D=81-32=49$$
$$y_{1}=\frac{9+7}{8}=2$$ и $$y_{2}=\frac{9-7}{8}=\frac{1}{4}$$
В соответствии с полученными корнями разложим числитель на множители, используя формулу $$ax^{2}+bx+c=a(x-x_{1})(x-x_{2})$$, а так же умножим на минус один обе части:
$$\frac{(7^{-x}-2)(7^{-x}-\frac{1}{4})}{x}<0\Leftrightarrow$$$$\frac{(7^{-x}-7^{\log _{7} 2)})(7^{-x}-7^{\log_{7}\frac{1}{4}})}{x}<0\Leftrightarrow$$ $$\frac{(-x-\log _{7}2)(-x-\log_{7}\frac{1}{4})}{x}<0\Leftrightarrow$$$$\frac{(x+log _{7}2)(x+log_{7}\frac{1}{4})}{x}<0$$
Учтем, что $$-\log _{7}2=\log_{7}\frac{1}{2}$$ и $$-\log_{7}\frac{1}{4}=\log_{7}4$$, а так же $$D(f)$$
$$x \in (\log_{7}\frac{4}{9}; \log _{7}\frac{1}{2})\cup (0; \log_{7}4)$$
Задание 6327
Решите неравенство: $$\log_{8} (\frac{1}{3}-x) \log_{|2x+\frac{1}{3}|} (\frac{1}{3}-x) > \log_{2} \frac{\frac{1}{3}-x}{\sqrt[3]{(2x+\frac{1}{3})^{2}}}$$
$$\log_{8}(\frac{1}{3}-x)\log_{12x+\frac{1}{3}}(\frac{1}{3}-x)>\log_{2}\frac{(\frac{1}{3}-x)}{\sqrt[3]{(2x+\frac{1}{3})^{2}}}$$
С учетом того, что $$\sqrt[3]{(2x+\frac{1}{3})^{2}} \geq 0$$ получаем следующую область определения $$D(x)$$:
$$\left\{\begin{matrix}\frac{1}{3}-x>0\\ |2x+\frac{1}{3}|>0\\ |2x+\frac{1}{3}|\neq 1\end{matrix}\right.\Leftrightarrow$$$$\left\{\begin{matrix}x<\frac{1}{3}\\ 2x+\frac{1}{3}\neq 0\\ 2x+\frac{1}{3}\neq 1\\ 2x+\frac{1}{3}\neq -1\end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix}x<\frac{1}{3}\\ x\neq -\frac{1}{6}\\ x\neq -\frac{1}{3}\\ x\neq -\frac{2}{3}\end{matrix}\right.$$
Преобразуем правую часть неравенства: $$\log_{2}\frac{(\frac{1}{3}-x)}{\sqrt[3]{(2x+\frac{1}{3})^{2}}}=$$$$\log_{2}(\frac{1}{3}-x)-\log_{2}\sqrt[3]{(2x+\frac{1}{3})^{2}}=$$$$\log_{2}(\frac{1}{3}-x)-\frac{2}{3}\log_{2}|2x+\frac{1}{3}|$$
Пусть $$a=\frac{1}{3}-x$$ и $$b=|2x+\frac{1}{3}|$$, тогда:
$$\frac{1}{3}\log_{2}a\log_{b}a-\log_{2}a+\frac{2}{3}\log_{2}b>0\Leftrightarrow$$$$\log_{2}a\log _{b}a(1-\frac{3}{\log_{b}a}+\frac{2 \log_{2}b}{\log_{2}a \log_{b}a})>0\Leftrightarrow$$$$\log_{2}a \log_{b}a(\frac{\log_{b}^{2}a-3\log_{b}a+2}{\log_{b}^{2}a})>0\Leftrightarrow$$$$\frac{\log_{2}a}{\log_{b}a}(\log_{b}^{2}a-3\log_{b}a+2)>0\Leftrightarrow$$$$\frac{\log_{a}b}{\log_{a}2}(\log_{b}a-2)(\log_{b}a-1)>0\Leftrightarrow$$$$\log_{2}b(\log_{b}a-\log_{b}b^{2})(\log_{b}a-\log_{b}b)>0\Leftrightarrow$$
Воспользуемся методами рационализации для логарифмов:
$$(b-1)(a-b^{2})(b-1)(a-b)(b-1)>0\Leftrightarrow$$$$(b-1)(a-b^{2})(a-b)>0$$
Вернемся обратно к заменам:
$$(\left | 2x+\frac{1}{3} \right |-1)(\frac{1}{3}-x-(2x+\frac{1}{3})^{2})(\frac{1}{3}-x-\left | 2x+\frac{1}{3} \right |)\Leftrightarrow$$$$(\left | 2x+\frac{1}{3} \right |-1)(36x^{2}+21x-2)(\left | 2x+\frac{1}{3} \right |-\left | \frac{1}{3}-x \right |)>0$$
С учетом D(f): $$\frac{1}{3}-x>0$$, при всех Х. Тогда $$\frac{1}{3}-x$$ мы можем представить, как $$|\frac{1}{3}-x|$$, а так же $$1=|1|$$ и воспользоваться методами рационализации для модулей:
$$(2x+\frac{1}{3}-1)(2x+\frac{1}{3}+1)(x-\frac{1}{12})(x+\frac{2}{3})(2x+\frac{1}{3}-\frac{1}{3}+x)(2x+\frac{1}{3}+\frac{1}{3}-x)>0\Leftrightarrow$$$$(2x-\frac{2}{3})(2x+\frac{4}{3})(x-\frac{1}{2})(x+\frac{2}{3})(3x)(x+\frac{2}{3})>0\Leftrightarrow$$$$(x+\frac{2}{3})(x-\frac{1}{3})(x-\frac{1}{12})x>0$$
Получаем, что (промежутки выделены синим цветом): $$\left[\begin{matrix}x< -\frac{2}{3}\\ \left\{\begin{matrix}x> 0\\ x<\frac{1}{2}\end{matrix}\right.\\ x> \frac{1}{3}\end{matrix}\right.$$
С учетом $$D(x)$$: $$\left[\begin{matrix}x< -\frac{2}{3}\\\left\{\begin{matrix}x>0\\x<\frac{1}{12} \end{matrix}\right.\end{matrix}\right.$$
Задание 6374
Решите неравенство: $$\log_{x}\frac{x+1}{12x}> 2\log_{\frac{x+1}{12x}} x$$
Область определения D(x):
$$\left\{\begin{matrix}x>0\\x\neq 1\\\frac{x+1}{12x}>0\\\frac{x+1}{12}>0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x>0\\x\neq 1\\x+1>0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x>0\\x\neq 1\\x>-1\end{matrix}\right.\Leftrightarrow$$ $$x\in (0;1)\cup (1;+\infty )$$
Разложим данные логарифмы:
$$\log_{x}(x+1)-(\log_{x}12+\log_{x}x)-\frac{2}{\log_{x}\frac{x+1}{12}}>0$$
$$\log_{x}(x+1)-\log_{x}12-1-\frac{2}{\log_{x}}\frac{x+1}{12}>0$$
$$\log_{x}\frac{x+1}{12}-\frac{2}{\log\frac{x+1}{12}}-1>0$$
$$\frac{\log_{x}^{2}\frac{+1}{12}-\log_{x}\frac{x+1}{12}-2}{\log_{x}\frac{x+1}{12}}>0$$
$$\frac{(\log_{x}\frac{+1}{12}-2)(\log_{x}\frac{x+1}{12}-1)}{\log_{x}\frac{x+1}{12}}>0$$
Воспользуемся методом рационализации:
$$\frac{(x-1)(x+1-12x^{2})(x^{2}+x-12)}{(x+1-12)}>0$$
$$\frac{(x-1)(x-\frac{1}{3})(x+\frac{1}{4})(x-2)(x+4)}{x-11}<0$$
С учетом области определения:
$$x \in (\frac{1}{3};1)\cup (3 ;11)$$
Задание 6421
Решите неравенство $$\log_{\frac{1}{3}}\log_{2} \frac{x^{2}-|x|-12}{x+3}>0$$
ОДЗ : $$\left\{\begin{matrix}\log_{2}\frac{x-\left | x \right |-12}{x+3}>0(1)\\\frac{x^{2}-\left | x \right |-12}{x+3}>0(2)\end{matrix}\right.$$
(1): $$\frac{x^{2}-\left | x \right |-12}{x+3}>1\Leftrightarrow$$ $$\frac{(\left | x \right |+3)(\left | x \right |-4)-(x+3)}{x+3}>0$$
При $$x\geq 0:\frac{(x+3)(\left | x \right |-4-1)}{x+3}>0\Leftrightarrow$$ $$\left | x \right |-5>0\Leftrightarrow$$ $$x \in (-\infty; -5)\cup (5 ;+\infty )$$. С учетом $$x\geq 0: x\in (5;+\infty )$$
При $$x<0:\frac{x^{2}+x-12-x-3}{x+3}>0\Leftrightarrow$$ $$\frac{x^{2}-15}{x+3}>0$$.
С учетом $$x<0:x \in (-\sqrt{15}; -3)$$
(2): $$\frac{(\left | x \right |+3)(\left | x \right |-4)}{x+3}>0\Leftrightarrow$$ $$\frac{\left | x \right |-4}{x+3}>0\Leftrightarrow$$ $$\frac{(x-4)(x+4)}{x+3}>0$$
Итоговое ОДЗ:
$$x \in (-\sqrt{15} ;-3)\cup (5; +\infty )$$
Решение:
$$\log_{2}\frac{(\left | x \right |+3)(\left | x \right |-4)}{x+3}<1\Leftrightarrow$$ $$\frac{(\left | x \right |+3)(\left | x \right |-4)}{x+3}<2\Leftrightarrow$$ $$\frac{(\left | x \right |+3)(\left | x \right |-4)-2(x+3)}{x+3}<0$$
При $$x\geq 0 : \frac{(x+3)(\left | x \right |-6)}{x+3}<0\Leftrightarrow$$ $$(x-6)(x+6)<0$$.С учетом $$x\geq 0: [0;6)$$
При $$x<0:\frac{x^{2}+x-12-2x-6}{x+3}<0 \Leftrightarrow$$ $$\frac{x^{2}-x-18}{x+3}<0$$
Рассмотрим числитель дроби: $$x^{2}-x-18=0$$, тогда $$D=1+72=73$$ и $$x_{1,2}=\frac{1\pm \sqrt{73}}{2}$$
C учетом $$x<0: (-\infty ;\frac{1-\sqrt{73}}{2})\cup (-3;0) $$
Итоговое решение $$x \in (-\infty ;\frac{1-\sqrt{73}}{2})\cup (-3; 6)$$
С учетом ОДЗ:
$$x \in (-\sqrt{15} ;\frac{1-\sqrt{73}}{2})\cup (5; 6)$$
Задание 6469
Решите неравенство $$(\log_{2} x)\sqrt{\log_{x} (\frac{\sqrt{x}}{2}}) \leq 1$$
ОДЗ: $$\left\{\begin{matrix}x>0\\\frac{\sqrt{x}}{2}>0\\x\neq 1\\\log_{x}\frac{\sqrt{x}}{2}\geq 0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x>0\\x\neq 1\\(x-1)(\frac{\sqrt{x}}{2}-1)\geq 0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x>0\\x\neq 1\\x \in (-\infty;1]\cup [4; +\infty )\end{matrix}\right.\Leftrightarrow$$ $$x \in (0;1)\cup [4; +\infty )$$
Решение: $$\log_{2}x\sqrt{\log_{x}\sqrt{x}-\log_{x}2}\leq 1\Leftrightarrow$$$$\log_{2}x\sqrt{\frac{1}{2}-\frac{1}{\log_{2}x}}\leq 1$$
1) При $$x\in (0;1)$$: $$\log_{2}x<0\Rightarrow \log_{2}x\sqrt{\log_{x}\frac{\sqrt{x}}{2}}\leq 1$$ при всех x
2) При $$x [4; +\infty )$$: $$\log_{2}x \geq 2$$. Замена $$\log_{2}x=y\geq 2$$. Получим: $$y\sqrt{\frac{y-2}{2y}}\leq 1$$. С учетом того, что $$y\geq 2$$ поделим обе части на $$y$$: $$\sqrt{\frac{y-2}{2y}}\leq \frac{1}{y}$$
При $$y\geq 2$$, $$\frac{y-2}{2y}\geq 0$$ и $$\frac{1}{y}>0$$ при всех y,тогда: $$\frac{y-2}{2y}\leq \frac{1}{y^{2}}\Leftrightarrow$$ $$\frac{y^{2}-2y-2}{2y^{2}}\leq 0\Leftrightarrow$$ $$y^{2}-2y-2\leq 0\Leftrightarrow$$ $$y\in [1-\sqrt{3};1+\sqrt{3}]$$. С учетом $$y\geq 2$$: $$y\in [2;1+\sqrt{3}]$$
Обратная замена: $$\left\{\begin{matrix}y\geq 2\\y\leq 1+\sqrt{3}\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\log_{2}x\geq 2\\\log_{2}x\leq 1+\sqrt{3}\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x\geq 4\\x\leq 2^{1+\sqrt{3}}\end{matrix}\right.$$
Итого, объеденив решения (1) и (2): $$x \in (0;1)\cup [4;2^{1+\sqrt{3}}]$$
Задание 6476
Решите неравенство: $$\log_{10} |2x+3|^{3}+2\log_{(2x+3)^{3}} 10<3$$
Обозначим $$y=(2x+3)^{3}>0$$. Тогда исходное неравенство примет вид: $$\lg y +\frac{2}{\lg y}<3$$
Снова заменим переменную: $$\lg y=t$$. Тогда $$y+\frac{2}{5}-3<0\Leftrightarrow$$ $$\frac{(t-1)(y-2)}{t}<0$$
Отберем решения последнего неравенства с помощью метода интервалов. Получаем: $$\left\{\begin{matrix}t<0\\1<t<2\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}lg y<0\\1<lg y <2\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}0<y<1\\10<y<100\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}0<(2x+3)^{3}<1\\10<(2x+3)^{3}<100\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}0<2x+3<1\\\sqrt[3]{10}<2x+3<\sqrt[3]{100}\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}-\frac{3}{2}<x<-1\\\frac{\sqrt[3]{10}-3}{2}<x<\frac{\sqrt[3]{100}-3}{2}\end{matrix}\right.$$
Задание 6523
Решите неравенство: $$\frac{1}{4}x^{\frac{1}{2}\log_{2} x}\geq 2^{\frac{1}{4}\log_{2} ^{2} x}$$
ОДЗ: $$x>0$$
$$\frac{1}{4} * x^{\frac{1}{2}\log_{2}x}\geq 2 ^{\frac{1}{4} \log_{2}^{2}x}|:\frac{1}{4}\Leftrightarrow$$$$x^{\frac{1}{2}\log_{2}x}\geq 2^{2+\frac{1}{4}\log_{2}^{2}x}$$
Введем замену: $$\frac{1}{2}\log_{2}x=y\Rightarrow \log_{2}x=2y\Rightarrow x=2^{2y}$$
$$(2^{2y})^{y}\geq 2^{2+y^{2}}\Leftrightarrow 2^{2y^{2}}\geq 2^{2+y^{2}}\Leftrightarrow 2y^{2}\geq 2+y^{2}\Leftrightarrow y^{2}\geq 2\Leftrightarrow$$ $$\left[\begin{matrix}y\geq \sqrt{2}\\y\leq -\sqrt{2}\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}\frac{1}{2}\log_{2}x\geq \sqrt{2}\\\frac{1}{2}\log_{2}x\leq -\sqrt{2}\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}\log_{2}x\geq 2\sqrt{2}\\\log_{2} x \leq -2\sqrt{2}\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}x \geq 2^{2\sqrt{2}}\\x \leq \frac{1}{2^{2\sqrt{2}}}\end{matrix}\right.$$
С учетом ОДЗ: $$x \in (0, \frac{1}{2^{2\sqrt{2}}}]\cup [2^{2\sqrt{2}}, +\infty )$$
Задание 6570
Решите неравенство: $$x\log_{\frac{1}{3}} (\frac{1}{3}-x)\geq |x|$$
ОДЗ: $$\frac{1}{3}-x>0\Leftrightarrow$$ $$-x>-\frac{1}{3}\Leftrightarrow$$ $$x<\frac{1}{3}$$
1) При $$x \in (-\infty ;0)$$
$$x \log_{\frac{1}{3}}(\frac{1}{3}-x)\geq -x\Leftrightarrow$$ $$x(\log_{\frac{1}{3}}(\frac{1}{3}-x)+1)\geq 0\Leftrightarrow$$ $$x(\log_{\frac{1}{3}}(\frac{1}{3}-x)*\frac{1}{3})\geq 0\Leftrightarrow$$ $$\log_{\frac{1}{3}} \frac{1}{3}(\frac{1}{3}-x)\leq 0\Leftrightarrow$$ $$(\frac{1}{9}-\frac{1}{3}x-1)(\frac{1}{3}-1)\leq 0\Leftrightarrow$$ $$(-\frac{1}{3}x-\frac{8}{9})\geq 0\Leftrightarrow$$$$-\frac{1}{3}x\geq \frac{8}{9}\Leftrightarrow$$ $$x\leq -\frac{8}{3}$$
2)При $$x \in (0; +\infty )$$
$$x \log_{\frac{1}{3}}(\frac{1}{3}-x)\geq x\Leftrightarrow$$ $$x(\log_{\frac{1}{2}}(\frac{1}{3}-x)-1)\geq 0\Leftrightarrow$$ $$x (\log_{\frac{1}{3}}(\frac{1}{3}-x)*3)\geq 0\Leftrightarrow$$ $$\log_{\frac{1}{3}}(\frac{1}{3}-x)3\geq 0\Leftrightarrow$$ $$(1-3x-1)(\frac{1}{3}-1)\geq 0\Leftrightarrow$$ $$(-3x)\leq 0\Leftrightarrow$$ $$x\geq 0$$
3) При x=0 неравенство выполняется
Тогда решение: $$(-\infty ;-\frac{8}{3})\cup [0;+\infty )$$
С учетом ОДЗ: $$(-\infty;-\frac{1}{3}]\cup [0;\frac{1}{3})$$
Задание 6617
Решите неравенство $$2+\log_{\sqrt{x^{2}-2x-3}}\frac{x+4}{x+1}\geq \log_{\sqrt{x^{2}-2x-3}}(x^{2}-2x-2)^{2}$$
ОДЗ: $$\left\{\begin{matrix}\frac{x+4}{x+1}>0\\x^{2}-2x-3>0\\x^{2}-2x-3\neq 1\\x^{2}-2x-2\neq 0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x \in(-\infty ;-4)\cup (-1;+\infty )\\x \in (-\infty ; -1)\cup (3;+\infty )\\x \neq 1\pm \sqrt{3}\\x \neq 1\pm \sqrt{5}\end{matrix}\right.$$$$\Leftrightarrow x \in (-\infty ;-4)\cup (3;1+\sqrt{5})\cup(1+\sqrt{5};+\infty )$$
При данном ОДЗ: $$2+2\log_{x^{2}-2x-3}\frac{x+4}{x+1}\geq \log_{x^{2}-2x-3}(x^{2}-2x-2)$$
$$\log_{x^{2}-2x-3} (x^{2}-2x-3)*(\frac{x+4}{x+1})\geq \log_{x^{2}-2x-3}(x-2x-2)$$
$$(x^{2}-2x-3-1)((x^{2}-2x-3)*\frac{x+4}{x+1}-(x^{2}-2x-2))\geq 0$$
$$(x^{2}-2x-4)(\frac{(x+1)(x-3)(x+4)}{x+1}-x^{2}+2x+2)\geq 0$$
$$(x^{2}-2x-4)(x^{2}+x-12-x^{2}+2x+2)\geq 0$$
$$(x^{2}-2x-4)(x-\frac{10}{3})\geq 0\Leftrightarrow$$ $$x \in [1-\sqrt{5}; 1+\sqrt{5}]\cup [\frac{10}{3};+\infty ]$$
С учетом ОДЗ: $$x \in (3; 1+\sqrt{5})\cup [\frac{10}{3};+\infty ]$$
Задание 6665
Решите неравенство $$2\log_{x+1} (1-2x)+\log_{1-4x+4x^{2}} (x+3) +\log_{\frac{1}{x+1}} (x^{2}+7x+12) \leq 0$$
ОДЗ: $$\left\{\begin{matrix}x+1>0\\x+1\neq 1\\1-2x>0\\x+3>0\\x^{2}+7x+12>0\\1-4x+4x^{2}\neq 1\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x>-1\\x\neq 0\\x<\frac{1}{2}\\x>-3\\x\in (-\infty ,-4)\cup (-3,+\infty )\\x\neq 0, x\neq 1\end{matrix}\right.$$$$\Leftrightarrow x \in (-1,0)\cup (0, \frac{1}{2})$$
На данном ОДЗ: $$2\log_{x+1} (1-2x)=$$$$\log_{(x+1)^{2}} (1-2x)=$$$$\frac{1}{\log_{(1-2x)^{2}}(x+1)}$$ и $$\log_{\frac{1}{x+1}} (x^{2}+7x+12)=-\log_{x+1} (x^{2}+7x+12)$$
$$\frac{1}{\log_{(1-2x)^{2}}(x+1)}*\log_{(1-2x)^{2}}(x+3)-\log_{x+1}(x+3)(x+4)\leq 0\Leftrightarrow$$ $$\log_{x+1}(x+3)\leq \log_{x+1}(x+3)(x+4)\Leftrightarrow$$ $$(x+1-1)((x+3)-(x+3)(x+4))\leq 0\Leftrightarrow$$
$$x(x+3)(1-x-4)\leq 0\Leftrightarrow$$ $$x(x+3)^{2}\geq 0\Leftrightarrow$$ $$\left[\begin{matrix}x\geq 0\\x=-3\end{matrix}\right.$$
С учетом ОДЗ : $$(0; \frac{1}{2})$$
Задание 6700
Решите неравенство $$(\sqrt{2}+1)^{\frac{6x-6}{x+1}}\leq (\sqrt{2}-1)^{-x}$$
ОДЗ: $$x+1\neq 0\Leftrightarrow$$ $$x\neq -1$$
Рассмотрим правую часть неравенства : $$(\sqrt{2}-1)^{-x}=(\frac{1}{\sqrt{2}-1})^{x}|:(\sqrt{2}+1)^{x}\Rightarrow$$ $$\frac{(\sqrt{2}+1)^{x}}{((\sqrt{2}-1)(\sqrt{2}+1))^{x}}=$$$$\frac{(\sqrt{2}+1)^{x}}{1^{x}}=(\sqrt{2}+1)^{x}$$
Неравенство примет вид: $$(\sqrt{2}+1)^{\frac{6x-6}{x+1}}\leq (\sqrt{2}+1)^{x}\Leftrightarrow$$ $$\frac{6x-6}{x+1}\leq x\Leftrightarrow$$ $$\frac{6x-6-x^{2-x}}{x+1}\leq 0\Leftrightarrow$$ $$\frac{x^{2}-5x+6}{x+1}\geq 0\Leftrightarrow$$ $$\frac{(x-2)(x-3)}{x+1}\geq 0\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}x>-1\\x\leq 2\end{matrix}\right.\\x\geq 3\end{matrix}\right.$$
Задание 6759
Решите неравенство $$(\sqrt[3]{2})^{x^{2}+4x+1}-(\sqrt{3+\sqrt{8}}-1)^{x}\leq 0$$
$$(\sqrt[3]{2})^{x^{2}+4x+1}-(\sqrt{3+\sqrt{8}}-1)^{x}\leq 0$$
$$\sqrt{3+\sqrt{8}}=\sqrt{2+1+2\sqrt{2}}=\sqrt{(\sqrt{2}+1)^{2}}=\left | \sqrt{2}+1 \right |=\sqrt{2}+1$$
$$\sqrt[3]{2}^{x^{2}+4x+1}-(\sqrt{2}+1-1)^{x}\leq 0\Leftrightarrow$$ $$2^{\frac{x^{2}+4x+1}{3}}\leq 2^{\frac{x}{2}}\Leftrightarrow$$ $$\frac{x^{2}+4x+1}{3}\leq \frac{x}{2}|*6\Leftrightarrow$$ $$2x^{2}+8x+2\leq 3x\Leftrightarrow$$ $$2x^{2}+5x+2\leq 0$$
$$D=25-16=9$$
$$x_{1}=\frac{-5+3}{4}=-0,5$$
$$x_{2}=\frac{-5-3}{4}=-2$$
$$(x+0,5)(x+2)\leq 0$$
$$x \in [-2, -0,5]$$
Задание 6806
Решите неравенство $$(\frac{4x}{5}+1)^{6-13x-15x^{2}}\geq 1$$
ОДЗ : $$\frac{4x}{5}+1>0\Rightarrow$$ $$x>-\frac{5}{4}$$
Решение: рассмотрим равносильную систему с учетом ОДЗ :
$$\left[\begin{matrix}\left\{\begin{matrix}(\frac{4x}{5}+1)<1\\6-13x-15x^{2}\leq 0\end{matrix}\right.\\\left\{\begin{matrix}(\frac{4x}{5}+1)>1\\6-13x-15x^{2}\geq 0\end{matrix}\right.\\\frac{4x}{5}+1=1\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}x<0\\x \in (-\infty , -\frac{6}{5}]\cup [\frac{1}{3},+\infty )\end{matrix}\right.\\\left\{\begin{matrix}x>0\\x \in [-\frac{6}{5}, \frac{1}{3}]\end{matrix}\right.\\x=0\end{matrix}\right.\Leftrightarrow$$ с учетом ОДЗ: $$x \in (-\frac{5}{4}; -\frac{6}{5}]\cup [0; \frac{1}{3}]$$
Задание 6826
Решите неравенство $$\log_{2} (5-x)*\log_{x+1} 8 \geq -6$$
ОДЗ: $$\left\{\begin{matrix}5-x>0\\x+1>0\\x+1\neq 1\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x<5\\x>-1\\x\neq 0\end{matrix}\right.$$
Решение:
$$\log_{2}(5-x)*(-3)*\log_{x+1}2\geq -6\Leftrightarrow$$ $$\log_{2}(5-x)*\frac{1}{\log_{2}(x+1)}\leq 2\Leftrightarrow$$ $$\log_{(x+1)}(5-x)\leq 2\Leftrightarrow$$ $$\log_{(x+1)}(5-x)\leq \log_{(x+1)}(x+1)^{2}\Leftrightarrow$$ $$(5-x-(x+1))((x+1)-1)\leq 0\Leftrightarrow$$ $$(-x^{2}-3x+4)*x\leq 0\Leftrightarrow$$ $$x(x+4)(x-1)\geq 0\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}x\geq -4\\x\leq 0 \end{matrix}\right.\\ x\geq 1\end{matrix}\right..$$
С учетом ОДЗ: $$x \in (-1;0)\cup [1;5)$$
Задание 6877
Решите неравенство $$\log_{x} (x+\frac{1}{3}) \leq \log_{\sqrt{2x+3}} (x+\frac{1}{3})$$
$$\log_{x} (x+\frac{1}{3})\leq \log_{\sqrt{2x+3}}(x+\frac{1}{3})$$
ОДЗ: $$\left\{\begin{matrix}x+\frac{1}{3}>0\\x>0\\2x+3>0\\x\neq 1\\2x+3\neq 1\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x>-\frac{1}{3}\\x>0\\x>-1,5\\x\neq 1\\x-1\end{matrix}\right.\Leftrightarrow$$ $$x \in (0;1)\cup (1; +\infty )$$
Решение : воспользуемся формулой : $$\log_{g}f=\frac{1}{\log_{f}g}$$
$$\frac{1}{\log_{(x+\frac{1}{3})}x}\leq \frac{1}{\log_{(x+\frac{1}{3})\sqrt{2x+3}}}$$$$\Leftrightarrow$$$$\frac{\log_{(x+\frac{1}{3})}\sqrt{2x+3}-\log_{(x+\frac{1}{3})}x}{\log_{(x+\frac{1}{3})}x*\log_{(x+\frac{1}{3})}\sqrt{2x+3}}\leq 0$$$$\Leftrightarrow$$$$\frac{\log_{(x+\frac{1}{3})}\frac{\sqrt{2x+3}}{x}}{\log_{(x+\frac{1}{3})}x*\log_{(x+\frac{1}{3})}\sqrt{2x+3}}\leq 0$$ $$\Leftrightarrow$$ $$\log_{x} \frac{\sqrt{2x+3}}{x}*\log_{\sqrt{2x+3}}(x+\frac{1}{3})\leq 0$$$$\Leftrightarrow$$ $$(\frac{\sqrt{2x+3}}{x}-1)(x-1)(x+\frac{1}{3}-1)(\sqrt{2x+3}-1)\leq 0$$$$\Leftrightarrow$$ $$\frac{\sqrt{2x+3}-x}{x}(x-1)(x-\frac{2}{3})(2x+3-1)\leq 0$$
Рассмотрим $$\sqrt{2x+3}-x$$. С учетом ОДЗ: $$\sqrt{2x+3}-x$$$$\Leftrightarrow$$ $$2x+3-x^{2}$$$$\Leftrightarrow$$ $$-(x-3)(x+1)$$. Получим : $$\frac{-(x-3)(x+1)(x-1)(x-\frac{2}{3})(2x+2)}{x}\leq 0$$$$\Leftrightarrow$$ $$\frac{(x+1)^{2}(x-1)(x-\frac{2}{3})(x-3)}{x}\geq 0$$
С учетом ОДЗ : $$(x+1)^{2}$$ можно убрать (поделить на него): $$\frac{(x-1)(x-\frac{2}{3})(x-3)}{x}\geq 0$$$$\Leftrightarrow$$ $$\left[\begin{matrix}x\geq 3\\\left\{\begin{matrix}x\geq \frac{2}{3}\\x<1\end{matrix}\right.\\x<0\end{matrix}\right.$$
Но т.к. $$x>0$$ , то $$x \in [\frac{2}{3};1)\cup [3; +\infty )$$
Задание 6925
Решите неравенство $$\log_{2}(x+1)>\log_{x+1}16$$
ОДЗ: $$\left\{\begin{matrix}x+1>0\\x+1\neq 1\end{matrix}\right.$$$$\Leftrightarrow$$ $$\left\{\begin{matrix}x>-1\\x\neq 0\end{matrix}\right.$$$$\Leftrightarrow$$ $$x \in (-1;0)\cup (0; +\infty )$$
Решение: $$\log_{2}(x+1)>4\log_{(x+1)}2$$$$\Leftrightarrow$$ $$\log_{2}(x+1)>\frac{4}{\log_{2}(x+1)}$$
Пусть $$\log_{2}(x+1)=y$$: $$y>\frac{4}{y}\Leftrightarrow$$ $$y-\frac{4}{y}>0$$$$\Leftrightarrow$$ $$\frac{y^{2}-4}{y}>0$$$$\Leftrightarrow$$ $$\frac{(y-2)(y+2)}{y}>0$$$$\Leftrightarrow$$ $$\left[\begin{matrix}y>2\\\left\{\begin{matrix}y>-2\\y<0\end{matrix}\right.\end{matrix}\right.$$$$\Leftrightarrow$$ $$\left[\begin{matrix}\log_{2}(x+1)>2\\\left\{\begin{matrix}\log_{2}(x+1)>-2\\\log_{2}(x+1)<0\end{matrix}\right.\end{matrix}\right.$$$$\Leftrightarrow$$ $$\left[\begin{matrix}x+1>4\\\left\{\begin{matrix}x+1>\frac{1}{4}\\x+1<1\end{matrix}\right.\end{matrix}\right.$$$$\Leftrightarrow$$$$\left[\begin{matrix}x>3\\\left\{\begin{matrix}x>-\frac{3}{4}\\x<0\end{matrix}\right.\end{matrix}\right.$$
С учетом ОДЗ: $$x \in (-\frac{3}{4};0)\cup (3;+\infty )$$
Задание 6973
Решите неравенство: $$(\log_{x+2} 4)(\log_{4}(x^{2}+x-2))\leq 1$$
ОДЗ: $$\left\{\begin{matrix}x+2>0\\x+2\neq 1\\x^{2}+x-2>0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x+2>0\\x+2\neq 1\\(x+2)(x-1)>0\end{matrix}\right.\Leftrightarrow$$$$\left\{\begin{matrix}x>-2\\x\neq -1\\x>1\end{matrix}\right.\Leftrightarrow$$ $$x>1$$
Решение: $$(\log_{x+2}4)(\log_{4}(x+2)(x-1))\leq 1\Leftrightarrow$$ $$(\log_{x+2}4)(\log_{4}(x+2)+\log_{4}(x-1))\leq 1\Leftrightarrow$$ $$\frac{\log_{4}(x+2)}{\log_{4}(x+2)}+\frac{\log_{4}(x-1)}{\log_{4}(x+2)}\leq 1\Leftrightarrow$$ $$1+\log_{(x+2)}(x-1)\leq 1\Leftrightarrow$$ $$\log_{(x+2)}(x-1)\leq 0\Leftrightarrow$$ $$(x-1-1)(x+2-1)\leq 0\Leftrightarrow$$ $$(x-2)(x+1)\leq 0\Leftrightarrow$$$$\left\{\begin{matrix}x\geq -1\\x\leq 2\end{matrix}\right.$$
С учетом ОДЗ: x $$\in (1; 2]$$
Задание 7020
Решите неравенство $$\log_{\frac{x-1}{2x-8}} (\frac{x+7}{6})\leq 1$$
ОДЗ: $$\left\{\begin{matrix}\frac{x-1}{2x-8}>0\\\frac{x-1}{2x-8}\neq 1\\\frac{x+7}{6}>0\\2x-8\neq 0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\frac{x-1}{x-4}>0\\x-1\neq 2x-8\\x+7>0\\2x\neq 8\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x>4\\x<1\\x\neq 7\\x>-7\\x\neq 4\end{matrix}\right.\Leftrightarrow$$ $$x \in (-7 ;1)\cup (4 ;7)\cup (7;+\infty )$$
Решение: $$\log_{\frac{x-1}{2x-8}}\frac{x+7}{6}\leq \log_{\frac{x-1}{2x-8}}(\frac{x-1}{2x-8})\Leftrightarrow$$ $$(\frac{x+7}{6}-\frac{x-1}{2x-8})(\frac{x-1}{2x-8}-1)\leq 0\Leftrightarrow$$ $$\frac{2x^{2}-50}{6(2x-8)}*\frac{-x+7}{2x-8}\leq 0\Leftrightarrow$$ $$\frac{(x-5)(x+5)(x-7)}{(2x-8)}\geq 0\Leftrightarrow$$ $$\left\{\begin{matrix}(x-5)(x+5)(x-7)\geq 0\\2x-8\neq 0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\left[\begin{matrix}\left\{\begin{matrix}x\geq -5\\x\leq 5\end{matrix}\right.\\x\geq 7\end{matrix}\right.\\x\neq 4\end{matrix}\right.$$
С учетом ОДЗ: $$x \in [-5; 1)\cup (4 ;5]\cup (7; +\infty )$$
Задание 7040
Решите неравенство $$\log_{(x+1)^{2}}8+3\log_{4}(x+1)\geq \frac{37}{4}$$
ОДЗ: $$\left\{\begin{matrix}(x+1)^{2}>0\\(x+1)^{2}\neq 1\\x+1>0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x+1\neq 0\\x+1\neq 1\\x\neq 1=-1\\x>-1\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x\neq -1\\x\neq 0\\x\neq -2\\x>-1\end{matrix}\right.\Leftrightarrow$$$$x \in (-1; 0)\cup (0; +\infty )$$
Решение: $$\log_{(x+1)^{2}}2^{3}+3\log_{2^{2}}(x+1)\geq \frac{37}{4}\Leftrightarrow$$$$\frac{3}{2}\log_{\left | x+1 \right |}2+\frac{3}{2}\log_{2}(x+1)\geq \frac{37}{4}$$
С учетом, что $$x+1>0$$: $$\left | x+1 \right |=x+1$$: $$\frac{1}{\log_{2}(x+1)}+\log_{2}(x+1)\geq \frac{37}{6}$$
Пусть $$\log_{2}(x+1)=y$$: $$\frac{1}{y}+y-\frac{37}{6}\geq 0\Leftrightarrow$$ $$\frac{6y^{2}-37y+6}{y}\geq 0\Leftrightarrow$$ $$\frac{6(y-6)(y-\frac{1}{6})}{y}\geq 0$$
$$\left[\begin{matrix}\left\{\begin{matrix}y>0\\x\leq \frac{1}{6}\end{matrix}\right.\\y\geq 6\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}\log_{2}(x+1)>0\\\log_{2}(x+1)\leq \frac{1}{6}\end{matrix}\right.\\\log_{2}(x+1)\geq 6\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}x+1>1\\x+1\leq \sqrt[6]{2}\end{matrix}\right.\\x+1\geq 64\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}x>0\\x\leq \sqrt[6]{2}-1\end{matrix}\right.\\x\geq 63\end{matrix}\right.$$
С учетом ОДЗ: $$x \in (0; \sqrt[6]{2}-1]\cup [63; +\infty )$$
Задание 7061
Решите неравенство $$\log_{2} (1-\frac{1}{x})+\log_{2} (10-x) \leq 2$$
ОДЗ: $$\left\{\begin{matrix}1-\frac{1}{x}>0\\10-x>0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\frac{x-1}{x}>0\\x<10\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\left\{\begin{matrix}x>1\\x<0\end{matrix}\right.\\x<10\end{matrix}\right.\Leftrightarrow$$ $$x \in (-\infty ;0)\cup (1;10)$$
Решение: $$\log_{2}(1-\frac{1}{x})*(10-x)\leq \log_{2}4\Leftrightarrow$$ $$\frac{(x-1)(10-x)}{x}\leq 4\Leftrightarrow$$ $$\frac{10x-x^{2}-10+x-4x}{x}\leq 0\Leftrightarrow$$$$\frac{-x^{2}+7x-10}{x}\leq 0\Leftrightarrow$$ $$\frac{x^{2}-7x+10}{x}\geq 0\Leftrightarrow$$ $$\frac{(x-2)(x-5)}{x}\geq 0 \Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}x>0\\x\leq 2\end{matrix}\right.\\x\geq 5\end{matrix}\right.$$
С учетом ОДЗ: $$x \in (1; 2]\cup [5; 10)$$
Задание 7108
Решите неравенство $$\log_{\frac{1}{4}} (\sqrt{x+3}-x+3) \geq -2+\log_{\frac{1}{4}} \frac{3}{8}$$
$$\log_{\frac{1}{4}}(\sqrt{x+3}-x+3)\geq -2+\log_{\frac{1}{4}} \frac{3}{8}$$
ОДЗ: $$\left\{\begin{matrix}x+3\geq 0\\\sqrt{x+3}-x+3>0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x\geq -3\\\sqrt{x+3}>x-3 (1)\end{matrix}\right.$$
(1) :решим графически: $$x \in [-3 ; 6]$$
Решение: $$\log_{\frac{1}{4}}(\sqrt{x+3}-x+3)\geq \log_{\frac{1}{4}}16+\log_{\frac{1}{4}}\frac{3}{8}\Leftrightarrow$$
$$\log_{\frac{1}{4}}(\sqrt{x+3}-x+3)\geq \log_{\frac{1}{4}}16*\frac{3}{8}\Leftrightarrow$$ $$\sqrt{x+3}-x+3\leq 6\Leftrightarrow \sqrt{x+3}\leq x+3$$
Пусть $$\sqrt{x+3}=y\geq 0\Leftrightarrow$$ $$x+3=y^{2}$$:$$\left\{\begin{matrix}y\leq y^{2}\\y\geq 0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}y^{2}-y\geq 0\\y\geq 0\end{matrix}\right.\Leftrightarrow$$$$\left\{\begin{matrix}(y-1)y\geq 0\\y\geq 0\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}y\geq 0\\\left\{\begin{matrix}y\leq 0\\y\geq 0\end{matrix}\right.\end{matrix}\right. \Leftrightarrow$$ $$\left\{\begin{matrix}y=0\\y\geq 1\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\sqrt{x+3}=0\\\sqrt{x+3}\geq 1\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x=-3\\x\geq -2\end{matrix}\right.$$
С учетом ОДЗ : $$x \in$$ $${-3}\cup [-2 ;6)$$
Задание 7181
Решите неравенство $$(\log_{3+x} (1-2x))(\log_{1-2x} x^{2})\leq (\log_{3+x} (1-3x))(\log_{1-3x} (2-x))$$
$$(\log_{3+x}(1-2x))(\log_{1-2x}x^{2})\leq (\log_{3+x}(1-3x))(\log_{1-3x}(2-x))$$
ОДЗ: $$\left\{\begin{matrix}1-2x>0\\3+x>0\\3+x\neq 1\\1-2x\neq 1\\x^{2}>0\\1-3x>0\\2-x>0\\1-3x\neq 1\end{matrix}\right.$$$$\Leftrightarrow$$ $$\left\{\begin{matrix}x<0,5\\x>-3\\x\neq -2\\x\neq 0\\x<\frac{1}{3}\\x<2\end{matrix}\right.$$$$\Leftrightarrow$$ $$x \in (-3; -2)\cup (-2; 0)\cup (0; \frac{1}{3})$$
Решение: $$\frac{1}{\log_{1-2x}(3+x)}*\log_{1-2x}x^{2}\leq \frac{1}{\log_{1-3x}(3+x)}*\log_{1-3x}(2-x)\Leftrightarrow$$ $$\log_{3+x}x^{2}\leq \log_{3+x}(2-x)\Leftrightarrow$$ $$(3+x-1)(x^{2}-2+x)\leq 0\Leftrightarrow$$ $$(x+2)(x+2)(x-1)\leq 0\Leftrightarrow$$ $$\left[\begin{matrix}x+2=0\\x\leq 1\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}x=-2\\x\leq 1\end{matrix}\right.$$
С учетом ОДЗ: $$x \in (-3; -2) \cup (-2; 0)\cup (0; \frac{1}{3})$$
Задание 7201
Решите неравенство $$\log_{\frac{1}{\sqrt{5}}} (6^{x+1}-36^{x})\geq -2$$
ОДЗ: $$6^{x+1}-36^{x}>0\Leftrightarrow$$ $$6*6^{x}-6^{2x}>0\Leftrightarrow$$ $$6^{x}(6-6^{x})>0\Leftrightarrow$$ $$6>6^{x}\Leftrightarrow$$ $$x<1$$
Решение: $$\log_{\frac{1}{\sqrt{5}}}(6^{x+2}-36^{x})\geq -2\Leftrightarrow$$ $$\log_{\frac{1}{\sqrt{5}}}(6*6^{x}-6^{2x})\geq \log_{\frac{1}{\sqrt{5}}}5\Leftrightarrow$$ $$(6*6^{x}-6^{2x}-5)(\frac{1}{\sqrt{5}}-1)\geq 0\Leftrightarrow$$ $$(6^{2x}-6*6^{x}+5)\geq 0\Leftrightarrow$$ $$(6^{x}-5)(6^{x}-1)\geq 0\Leftrightarrow$$ $$(x-\log_{6}5)(x-0)\geq 0\Leftrightarrow$$ $$\left[\begin{matrix}x\geq \log_{6} 5\\x\leq 0\end{matrix}\right.$$
С учетом ОДЗ: $$x \in (-\infty ; 0]\cup [\log_{6}5; 1)$$
Задание 7222
Решите неравенство $$\frac{1}{2}\log_{x-1}(x^{2}-8x+16)+\log_{4-x} (-x^{2}+5x-4)>3$$
ОДЗ: $$\left\{\begin{matrix}x^{2}-8x+16>0\\x-1>0\\x-1\neq 1\\-x^{2}+5x-4>0\\4-x>0\\4-x\neq 1\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}(x-4)^{2}>0\\x>1\\x\neq 2\\x>1\\x<4\\x\neq 3\end{matrix}\right.\Leftrightarrow$$ $$x \in (1;2)\cup (2;3) \cup (3;4)$$
Решение: $$\frac{1}{2} \log_{x-1}(x-4)^{2}+\log_{(4-x)}(-(x-1)(x-4))>3$$ $$\Leftrightarrow$$$$\frac{1}{2} *2 \log_{x-1}\left | x-4 \right |+\log_{4-x}(4-x)+\log_{4-x}(x-1)>3$$$$\Leftrightarrow$$ С учетом , что $$x<4$$ : $$\left | x-4 \right |=4-x$$ . Тогда: $$\log_{x-1}(4-x) +1+\log_{4-x} (x-1)-3>0\Leftrightarrow$$ $$\log_{x-1}(4-x)+\frac{1}{\log_{x-1}(4-x)}-2>0$$
Пусть $$\log_{x-1}(4-x)=y$$, тогда : $$y+\frac{1}{y}>0\Leftrightarrow$$ $$\frac{y^{2}-2y+1}{y}>0\Leftrightarrow$$ $$\frac{(y-1)^{2}}{y}>0\Leftrightarrow$$ $$\left\{\begin{matrix}y>0\\y-1\neq 0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\log_{x-1}(4-x)>0\\\log_{x-1}(4-x) \neq 1\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x>2\\x<3\\x\neq 2,5\end{matrix}\right.$$
С учетом ОДЗ: $$x \in (2 ;2,5)\cup (2,5; 3)$$
Задание 7324
Решите неравенство $$\log_{5-4x-x^{2}}(5-9x-2x^{2})\leq \log_{1-x}(1-2x)$$
ОДЗ: $$\left\{\begin{matrix}5-9x-2x^{2}>0\\1-2x>0\\5-4x-x^{2}>0\\5-4x-x^{2}\neq 1\\1-x >0\\1-x\neq 1\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x>-5\\x<\frac{1}{2}\\x>-5\\x<1\\x\neq -2 \pm 2\sqrt{2}\\x<1\\x\neq 0\end{matrix}\right.$$$$\Leftrightarrow$$ $$x \in (-5; -2 -2\sqrt{2})\cup (-2-2\sqrt{2}; 0)\cup (0 ;\frac{1}{2})$$
Учтем, что $$5-9x-2x^{2}=(x+5)(1-2x)$$; $$5-4x-x^{2}=(x+5)(1-x)$$. Пусть $$x+5=a$$ , $$1-2x=b$$, $$1-x=c$$
$$\log_{ac}ab\leq \log_{c}b\Leftrightarrow$$ $$\frac{\ln ab}{\ln ac}\leq \frac{\ln b}{\ln c}\Leftrightarrow$$ $$\frac{\ln a+\ln b}{\ln a+\ln c}-\frac{\ln b}{\ln c}\leq 0\Leftrightarrow$$ $$\frac{\ln a \ln c+\ln b \ln c-\ln a \ln b -\ln b \ln c}{\ln c (\ln a+\ln c)}\leq 0\Leftrightarrow$$ $$\frac{\ln a(\ln c-\ln b)}{\ln c(\ln a+\ln c)}\leq 0\Leftrightarrow$$ $$\log_{c}a \frac{\ln \frac{c}{b}}{\ln ac}\leq 0\Leftrightarrow$$ $$\log_{c}a \log_{ac}\frac{c}{b}\leq 0\Leftrightarrow$$ $$(a-1)(c-1)(\frac{c}{b}-1)(ac-1)\leq 0$$
Обратная замена: $$(x+5-1)(1-x-1)(\frac{1-x}{1-2x}-1)((x+5)(1-x)-1)\leq 0\Leftrightarrow$$ $$(x+4)(-x)(\frac{x}{1-2x})*(-x^{2}-4x+4)\leq 0\Leftrightarrow$$ $$x^{2} \frac{x+4}{1-2x}*(x-(-2+2\sqrt{2}))(x-(-2-2\sqrt{2}))\leq 0\Leftrightarrow$$$$\left[\begin{matrix}x=0\\\frac{(x+4)(x-(-2+2\sqrt{2}))(x-(-2-2\sqrt{2}))}{1-2x}\leq 0\end{matrix}\right.\Leftrightarrow$$$$x \in (-\infty; -2-2\sqrt{2}]\cup [-4 ;\frac{1}{2})\cup [-2 +2\sqrt{2} ;+\infty )$$
С учетом ОДЗ: $$(-5; -2-2\sqrt{2})\cup [-4 ;\frac{1}{2})$$
Задание 7863
Решите неравенство $$3^{2x^{2}}+3^{x^{2}+2x+5}\geq10\cdot3^{4x+6}$$
$$3^{2x^{2}}+3^{x^{2}+2x+5}\geq10\cdot3^{4x+6}$$ $$\div3^{4x+6}$$
$$3^{2x^{2}-4x-6}+3^{x^{2}-2x-1}\geq10$$
$$3^{2(x^{2}-2x-3)}+3^{x^{2}-2x-3}-10\geq0$$
Замена: $$3^{x^{2}-2x-3}=y>0$$
$$y^{2}+3^{2}\cdot y-10\geq0$$ $$\Rightarrow$$ $$(y+10)(y-1)\geq0$$
$$\left\{\begin{matrix}y_{1}+y_{2}=-9&\\y_{1}\cdot y_{2}=-10&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}y_{1}=-10&\\y_{2}=1&\end{matrix}\right.$$
Получим: $$\left\{\begin{matrix}y\geq1&\\y\leq-10&\end{matrix}\right.$$ $$\Rightarrow$$ $$\left\{\begin{matrix}3^{x^{2}2x-3}\geq3^{0}&\\3^{x^{2}-2x-3}\leq-10&\end{matrix}\right.$$ $$\Rightarrow$$ $$\left\{\begin{matrix}x^{2}-2x-3\geq0&\\\varnothing&\end{matrix}\right.$$ $$\Rightarrow$$ $$\left\{\begin{matrix}x\geq3&\\x\leq-1&\end{matrix}\right.$$
Задание 7895
Решите неравенство $$\log_{3}(1+\frac{1}{x})-2\log_{9}(x-1)\leq \log_{3}(3x+4)-\log_{27} x^{6}$$
ОДЗ: $$\left\{\begin{matrix}x+\frac{1}{x}>0&\\x-1>0&\\3x+4>0&\\x^{6}>0&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}\frac{x^{2}+1}{x}>0&\\x>1&\\x>-\frac{3}{4}&\\x\neq0&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x>0&\\x>1&\end{matrix}\right.$$ $$\Rightarrow$$ $$x>1$$
Решение: $$\log_{3}(x+\frac{1}{x})-2\cdot\frac{1}{2}\log_{3}(x-1)\leq\log_{3}(3x-4)-3\cdot\frac{1}{3}\log_{3} x^{2}$$ $$\Leftrightarrow$$ $$\log_{3}\frac{x^{2}+1}{x})-\log_{3}(x-1)\leq\log_{3}(3x-4)-\log_{3} x^{2}$$ $$\Leftrightarrow$$ $$\frac{x^{2}+1}{x(x-1)}\leq\frac{3x-4}{x^{2}}$$ $$\Leftrightarrow$$ $$\frac{x(x^{2}+1)-(3x-4)x}{x^{2}(x-1)}\leq0$$ $$\Leftrightarrow$$ $$\frac{x^{3}-3x^{2}+4}{x^{2}(x-1)}\leq0$$ $$\Leftrightarrow$$ $$\frac{(x+1)(x^{2}-4x+4)}{x^{2}(x-1)}\leq0$$ $$\Leftrightarrow$$ $$\frac{(x+1)(x-2)^{2}}{x^{2}(x-1)}\leq0$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}\frac{x+1}{x-1}\leq0&\\x-2=0&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\begin{bmatrix}\left\{\begin{matrix}x\geq-1&\\x<1&\end{matrix}\right.&\\x=2&\end{bmatrix}$$
С учетом ОДЗ: $$x=2$$
Задание 8238
Решите неравенство: $$\frac{4\sin x \cdot \sin 2x -\sin^{2} 2x -4+4\cos^{2} x}{\sqrt{16-2^{(x-5)^{2}}}}\geq 0$$
ОДЗ: $$16-2^{(x-5)^{2}}>0$$ $$\Leftrightarrow$$ $$2^{4}>2^{(x-5)^{2}}$$ $$\Leftrightarrow$$ $$4>(x-5)^{2}$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x-5<2&\\x-5>-2&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x<7&\\x>3&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$x\in(3;7)$$
Упростим числитель: $$4\sin x\sin2x-\sin^{2}2x+4(\cos{2}x-1)=8\sin^{2}x\cos x-4\sin^{2}x$$
$$\cos^{2}x-4\sin^{2}x=-4\sin^{2}x(\cos^{2}-2\cos x+1)=-4\sin^{2}x(\cos^{2}-1)^{2}$$
Тогда получим: $$-\frac{4\sin^{2}x(\cos x-1)^{2}}{\sqrt{16-2^{(x-5)^{2}}}}\geq0$$ $$\Leftrightarrow$$ $$\sin^{2}x(\cos x-1)^{2}\leq0$$ $$\Leftrightarrow$$ $$\begin{bmatrix}sin x=0&\\\cos x=1&\end{bmatrix}$$ $$\Leftrightarrow$$ $$x=\pi n,n\in Z$$
С учетом ОДЗ: $$\left\{\begin{matrix}x=\pi n &\\x\in(3;7)&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$x=\pi;2\pi$$
Задание 8269
ОДЗ: $$\left\{\begin{matrix}|x|>0&\\4x^{2}-x^{3}-4x\neq0&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x\neq0&\\x(4x-x^{2}-4)\neq0&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x\neq0&\\-x(x-2)^{2}\neq0&\end{matrix}\right.$$ $$x\in(-\infty;0)\cup(0;2)\cup(2;+\infty)$$
Решение: учтем,что $$\log_{3}^{2}|x|-3\log_{3}|x|-10=(\log_{3}|x|-5)\cdot(\log_{3}|x|+2)=(\log_{3}|x|-\log_{3}243)\cdot(\log_{3}|x|+\log_{3}9)=$$ $$=(\log_{3}|x|-\log_{3}243)\cdot(\log_{3}|x|-\log_{3}\frac{1}{9})=|\log_{b}a-\log_{b}c\Leftrightarrow(b-c)\cdot(a-c)|=$$ $$=(|x|-243)\cdot(|x|-\frac{1}{9})\cdot(3-1)^{2}=||x|-|y|\Leftrightarrow(x-y)\cdot(x+y)|=(\frac{1}{2})^{x-1}-2^{x-1}=2^{1-x}-2^{x-1}=|a^{b}-a^{c}\Leftrightarrow$$ $$\Leftrightarrow a\cdot(b-c)|=(1-x-x+1)(2-1)=(2-2x)$$
С учетом разложений и ОДЗ: $$\frac{(x-243)\cdot(x+243)\cdot(x-\frac{1}{9})\cdot(x+\frac{1}{9})\cdot(2-2x)\cdot2^{2}}{-x(x-2)^{2}}\leq0$$ $$\Leftrightarrow$$ $$\frac{(x-243)\cdot(x+243)\cdot(x-\frac{1}{9})\cdot(x+\frac{1}{9})\cdot(x-1)}{x}\leq0$$
$$x\in[-243;-\frac{1}{9}]\cup(0;\frac{1}{9}]\cup[1;2)\cup(2;243]$$
Задание 8307
ОДЗ: $$\left\{\begin{matrix}3^{x}-3\neq0&\\3^{x}-2\neq0&\\9^{x}-5\cdot3^{x}+6\neq0&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}3^{x}\neq3&\\3^{x}\neq2&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x\neq1&\\x\neq\log_{3}2&\end{matrix}\right.$$
Заметим,что $$9^{x}-5\cdot3^{x}+6=3^{2x}-5\cdot3^{x}+6=(3^{x}-3)(3^{x}-2)$$. Тогда: $$x\in(-\infty;\log_{3}2)\cup(\log_{3}2;1)\cup(1;+\infty)$$
Решение: замена $$3^{x}=y>0$$
$$\frac{y}{y-3}+\frac{y+1}{y-2}+\frac{5}{(y-3)(y-2)}\leq0$$ $$\Leftrightarrow$$ $$\frac{y(y-2)+(y+1)(y-3)}{(y-3)(y-2)}\leq0$$ $$\Leftrightarrow$$ $$\frac{y^{2}-2y+y^{2}-3+5}{(y-3)(y-2)}\leq0$$ $$\Leftrightarrow$$ $$\frac{2y^{2}-4y+2}{(y-3)(y-2)}\leq0$$ $$\Leftrightarrow$$ $$\frac{2(y-1)^{2}}{(y-3)(y-2)}\leq0$$ $$\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}y\geq2&\\y\leq3&\end{matrix}\right.&\\y=1&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}3^{x}\geq2&\\3^{x}\leq3&\end{matrix}\right.&\\3^{x}=1&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}x\geq\log_{3}2&\\x\leq1&\end{matrix}\right.&\\x=0&\end{matrix}\right.$$
С учетом ОДЗ: $$x\in{0}\cup(\log_{3}2;1)$$
Задание 8325
$$x^{2}\log_{4}^{2}x+10\log_{3}^{2}x\leq x\log_{4}\cdot\log_{3}x^{7}$$
ОДЗ: $$x^{2}\log_{4}^{2}x-7x\log_{4}x\cdot\log_{3}x+10\log_{3}^{2}x\leq0$$
$$\left[\begin{matrix}(\frac{x\cdot\log_{4}x}{\log_{3}x})^{2}-7\cdot\frac{x\cdot\log_{4}x}{\log_{3}x}+10\leq0&\\\log_{3}x=0&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left[\begin{matrix}(x\cdot\frac{\log_{x}3}{\log_{x}4})^{2}-7\cdot x\cdot\frac{x\cdot\log_{x}3}{\log_{x}4}+10\leq0&\\x=1&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$(x\cdot\log_{4}^{3})^{2}-7(x\cdot\log_{4}^{3})+10\leq0$$
Замена: $$x\cdot\log_{4}^{3}=y$$ $$\Rightarrow$$ $$y^{2}-7y+10\leq0$$ $$\Leftrightarrow$$ $$(y-2)(y-5)\leq0$$ $$\Rightarrow$$ $$\left\{\begin{matrix}y\geq2&\\y\leq5&\end{matrix}\right.$$
Получим: $$\left[\begin{matrix}\left\{\begin{matrix}x\cdot\log_{4}^{3}\geq2&\\x\cdot\log_{4}^{3}\leq5&\end{matrix}\right.&\\x=1&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}x\geq\frac{2}{\log_{4}^{3}}&\\x\leq\frac{5}{\log_{4}^{3}}&\end{matrix}\right.&\\x=1&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}x\geq\log_{3}16&\\x\leq\log_{3}1024&\end{matrix}\right.&\\x=1&\end{matrix}\right.$$ $$\Rightarrow$$ $$x\in{1}\cup[\log_{3}16;\log_{3}1024]$$
Задание 8344
Решите неравенство $$2\log_{\log_{2}x^{2}}2<1$$
$$\Rightarrow$$ $$\left\{\begin{matrix}\log_{2}x^{2}>0&\\\log_{2}x^{2}\neq1&\\x^{2}>0&\\\log_{\log_{2}x^{2}}2<\frac{1}{2}&\end{matrix}\right.$$
1) $$\log_{2}x^{2}>0$$ $$\Leftrightarrow$$ $$x^{2}>1$$ $$\Rightarrow$$ $$x\in(-\infty;-1)\cup(1;+\infty)$$
2) $$\log_{2}x^{2}\neq1$$ $$\Leftrightarrow$$ $$x^{2}\neq1$$ $$\Leftrightarrow$$ $$x\neq\pm\sqrt{2}$$
3) $$x^{2}>0$$ $$\Rightarrow$$ $$x\neq0$$
С учетом (1); (2); (3): $$x\in(-\infty;-\sqrt{2})\cup(-\sqrt{2};-1)\cup(1;\sqrt{2})\cup(\sqrt{2};+\infty)$$
4) $$\log_{\log_{2}x^{2}}2-\frac{1}{2}<0$$ $$\Leftrightarrow$$ $$\log_{\log_{2}x^{2}}2-\log_{\log_{2}x^{2}}(\log_{2}x^{2})^{\frac{1}{2}}<0$$ $$\Leftrightarrow$$ $$\log_{\log_{2}x^{2}}\frac{2}{\sqrt{\log_{2}x^{2}}}<0$$
Пусть $$\sqrt{\log_{2}x^{2}}=y\geq0$$ $$\Rightarrow$$ $$(y^{2}-1)(\frac{2}{y}-1)<0$$ $$\Rightarrow$$ $$(y-1)(y+1)(\frac{2-y}{y})<0$$ $$\Rightarrow$$ $$\frac{(y-1)(y+1)(y-2)}{y}\geq0$$
Т.к. $$y\geq0$$, то $$\left[\begin{matrix}\left\{\begin{matrix}y>0&\\y\leq1&\end{matrix}\right.&\\y\geq2&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}\sqrt{\log_{2}x^{2}}>0&\\\sqrt{\log_{2}x^{2}}\leq1&\end{matrix}\right.&\\\sqrt{\log_{2}x^{2}}\geq2&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}x^{2}>1&\\x^2\leq2&\end{matrix}\right.&\\x^2\geq16&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left[\begin{matrix}x\in[-\sqrt{2};-1)\cup(1;\sqrt{2}]&\\x\leq-4&\\x\geq4&\end{matrix}\right.$$
Итог: $$x\in(-\infty;-4)\cup(-\sqrt{2};-1)\cup(1;\sqrt{2})\cup[4;+\infty)$$
Задание 10693
Справа неотрицательное число, тогда $$2^x-5\ge 0\to \left|2^x-5\right|=2^x-5$$.
Задание 10733
Решите неравенство $$1+\frac{9}{{{\log }_2 x\ }-5}+\frac{18}{{{\log }^2_2 x\ }-{{\log }_2 \left(\frac{x^{10}}{4}\right)\ }+23}\ge 0$$.
1. Запишем ОДЗ: $$x>0$$.
2. Преобразуем неравенство, учитывая, что $${{\log }_2 \left(\frac{x^{10}}{4}\right)\ }={{{\log }_2 x\ }}^{10}-{{\log }_2 4\ }=10{{\log }_2 x\ }-2$$ и $${{\log }^2_2 x\ }-{{\log }_2 \left(\frac{x^{10}}{4}\right)\ }+23={{\log }^2_2 x\ }-10{{\log }_2 x\ }+25={\left({{\log }_2 x\ }-5\right)}^2$$ получим: $$1+\frac{9}{{{\log }_2 x\ }-5}+\frac{18}{{\left({{\log }_2 x\ }-5\right)}^2}\ge 0$$. Пусть $${{\log }_2 x\ }-5=t$$, тогда: $$1+\frac{9}{t}+\frac{18}{t^2}\ge 0\to \frac{t^2+9t+18}{t^2}\ge 0\to \frac{(t+3)(t+6)}{t^2}\ge 0$$.
Имеем следующие точки, делящие числовую ось: $$t=-3;t=-6;t\ne 0$$.
Рассмотрим два случая: $$1) t\le -6\to {{\log }_2 x\ }-5\le -6\to {{\log }_2 x\ }\le {{\log }_2 \frac{1}{2}\ }\to x\le \frac{1}{2}$$ $$2) \left\{ \begin{array}{c} t\ge -3 \\ t\ne 0 \end{array} \right.\to \left\{ \begin{array}{c} {{\log }_2 x\ }-5\ge -3 \\ {{\log }_2 x\ }-5\ne 0 \end{array} \right.\to \left\{ \begin{array}{c} x\ge 4 \\ x\ne 32 \end{array} \right.$$ $$x\in (0;\left.\frac{1}{2}\right]\cup \left[4\right.;32)\cup (32;+\infty )$$
Задание 10753
Решите неравенство $$1+\frac{13}{{{\log }_3 x\ }-4}+\frac{42}{{{\log }^2_3 x\ }-{{\log }_3 \left(\frac{x^8}{81}\right)\ }+12}\ge 0$$
ОДЗ: $$x>0$$.
Преобразуем неравенство, учитывая, что $${{\log }_3 \left(\frac{x^8}{81}\right)\ }={{\log }_3 x^8\ }-{{\log }_3 81\ }=8{{\log }_3 \left|x\right|\ }-4=8{{\log }_3 x\ }-4$$ и $${{\log }^2_3 x\ }-{{\log }_3 \left(\frac{x^8}{81}\right)\ }+12={{\log }^2_3 x\ }-8{{\log }_3 x\ }+16={\left({{\log }_3 x\ }-4\right)}^2$$ получим: $$1+\frac{13}{{{\log }_3 x\ }-4}+\frac{42}{{\left({{\log }_3 x\ }-4\right)}^2}\ge 0$$.
Пусть $${{\log }_3 x\ }-4=t$$, имеем: $$1+\frac{13}{t}+\frac{42}{t^2}\ge 0\to \frac{t^2-13t+42}{t^2}\ge 0\to \frac{(t+6)(t+7)}{t^2}\ge 0$$
Имеем следующие точки, делящие числовую ось: $$t=-6;t=-7;t\ne 0$$
Рассмотрим два случая: $$1: t\le -7\to {{\log }_3 x\ }-4\le -7\to {{\log }_3 x\ }\le -3\to x\le \frac{1}{27}$$
$$2: \left\{ \begin{array}{c} t\ge -6 \\ t\ne 0 \end{array} \to \left\{ \begin{array}{c} {{\log }_3 x\ }-4\ge -6 \\ {{\log }_3 x\ }-4\ne 0 \end{array} \right.\right.\to \left\{ \begin{array}{c} x\ge \frac{1}{9} \\ x\ne 81 \end{array} \right.$$ $$x\in \left(0;\frac{1}{27}\right]\cup [\frac{1}{9};81)\cup (81;+\infty )$$
Задание 10822
Решите неравенство: $$5^{{{\log }^2_3 {\left(x-2\right)}^2\ }}\cdot \frac{1}{125}\ge 5^{{{\log }_3 \left(x-2\right)\ }}$$.
Задание 10842
1. Упрощаем выражение, получаем: $${\left({{\log }^2_2 x\ }-2{{\log }_2 x\ }\right)}^2+45<18\left({{\log }^2_2 x\ }-2{{\log }_2 x\ }\right)$$.
2. Делаем замену $${{\log }^2_2 x\ }-2{{\log }_2 x\ }=t$$: $$t^2-18t+45<0$$.
Решаем неравенство относительно $$t$$, имеем: $$t_1=3;\ t_2=15$$. $$\left\{ \begin{array}{c} {{\log }^2_2 x\ }-2{{\log }_2 x\ }>3 \\ {{\log }^2_2 x\ }-2{{\log }_2 x\ }<15 \end{array} \right.$$
3. Находим решения неравенств
1: Для $${{\log }^2_2 x\ }-2{{\log }_2 x\ }-3>0$$ - делаем замену $${{\log }_2 x\ }=m$$, получаем: $$m^2-2m-3>0$$ - решаем уравнение, имеем: $$m_1=-1,\ m_2=3$$ т.е. $$\left\{ \begin{array}{c} m<-1 \\ m>3 \end{array} \right.$$ - находим $$x$$: $$x\in (0;1)\cup (8;+\infty )$$
2: Для $${{\log }^2_2 x\ }-2{{\log }_2 x\ }-15<0$$ - делаем замену $${{\log }_2 x\ }=m$$, получаем: $$m^2-2m-15<0$$ - решаем уравнение, имеем: $$m_1=-3,\ m_2=5$$ т.е. $$-3<m<5$$
- находим $$x$$: $$x\in (\frac{1}{8};32)$$
4. Пересечение полученных множеств дает окончательный ответ: $$x\in (\frac{1}{8};\frac{1}{2})\cup (8;32)$$.
Задание 10861
Решите неравенство $$\frac{13-5\cdot 3^x}{9^x-12\cdot 3^x+27}\ge 0,5$$
1. Преобразуем выражение, получим: $$\frac{13-5\cdot 3^x}{9^x-12\cdot 3^x+27}-\frac{1}{2}\ge 0$$.
2. Делаем замену: $$3^x=t,t>0$$ получаем: $$\frac{13-5t}{t^2-12t+37}-\frac{1}{2}\ge 0\to \frac{26-10t-t^2+12t-27}{2\left(t^2-12t+27\right)}\ge 0\to \frac{t^2-2t+1}{2(t^2-12t+27)}\le 0\to $$ $$\to \frac{{\left(t-1\right)}^2}{t^2-12t+27}\le 0$$.
3. Для решения неравенства находим точки, которые разбивают числовую прямую на интервалы: $$\left\{ \begin{array}{c} {\left(t-1\right)}^2=0 \\ t^2-12t+27\ne 0 \end{array} \right.\to \left\{ \begin{array}{c} t=1 \\ t\ne 3 \\ t\ne 9 \end{array} \right.$$. Для $$t=1$$: $$3^x=3^0\to x=0$$. Для $$3<t<9$$: $$3^1<3^x$$$$<3^2\to 1<x<2$$.
Задание 10880
Решите неравенство $$\frac{2}{{\left(2^{2-x^2}-1\right)}^2}-\frac{4}{2^{2-x^2}-1}+1\ge 0$$.
1. Выполним замену $$2^{2-x^2}-1=t$$, получим: $$\frac{3}{t^2}-\frac{4}{t}+1\ge 0\to \frac{t^2-4t+3}{t^2}\ge 0$$.
2. Для решения неравенства находим точки, которые разбивают числовую прямую: $$\left\{ \begin{array}{c} t^2-4t+3=0 \\ t^2=0 \end{array} \right.\to \left\{ \begin{array}{c} t=1 \\ t=3 \\ t\ne 0 \end{array} \right.$$. $$1) \left\{ \begin{array}{c} t\le 1 \\ t\ne 0 \end{array} \right.\to \left\{ \begin{array}{c} 2^{2-x^2}\le 2^1 \\ 2^{2-x^2}\ne 2^0 \end{array} \right.\to \left\{ \begin{array}{c} 2-x^2\le 1 \\ x^2-2>0 \end{array} \right.$$ $$2) t\ge 3\to 2^{2-x^2}-1\ge 3\to 2-x^2\ge 2\to x=0.$$ $$x\in \left(-\infty ;-\sqrt{2}\right)\cup \left(-\sqrt{2};-1\right]\cup [1;\sqrt{2})\cup (\sqrt{2};+\infty ).$$
Задание 10899
Решите неравенство $$\frac{2}{7^x-7}\ge \frac{5}{7^x-4}$$
1. Выполним замену $$7^x=t,t>0$$, получим: $$\frac{2}{t-7}-\frac{5}{t-4}\ge 0\to \frac{2t-8-5t+35}{\left(t-7\right)\left(t-4\right)}\ge 0\to \frac{-3t+27}{(t-7)(t-4)}\ge 0.$$ Разделим последнее выражение на -3: $$\frac{t-9}{\left(t-7\right)\left(t-4\right)}\le 0$$.
2. Получаем следующие точки, делящие числовую прямую: $$\left\{ \begin{array}{c} t=9 \\ t\ne 7 \\ t\ne 4 \end{array} \right.$$.
3. Получаем решения неравенства:
Для $$0<7^x<4\to x\in (-\infty ;{{\log }_7 4\ })$$.
Для $$7^1-<7^x<7^{{{\log }_7 9\ }}$$$$\to x\in (1;{{\log }_7 9\ }]$$.
Задание 10937
Решите неравенство $$x^2{{\log }_{243} (-x-3)\ }\ge {{\log }_3 (x^2+6x+9)\ }$$
Задание 11001
Решите неравенство: $${{\log }_{0,25} (1-6x)\ }\cdot {{\log }_{\left(1-x\right)} \left(\frac{1}{2}\right)\ }>1$$
$${{\log }_{0,25} (1-6x)\ }\cdot {{\log }_{\left(1-x\right)} \left(\frac{1}{2}\right)\ }>1\leftrightarrow {{\log }_{{0,5}^{-2}} \left(1-6x\right)\ }\cdot \frac{1}{{{\log }_{0,5} \left(1-x\right)\ }}>1\leftrightarrow$$ $$\leftrightarrow \frac{\frac{1}{2}{{\log }_{0,5} \left(1-6x\right)\ }}{{{\log }_{0,5} \left(1-x\right)\ }}\leftrightarrow \left\{ \begin{array}{c} {{\log }_{\left(1-x\right)} \left(1-6x\right)\ }>2 \\ 1-6x>0 \\ 1-x>0 \\ 1-x\ne 1 \end{array} \right.\leftrightarrow$$ $$\leftrightarrow \left\{ \begin{array}{c} \left(1-6x-{\left(1-x\right)}^2\right)\left(1-x-1\right)>0(1) \\ x<\frac{1}{6} \\ x<1 \\ x\ne 0 \end{array} \right.$$
$$(1): \left(1-6x-1+2x-x^2\right)\left(-x\right)>0\leftrightarrow \left(-x^2-4x\right)\left(-x\right)>0\leftrightarrow x^2\left(x+4\right)>0\leftrightarrow $$ $$\leftrightarrow x>-4.$$ Тогда: $$x\in (-4;0)\cup (0;\frac{1}{6})$$.
Задание 11021
Решите неравенство $$5^{x+1}+3\cdot 5^{-x}\le 16.$$
1. Сделаем замену $$5^x=t,t>0$$, получим: $$5t+\frac{3}{t}-16\le 0$$ умножим левую и правую части на $$t$$: $$5t^2-16t+3\le 0.$$
2. Решаем квадратное уравнение относительно $$t$$, имеем два корня $$t_1=\frac{1}{5};\ t_2=3$$ и, следовательно, имеем разбиение числовой прямой то есть $$1/5\le t\le 3$$, откуда получаем: $$5^{-1}\le 5^x\le 5^{{{\log }_5 3\ }}\to -1\le x\le {{\log }_5 3\ }.$$
Ответ: $$x\in [-1;{{\log }_5 3\ }]$$
Задание 11087
Решите неравенство: $$x^2{{\log }_{4096} (3-x)\ }\ge {{\log }_8 (x^2-6x+9)\ }$$
Задание 11106
Решите неравенство $$\frac{567-9^{-x}}{81-3^{-x}}\ge 7.$$
1. Сделаем следующую замену: $$3^{-x}=t,t>0$$ и $$9^{-x}={\left(3^{-x}\right)}^2=t^2,$$ получим: $$\frac{567-t^2}{81-t}-7\ge 0\to \frac{567-t^2-567+7t}{81-t}\ge 0\to \frac{-t^2+7t}{81-t}\ge 0\to \frac{t\left(t-7\right)}{t-81}\ge 0.$$
2. Получаем следующие точки, разбивающие числовую прямую: $$\left\{ \begin{array}{c} t\ne 0 \\ t=7 \\ t\ne 81 \end{array} \right.$$
3. Имеем следующие решения неравенства:
Для $$0<t\le 7:0<3^{-x}\le 7\to x\ge {{\log }_3 \frac{1}{7}\ }.$$
Для $$t>81:3^{-x}>3^4\to x<-4$$
$$x\in \left(-\infty ;-4\right)\cup [{{\log }_3 \frac{1}{7}\ };+\infty )$$
Задание 11126
Решите неравенство $${{\log }_{\frac{3x-1}{x+2}} (2x^2+x-1)\ }\ge {{\log }_{\frac{3x-1}{x+2}} (11x-6-3x^2)\ }$$
1. ОДЗ: $$\left\{ \begin{array}{c} 2x^2+x-1>0 \\ 11x-6-3x^2>0 \\ \frac{3x-1}{x+2}>0 \\ \frac{3x-1}{x+2}\ne 1 \end{array} \right.$$
2. Рассмотрим по отдельности каждое неравенство из ОДЗ:
а) неравенство $$2x^2+x-1>0$$ имеет корни: $$x_1=-1\ ;x_2=\frac{1}{2}\ ;$$
б) неравенство $$11x-6-3x^2$$$$>0$$ имеет корни: $$x_1=\frac{2}{3};x_2=\ 3;$$
в) неравенство $$\frac{3x-1}{x+2}>0$$ имеет корни: $$x_1=\frac{1}{3};x_2=-2;$$
г) неравенство $$\frac{3x-1}{x+2}\ne 1\to 3x-1\ne x+2$$ и $$x\ne 1,5$$
3. Объединяя все четыре решения, получаем: $$x\in (\frac{2}{3};1,5)\cup (1,5;3)$$
4. Возвращаемся к исходному неравенству и воспользуемся методом рационализации: $${{\log }_n f\ }-{{\log }_n g\ }\to \left(n-1\right)\left(f-g\right).$$
Таким образом, на заданном ОДЗ можем записать: $$(\frac{3x-1}{x+2}-1)(2x^2+x-1-11x+6+3x^2)\ge 0.$$ Упрощаем выражение, получаем: $$\left(\frac{2x-3}{x+2}\right)\left(5x^2-10x+5\right)\ge 0\to \left(\frac{2x-3}{x+2}\right){\left(x-1\right)}^2\ge 0.$$
Получаем решения: $$\left\{ \begin{array}{c} x\ne 1,5 \\ x=1 \\ x\ne -2 \end{array} \right.\to x\in \left(-\infty ;-2\right)\cup [1]\cup (1,5;+\infty )$$.
5. Пересекаем ОДЗ с полученным решением, окончательно получаем: $$x\in [1]\cup (1,5;3)$$
Задание 11145
Решите неравенство $$-2{{\log }_{\frac{x}{3}} 27\ }\ge {{\log }_3 27x+1\ }.$$
1. Запишем ОДЗ: $$\left\{ \begin{array}{c} x>0 \\ \frac{x}{3}\ne 1 \end{array} \right.\to \left\{ \begin{array}{c} x>0 \\ x\ne 3 \end{array} \right.\to x\in \left(0;3\right)\cup \left(3;+\infty \right).$$
2. Упростим неравенство, получим: $$-6{{\log }_{\frac{x}{3}} 3\ }-3-{{\log }_3 x\ }-1\ge 0\to \frac{6}{{{\log }_{\frac{x}{3}} 3\ }}+{{\log }_3 x\ }+4\le 0\to $$ $$\to \frac{6}{{{\log }_3 x\ }-1}+{{\log }_3 x\ }+4\le 0$$.
3. Сделаем замену: $${{\log }_3 x\ }=t$$, получим: $$\frac{6}{t-1}+t+4\le 0\to \frac{t^2+3t+2}{t-1}\le 0.$$
4. Получаем точки, делящие числовую прямую: $$\left\{ \begin{array}{c} t^2+3t+2=0 \\ t-1\ne 0 \end{array} \right.$$$$\to \left\{ \begin{array}{c} t=-1 \\ t=-2 \\ t\ne 1 \end{array} \right..$$
5. Имеем следующие решения неравенства: Для $$t\le -2$$: $${{\log }_3 x\ }\le {{\log }_3 \frac{1}{9}\ }\to 0<x\le \frac{1}{9}\to x\in (0;\frac{1}{9}]\in $$ ОДЗ.
Для $$-1\le t<1:$$ $${{\log }_3 \frac{1}{3}\le {{\log }_3 x\ }\ }<{{\log }_3 3\ }\to \frac{1}{3}\le x<3\to x\in [\frac{1}{3};3)\in $$ ОДЗ.
Задание 14315
Решите неравенство $$\frac{1}{\log_3(2x-1)\cdot \log_{x-1}9}< \frac{\log_3\sqrt{2x-1}}{\log_3(x-1)}$$.
$$\frac{1}{log_3(2x-1)\cdot log_{x-1}9}< \frac{log_3\sqrt{2x-1}}{log_3(x-1)}$$;
$$\frac{1}{2log_3(2x-1)\cdot log_{x-1}3}< \frac{\frac{1}{2}\cdot log_3(2x-1)}{log_3(x-1)}$$;
$$\frac{1}{log_{x-1}(2x-1)}< log_{x-1}(2x-1)$$;
$$\frac{log^2_{x-1}(2x-1)-1}{log_{x-1}(2x-1)}>0$$;
Готовимся применить метод замены множителей:
$$\frac{(log_{x-1}(2x-1)-log_{x-1}(x-1))(log_{x-1}(2x-1)-log_{x-1}\frac{1}{x-1})}{log_{x-1}(2x-1)-log_{x-1}1}>0$$;
$$\left\{\begin{matrix} \frac{(x-1-1)(2x-1-(x-1))((x-1-1)(2x-1-\frac{1}{x-1})}{(x-1-1)(2x-1-1)}>0,\\ x-1>0,\\ x-1\neq 1\\ 2x-1>0; \end{matrix}\right.$$
$$\left\{\begin{matrix} \frac{x(x-2)^2((2x-1)(x-1)-1)}{2(x-2)(x-1)^2}>0\\ x>1,\\ x\neq 2; \end{matrix}\right.$$
$$\left\{\begin{matrix} \frac{x(x-2)(2x^2-3x)}{2(x-2)^2}>0,\\ x>1\\ x\neq 2 \end{matrix}\right.$$
$$\left\{\begin{matrix} \frac{x^2(x-2)(2x-3)}{(x-1)^2}>0\\ x>1,\\ x\neq 2; \end{matrix}\right.$$
$$x\in (1;1,5)\cup (2;+\infty)$$.