ЕГЭ Профиль
Задание 10527
Задание 10390
Задание 10072
Задание 9679
Задание 9632
а) Решите уравнение $$\sqrt{\sin x\cdot \cos x}=\cos x$$
б) Укажите корни этого уравнения, принадлежащие отрезку $$[\frac{\pi}{2};\frac{5\pi}{2}]$$
Задание 8871
а) Решите уравнение $$(\sqrt{2}^{\sin^{2}x+\sqrt{\cos x}})^{2}+2^{\cos^{2}x+\sqrt{\cos x}}=3\cdot 2^{\sqrt{\cos x}}$$
б) Укажите корни этого уравнения, принадлежащие отрезку $$[-\frac{11\pi}{2};-4\pi]$$
Задание 6663
а) Решите уравнение $$(\sin 2x - 2\cos x)\log_{2}(\log_{\frac{1}{3}}(x+5))=0$$
б) Укажите корни этого уравнения, принадлежащие промежутку $$(-\frac{3\pi}{2};0)$$
А) ОДЗ: $$\left\{\begin{matrix}log_{\frac{1}{3}}(x+5)>0\\x+6>0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x+5<1\\x+5>0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x<-4\\x>-5\end{matrix}\right.$$
Решение: $$\left\{\begin{matrix}\sin 2x-2 \cos x=0(1)\\\log_{2}(\log_{\frac{1}{2}}(x+5))=0(2)\end{matrix}\right.$$
Рассмотрим (1): $$\sin 2x-2 \cos x=0\Leftrightarrow$$ $$2 \sin x\cos x-2 \cos x=0\Leftrightarrow$$ $$2 \cos x(\sin x-\cos x)=0\Leftrightarrow$$ $$\left[\begin{matrix}\cos x=0\\\sin x=1\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}x=\frac{\pi}{2}+\pi n , n \in Z\\x=\frac{\pi}{2}+2 \pi n\end{matrix}\right.\Leftrightarrow$$ $$x=\frac{\pi}{2}+\pi n, n \in Z$$
С учетом ОДЗ : $$x=-\frac{3 \pi}{2}$$
(2): $$\log_{2}(\log_{\frac{1}{3}}(x+5))=0\Leftrightarrow$$ $$\log_{\frac{1}{3}}(x+5)=1\Leftrightarrow$$ $$x+5=\frac{1}{3}\Leftrightarrow$$ $$x=-4\frac{2}{3}$$
Б) Из двух полученных корней на данном промежутке лежит только $$x=-4\frac{2}{3}$$