ЕГЭ Профиль
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 975
Вычислите $$\frac{\sin 35\cos 35}{\sin ^{2} 10-\cos ^{2} 10}$$
$$\frac{\sin 35\cos 35}{\sin ^{2} 10-\cos ^{2} 10}=$$ $$\frac{0.5\sin 70}{-\cos 20}=\frac{0.5\cos 20}{-\cos 20}=-0.5$$
Задание 1099
Вычислите $$tg \alpha $$, если известно, что $$\cos 2\alpha =0.6$$ и $$\frac{3\pi }{4}< \alpha < \pi $$
Воспользуемся формулой косинуса двойного угла: $$\cos 2\alpha =2\cos^{2}\alpha-1=0.6$$
С учетом того, что $$\alpha$$ - угол второй четверти, то косинус у него отрицательный, а синус положительный.
Значит: $$cos \alpha = -\sqrt{\frac{\cos 2\alpha+1}{2}}=-\sqrt{\frac{0.6+1}{2}}=-\sqrt{0.8} $$
Воспользуемся основным тригонометрическим тождеством: $$sin \alpha = \sqrt{1-\cos^{2}\alpha}=\sqrt{0.2}$$
Значит тангенс будет равен: $$tan \alpha = \frac{\sin \alpha}{\cos \alpha}= \frac{\sqrt{0.2}}{-\sqrt{0.8}}=-\frac{1}{2}=-0.5$$
Задание 1238
Известно, что $$\frac{\cos x-\sin x}{\cos x+\sin x}=-0.8$$. Найдите $$ tg x $$
$$\frac{\cos x-\sin x}{\cos x+\sin x}=-0.8=\frac{-4}{5}$$ $$(\cos x-\sin x)*5=-4*(\cos x+\sin x)$$ $$5\cos x-5\sin x=-4*\cos x-4\sin x$$ $$9\cos x = \sin x $$ Поделим обе части на cos x $$9 = tg x $$
Задание 1279
Известно, что $$ tg x = \frac{2}{\sqrt{21}}$$ и $$\pi < x< \frac{3\pi }{2}$$. Найдите sin x
Угол располагается в третьей четверти, поэтому sin будет отрицательный. Найдем сначала ctg x: $$ ctg x = \frac {1}{tg x}= \frac {1}{\frac{2}{\sqrt{21}}}=\frac{\sqrt{21}}{2}$$ Выразим sin x из формулы $$ 1 + ctg^{2} x = \frac{1}{\sin^{2} x} $$ $$ \frac{1}{1 + ctg^{2} x} =\sin^{2} x $$ $$\sin x = - \sqrt{ \frac{1}{1 + ctg^{2} x} } $$ $$\sin x = - \sqrt{ \frac{1}{1 + (\frac{\sqrt{21}}{2})^{2}} }=- \sqrt{ \frac{1}{1 + \frac{21}{4}}}=-\frac{2}{5}=-0.4 $$
Задание 2352
Найдите значение выражения: $$\frac{38\cos 153^{\circ}}{\cos 27^{\circ}}$$
$$\frac{38\cos 153^{\circ}}{\cos 27^{\circ}}=\frac{38\cos(180^{\circ}-27^{\circ})}{\cos 27^{\circ}}=\frac{38 (-\cos 27^{\circ})}{\cos 27^{\circ}}=-38$$