Перейти к основному содержанию

ЕГЭ Профиль

ЕГЭ (профиль) / (C7) Числа и их свойства

Задание 1330

Дано трёхзнач­ное на­ту­раль­ное число (число не может на­чи­нать­ся с нуля), не крат­ное 100.
а) Может ли част­ное этого числа и суммы его цифр быть рав­ным 90?
б) Может ли част­ное этого числа и суммы его цифр быть рав­ным 88?
в) Какое наи­боль­шее на­ту­раль­ное зна­че­ние может иметь част­ное дан­но­го числа и суммы его цифр?
Ответ: а) да ; б) нет ; в) 91

Задание 1331

За по­бе­ду в шах­мат­ной пар­тии на­чис­ля­ют 1 очко, за ничью ─ 0,5 очка, за про­иг­рыш ─ 0 очков. В тур­ни­ре при­ни­ма­ют уча­стие m маль­чи­ков и d де­во­чек, причём каж­дый иг­ра­ет с каж­дым два­жды.

а) Ка­ко­во наи­боль­шее ко­ли­че­ство очков, ко­то­рое в сумме могли на­брать де­воч­ки, если m = 3, d = 2.
б) Ка­ко­ва сумма на­бран­ных всеми участ­ни­ка­ми очков, если m + d = 10.
в) Ка­ко­вы все воз­мож­ные зна­че­ния d, если m = 7d и из­вест­но, что в сумме маль­чи­ки на­бра­ли ровно в 3 раза боль­ше очков, чем де­воч­ки?
Ответ: а) 14; б) 90; в) 1.

Задание 1332

Наи­боль­шее целое число, не пре­вос­хо­дя­щее число x, равно  $$\frac{x^{2}+6}{7}$$  Най­ди­те все такие зна­че­ния x.

Ответ: $$1 ; \sqrt{8}; \sqrt{15}; \sqrt{22}; \sqrt{29} ; 6$$

Задание 1333

Каж­дое из чисел 2, 3, …, 7 умно­жа­ют на каж­дое из чисел 13, 14, …, 21 и перед каж­дым из по­лу­чен­ных про­из­ве­де­ний про­из­воль­ным об­ра­зом ста­вят знак плюс или минус, после чего все 54 по­лу­чен­ных ре­зуль­та­та скла­ды­ва­ют. Какую наи­мень­шую по мо­ду­лю и какую наи­боль­шую сумму можно по­лу­чить в итоге?

Ответ: 1 и 4131

Задание 1334

Най­ди­те все трой­ки на­ту­раль­ных чисел k, m и n, удо­вле­тво­ря­ю­щие урав­не­нию $$2\cdot k!=m!-2\cdot n! (1!=1;2!=1*2;n!=1*2*...*n)$$

Ответ: k=1 ,n=2, k=3 ; k=n=3 , m =4 ; k=2, n=1, m=3

Задание 1335

Най­ди­те все пары на­ту­раль­ных чисел m и n, яв­ля­ю­щи­е­ся ре­ше­ни­я­ми урав­не­ния $$2^{m}-3^{n}=1$$

Ответ: m=2 , n=1

Задание 1336

Най­ди­те все пары  $$(x;y)$$  целых чисел, удо­вле­тво­ря­ю­щие си­сте­ме не­ра­венств:

$$\left\{\begin{matrix}x^{2}+y^{2}< 18x-20y-166\\ 32x-y^{2}> x^2+12y+271\end{matrix}\right.$$

Ответ: (12;-8)

Задание 1337

Мно­же­ство А со­сто­ит из на­ту­раль­ных чисел. Ко­ли­че­ство чисел в А боль­ше семи. Наи­мень­шее общее крат­ное всех чисел из А равно 210. Для любых двух чисел из А их наи­боль­ший общий де­ли­тель боль­ше еди­ни­цы. Про­из­ве­де­ние всех чисел из А де­лит­ся на 1920 и не яв­ля­ет­ся квад­ра­том ни­ка­ко­го це­ло­го числа. Найти числа, из ко­то­рых со­сто­ит А.

Ответ: {6,10,14,30,42,70,105,210}

Задание 1338

Перед каж­дым из чисел 5, 6, . . ., 10 и 12, 13, . . ., 16 про­из­воль­ным об­ра­зом ста­вят знак плюс или минус, после чего к каж­до­му из об­ра­зо­вав­ших­ся чисел пер­во­го на­бо­ра при­бав­ля­ют каж­дое из об­ра­зо­вав­ших­ся чисел вто­ро­го на­бо­ра, а затем все 30 по­лу­чен­ных ре­зуль­та­тов скла­ды­ва­ют. Какую наи­мень­шую по мо­ду­лю и какую наи­боль­шую сумму можно по­лу­чить в итоге?

Ответ: 1 и 645

Задание 1339

Ре­ши­те в на­ту­раль­ных чис­лах урав­не­ние $$n^{k+1}-n!=5(30k+11)$$

Ответ: $$n=5 , k=3$$
 

Задание 2504

На доске записаны 20 чисел: пять единиц, пять двоек, пять троек и пять четверок. Эти числа разбивают на две группы (в каждой группе не менее одного числа). Пусть среднее арифметическое чисел в первой группе равно А, а среднее арифметическое чисел во второй группе равно В.
А) Может ли среднее арифметическое всех 20 чисел оказаться равным $$\frac{A+B}{2}$$?
Б) Может ли среднее арифметическое всех 20 чисел оказаться меньше, чем $$\frac{A+B}{2}$$?
В) Найдите наименьшее возможное значение выражения $$\frac{A+B}{2}$$.

Ответ: а) да; б) да; в) $$\frac {34}{19}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 2950

Имеется арифметическая прогрессия, состоящая из пятидесяти чисел.
а) Может ли эта прогрессия содержать ровно 6 целых чисел?
б) Может ли эта прогрессия содержать ровно 29 целых чисел?
в) Найдите наименьшее число n, при котором эта прогрессия не может содержать ровно n целых чисел.
Ответ: а) да ; б) нет ; в) 11
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

а) да, например $$1; 1\frac{1}{9};...$$

б) Нет. Два из этих 29 членов были бы соседними, тогда разность прогрессии была бы целой, а тогда и все остальные члены прогрессии были бы целыми.

в) Заметим что прогрессия $$0;\frac{1}{k};\frac{2}{k};...;\frac{49}{k}$$ содержит ровно $$[\frac{49}{k}]+1$$. Это позволяет сразу привести примеры:

Для 1 числа можно взять $$k=50$$.

Для 2 можно взять $$k=49$$.

Продолжая, подберем $$k=24,16,12,9,8,7,6,5$$ для всех чисел до 10.

Допустим можно сделать прогрессию ровно с 11 целыми членами. Разобьем ее на 10 блоков по 5 чисел. Два целых попадут в один блок, поэтому разница между ними не превосходит $$4d$$, где $$d$$ — разность прогрессии. Но тогда в каждых четырех подряд членах прогрессии попадается целое число, а 50 чисел можно разбить на 12 четверок и еще два числа.

 

Задание 3040

На листочке написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 1485. В каждом числе поменяли местами первую и вторую цифры (например, число 23 заменили на число 32).
а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в 3 раза меньше, чем сумма исходных чисел.
б) Могла ли сумма получившихся чисел быть ровно в 9 раза меньше, чем сумма исходных чисел?
в) Найдите наименьшее возможное значение суммы получившихся чисел.

Ответ: а) 30 чисел 41 и 5 чисел 51; б) нет; в) 396
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 3164

Пусть S(N) – сумма цифр натурального числа N. 

а) Может ли N+S(N) равняться 96?   
б) Может ли N+S(N) равняться 97?   
в) Найдите все N, для которых N+S(N) = 2017. 
Ответ: а)да ; б)нет ; b)1994 и 2012
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 3210

В шахматном турнире участвовало 20 шахматистов, причём 6 из них – из России. Каждый шахматист сыграл по одной партии с каждым. За победу в партии шахматист получал 1 очко, за ничью – 0,5 очка, в случае проигрыша – 0 очков.
А) Могли ли все российские шахматисты набрать в сумме ровно 14 очков?
Б) Могли ли все российские шахматисты набрать в сумме ровно 100 очков?
В) Известно, что первое место занял шахматист из России, а второе место – шахматист из другой страны. Какое наибольшее суммарное количество очков могли набрать российские шахматисты?

Ответ: а) нет; б) нет; в) 96
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!