Перейти к основному содержанию

ЕГЭ Профиль

Текстовые задачи

Задачи на проценты, сплавы и смеси

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 941

Свежие плоды содержат 60% воды. При сушке плоды теряют 40% своей влаги. Сколько килограммов свежих плодов потребуется для получения 1520 кг сухих?

Ответ: 2000
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть S - первоначальная масса свежих плодов. Тогда воды в них X

S - 100%
x - 60%
x = 0.6S

При сушке теряется 40% воды, пусть эта масса Y:

0.6S - 100%
y - 40%
y = 0.6S*40/100=0.24S

Значит от первоначальной массы остается : S - 0.24S = 0.76S. Это и есть масса сухих плодов.

Найдем массу свежих: 0.76S=1520 S=1520/0.76=2000

 

Задание 978

Имеется два сплава. Первый содержит 10% никеля, второй − 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

Ответ: 100
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть масса первого сплава X (в нем содержится 10% никеля, то есть 0,1х), масса второго сплава Y( в нем содержится 30% никеля, то есть 0,3у), тогда x+y=200 (так как получили сплав массой 200кг). В полученном сплаве никеля 25%, то есть 0,25*200=50кг. Значит, что 0,1x+0,3y=50 $$\left\{\begin{matrix} x+y=200 \\ 0.1x+0.3y=50 \end{matrix}\right.\Leftrightarrow $$ $$\left\{\begin{matrix} x=200-y \\ 0.1(200-y)+0.3y=50 \end{matrix}\right.$$ $$20-0.1y+0.3y=50\Leftrightarrow 0.2y=30\Leftrightarrow y=150\Leftrightarrow x=50\Leftrightarrow y-x=150-50=100$$

Задание 1125

В 2008 году в го­род­ском квар­та­ле про­жи­ва­ло 40000 че­ло­век. В 2009 году, в ре­зуль­та­те стро­и­тель­ства новых домов, число жи­те­лей вы­рос­ло на  8% , а в 2010 году на  9%  по срав­не­нию с 2009 годом. Сколь­ко че­ло­век стало про­жи­вать в квар­та­ле в 2010 году?

Ответ: 47088

Задание 1126

В по­не­дель­ник акции ком­па­нии по­до­ро­жа­ли на не­ко­то­рое ко­ли­че­ство про­цен­тов, а во втор­ник по­де­ше­ве­ли на то же самое ко­ли­че­ство про­цен­тов. В ре­зуль­та­те они стали сто­ить на  4%  де­шев­ле, чем при от­кры­тии тор­гов в по­не­дель­ник. На сколь­ко про­цен­тов по­до­ро­жа­ли акции ком­па­нии в по­не­дель­ник?

Ответ: 20

Задание 1127

Че­ты­ре оди­на­ко­вые ру­баш­ки де­шев­ле курт­ки на 8%. На сколь­ко про­цен­тов пять таких же ру­ба­шек до­ро­же курт­ки?

Ответ: 15

Задание 1128

Семья со­сто­ит из мужа, жены и их до­че­ри сту­дент­ки. Если бы зар­пла­та мужа уве­ли­чи­лась вдвое, общий доход семьи вырос бы на 67%. Если бы сти­пен­дия до­че­ри умень­ши­лась втрое, общий доход семьи со­кра­тил­ся бы на 4%. Сколь­ко про­цен­тов от об­ще­го до­хо­да семьи со­став­ля­ет зар­пла­та жены?

Ответ: 27

Задание 1129

Цена хо­ло­диль­ни­ка в ма­га­зи­не еже­год­но умень­ша­ет­ся на одно и то же число про­цен­тов от преды­ду­щей цены. Опре­де­ли­те, на сколь­ко про­цен­тов каж­дый год умень­ша­лась цена хо­ло­диль­ни­ка, если, вы­став­лен­ный на про­да­жу за 20 000 руб­лей, через два года был про­дан за 15 842 руб­лей.

Ответ: 11

Задание 1130

Митя, Антон, Гоша и Борис учре­ди­ли ком­па­нию с устав­ным ка­пи­та­лом 200000 руб­лей. Митя внес 14% устав­но­го ка­пи­та­ла, Антон — 42000 руб­лей, Гоша — 0,12 устав­но­го ка­пи­та­ла, а остав­шу­ю­ся часть ка­пи­та­ла внес Борис. Учре­ди­те­ли до­го­во­ри­лись де­лить еже­год­ную при­быль про­пор­ци­о­наль­но вне­сен­но­му в устав­ной ка­пи­тал вкла­ду. Какая сумма от при­бы­ли 1000000 руб­лей при­чи­та­ет­ся Бо­ри­су? Ответ дайте в руб­лях.

Ответ: 530000

Задание 1131

В сосуд, со­дер­жа­щий 5 лит­ров 12–про­цент­но­го вод­но­го рас­тво­ра не­ко­то­ро­го ве­ще­ства, до­ба­ви­ли 7 лит­ров воды. Сколь­ко про­цен­тов со­став­ля­ет кон­цен­тра­ция по­лу­чив­ше­го­ся рас­тво­ра?

Ответ: 5

Задание 1133

Сме­ша­ли 4 литра 15–про­цент­но­го вод­но­го рас­тво­ра не­ко­то­ро­го ве­ще­ства с 6 лит­ра­ми 25–про­цент­но­го вод­но­го рас­тво­ра этого же ве­ще­ства. Сколь­ко про­цен­тов со­став­ля­ет кон­цен­тра­ция по­лу­чив­ше­го­ся рас­тво­ра?

Ответ: 21

Задание 1134

Изюм по­лу­ча­ет­ся в про­цес­се сушки ви­но­гра­да. Сколь­ко ки­ло­грам­мов ви­но­гра­да по­тре­бу­ет­ся для по­лу­че­ния 20 ки­ло­грам­мов изюма, если ви­но­град со­дер­жит 90% воды, а изюм со­дер­жит 5% воды?

Ответ: 190
 

Задание 1240

Имеется два сосуда равного объёма. Первый наполнен раствором соли с концентрацией 44%, второй –раствором соли с концентрацией 66%. Из каждого сосуда взяли по 5,5 л раствора; взятое из первого сосуда вылили во второй,а взятое из второго – в первый, после чего концентрации растворов в сосудах стали равны. Сколько литров раствора было в первом сосуде?

Ответ: 11
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
Пусть V - одинаковый объем. Тогда соли в первом сосуде будет: V * 44 / 100 = 0.44V литра. Во втором сосуде: V * 66 / 100 = 0.66V литра
 
В 5,5 литрах первого раствора содержалось соли: 5.5 * 44 / 100 = 2.42 литра. Значит в первом растворе осталось 0.44V - 2.42 литров соли
В 5,5 литрах второго раствора содержалось соли: 5.5 * 66 / 100 = 3.63 литра. Значит во втором осталось 0,66V - 3,63 литров соли.
 
Но потом долили полученные значения в растворы, тогда в первом соли стало: 0.44V-2.42+3.63 литров соли, а во втором: 0.66V-3.63+2.42 литров.
 
Объемы остались одинаковые, а концентрации сравнялись, значит количество соли тоже одинаковое:
 
0.44V-2.42+3.63=0.66
V-3.63+2.42 0.22V=2.42
V=11
 

Задание 2827

Имеется два сплава. Первый сплав содержит 5% меди, второй – 13% меди. Масса второго сплава больше массы первого на 9 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х - масса первого $$\Rightarrow$$ $$0,05x$$ - масса меди в нем $$x+9$$ - масса второго $$\Rightarrow$$ $$0,13(x+5)$$ - масса меди в нем. $$0,05x+0,13(x+9)=0,1(x+x+9)$$ $$0,05x+0,13x+1,17=0,2x+0,9$$ $$0,18x-0,2x=-0,27$$ $$-0,02x=-0,27$$ $$x=13,5$$ $$\Rightarrow$$ $$2\cdot 13,5+9=36$$

 

Задание 3032

Имеется два сплава. Первый содержит 10% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Ответ: 100
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\left\{\begin{matrix}x+y=200\\0,1x+0,3y=50\end{matrix}\right.$$ $$\left\{\begin{matrix}x+y=200\\1x+3y=500\end{matrix}\right.$$ $$2y=300$$ $$y=150$$ $$x=200-150=50$$ $$y-x=150-50=100$$

 

Задание 3116

Имеется два сплава. Первый содержит 10% никеля, второй – 35% никеля. Из этих двух сплавов получили третий сплав массой 250 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Ответ: 50
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х - масса 1го сплава,

250-х - масса 2го

0,1х - никель в 1ом

0,35(250-х) - ниель во 2ом

$$0,1x+0,35(250-x)=250\cdot 0,25$$

$$0,1x+87,5-0,35x=62,5$$

$$-0,25x=-25$$

$$x=100$$ - масса первого

$$250-100=150$$ - масса второго

$$150-100=50$$ - разница