Перейти к основному содержанию

ЕГЭ Профиль

Стереометрия

Комбинации тел

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 1176

В равносторонний конус (диаметр основания конуса равен длине его образующей) вписан шар. Найдите отношение объема конуса к объему шара.

 

Ответ: 2.25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Объем конуса вычисляется по формуле:

$$V_{1}=\frac{1}{3}S*h=\frac{1}{3}\pi HB^{2}*AH$$

Объем шара вычисляется по формуле:

$$V_{2}=\frac{4}{3}\pi R^{3}=\frac{4}{3}\pi OH^{3}$$

Дан равносторонний конус, то есть в осевом сечении будет равносторонний треугольник. Пусть AB = x, тогда HB = 0,5x и по теореме Пифагора из треугольника AHB: $$AH = \frac{\sqrt{3}}{2}x$$. OH - радиус вписанной в правильный треугольник окружности, и он равен 1/3 от высоты: $$OH = \frac{1}{3}AH = \frac{\sqrt{3}}{6}x$$

Значит объем конуса равен:

$$V_{1}=\frac{1}{3}S*h=\frac{1}{3}\pi (0.5x)^{2}* \frac{\sqrt{3}}{2}x$$

Объем шара равен:

$$V_{2}=\frac{4}{3}\pi R^{3}=\frac{4}{3}\pi (\frac{\sqrt{3}}{6}x)^{3}$$

Тогда:

$$\frac{V_{1}}{V_{2}}=\frac{\frac{1}{3}\pi (0.5x)^{2}* \frac{\sqrt{3}}{2}x}{\frac{4}{3}\pi (\frac{\sqrt{3}}{6}x)^{3}}$$

$$\frac{V_{1}}{V_{2}}=\frac{0.25x^{3}* \frac{\sqrt{3}}{2}}{ 4(\frac{\sqrt{3}}{6}x)^{3}}=2.25$$

Задание 3867

Пря­мо­уголь­ный па­рал­ле­ле­пи­пед опи­сан около ци­лин­дра, ра­ди­ус ос­но­ва­ния и вы­со­та ко­то­ро­го равны 1. Най­ди­те объем па­рал­ле­ле­пи­пе­да.

Ответ: 4

Задание 3868

Пря­мо­уголь­ный па­рал­ле­ле­пи­пед опи­сан около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен 4. Объем па­рал­ле­ле­пи­пе­да равен 16. Най­ди­те вы­со­ту ци­лин­дра.

Ответ: 0,25

Задание 3869

В куб впи­сан шар ра­ди­у­са 1. Най­ди­те объем куба.

Ответ: 8

Задание 3870

В ос­но­ва­нии пря­мой приз­мы лежит пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми 6 и 8. Бо­ко­вые ребра равны $$\frac{5}{\pi}$$. Най­ди­те объем ци­лин­дра, опи­сан­но­го около этой приз­мы.

Ответ: 125

Задание 3871

В ос­но­ва­нии пря­мой приз­мы лежит квад­рат со сто­ро­ной 2. Бо­ко­вые ребра равны $$\frac{2}{\pi}$$. Най­ди­те объем ци­лин­дра, опи­сан­но­го около этой приз­мы.

Ответ: 4

Задание 3872

Шар впи­сан в ци­линдр. Пло­щадь пол­ной по­верх­но­сти ци­лин­дра равна 18. Най­ди­те пло­щадь по­верх­но­сти шара.

Ответ: 12

Задание 3873

Из еди­нич­но­го куба вы­ре­за­на пра­виль­ная че­ты­рех­уголь­ная приз­ма со сто­ро­ной ос­но­ва­ния 0,5 и бо­ко­вым реб­ром 1. Най­ди­те пло­щадь по­верх­но­сти остав­шей­ся части куба.

Ответ: 7,5

Задание 3874

Ци­линдр и конус имеют общие ос­но­ва­ние и вы­со­ту. Объём ко­ну­са равен 25. Най­ди­те объём ци­лин­дра.

Ответ: 75

Задание 3875

Ци­линдр и конус имеют общие ос­но­ва­ние и вы­со­ту. Най­ди­те объем ко­ну­са, если объем ци­лин­дра равен 150.

 

Ответ: 50

Задание 3876

Объём куба, опи­сан­но­го около сферы, равен 216. Най­ди­те ра­ди­ус сферы.

Ответ: 3

Задание 3877

Конус опи­сан около пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды со сто­ро­ной ос­но­ва­ния 4 и вы­со­той 6. Най­ди­те его объем, де­лен­ный на $$\pi$$.

Ответ: 16

Задание 3878

Во сколь­ко раз объем ко­ну­са, опи­сан­но­го около пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды, боль­ше объ­е­ма ко­ну­са, впи­сан­но­го в эту пи­ра­ми­ду?

Ответ: 2

Задание 3879

В куб с реб­ром 3 впи­сан шар. Най­ди­те объем этого шара, де­лен­ный на $$\pi$$.

Ответ: 4,5

Задание 3880

Около куба с реб­ром $$\sqrt{3}$$ опи­сан шар. Най­ди­те объем этого шара, де­лен­ный на $$\pi$$.

Ответ: 4,5