Перейти к основному содержанию

ЕГЭ Профиль

Теория вероятности

Классическое определение вероятности

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 677

На эк­за­мен вы­не­се­но 60 во­про­сов, Ан­дрей не вы­учил 3 из них. Най­ди­те ве­ро­ят­ность того, что ему по­па­дет­ся вы­учен­ный во­прос.

Ответ: 0,95
Скрыть

Андрей выучил: $$60-3=57$$ вопросов. В таком случае вероятность того, что ему попадется выученный: $$P=\frac{57}{60}=0,95$$

Задание 678

В фирме такси в дан­ный мо­мент сво­бод­но 20 машин: 10 чер­ных, 2 жел­тых и 8 зе­ле­ных. По вы­зо­ву вы­еха­ла одна из машин, слу­чай­но ока­зав­ша­я­ся ближе всего к за­каз­чи­це. Най­ди­те ве­ро­ят­ность того, что к ней при­е­дет зе­ле­ное такси.

Ответ: 0,4
Скрыть

Для этого необходимо количество зеленых машин поделить на общее количество машин: $$P=\frac{8}{20}=0,4$$

Задание 679

На та­рел­ке 16 пи­рож­ков: 7 с рыбой, 5 с ва­ре­ньем и 4 с виш­ней. Юля на­у­гад вы­би­ра­ет один пи­ро­жок. Най­ди­те ве­ро­ят­ность того, что он ока­жет­ся с виш­ней.

Ответ: 0,25
Скрыть

Для этого необходимо количество пирожков с вишней поделить на общее количество пирожков всех: $$P=\frac{4}{16}=0,25$$

Задание 680

В слу­чай­ном экс­пе­ри­мен­те бро­са­ют две иг­раль­ные кости. Най­ди­те ве­ро­ят­ность того, что в сумме вы­па­дет 8 очков. Ре­зуль­тат округ­ли­те до сотых.

Ответ: 0,14
Скрыть

Если бросается две кости одновременно, то общее количество исходов вычисляется как: $$N=6^{2}=36$$ (количество сторон предмета возводится в степень количества бросков). Исходы, при которых может получится 8 очков следующие (первое число - первый кубик, второе число - второй кубик): 2+6 ; 3+5 ; 4+4 ; 5+3 ; 6+2 - то есть $$n=5$$
$$P=\frac{5}{36}\approx 0,14$$

Задание 681

В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что орел вы­па­дет ровно один раз.

Ответ: 0,5
Скрыть

Всего количество исходов $$N=2^{2}=4$$(количество сторон монеты в степени равной количеству бросков), исходов, когда орел ровно один раз всего 2 (ОР и РО). Тогда вероятность составляет $$P=\frac{n}{N}=0,5$$

Задание 682

В чем­пи­о­на­те по гим­на­сти­ке участ­ву­ют 20 спортс­ме­нок: 8 из Рос­сии, 7 из США, осталь­ные — из Китая. По­ря­док, в ко­то­ром вы­сту­па­ют гим­наст­ки, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что спортс­мен­ка, вы­сту­па­ю­щая пер­вой, ока­жет­ся из Китая.

Ответ: 0,25
Скрыть

Количество спортсменок из Китая составляет: $$n=20-8-7=5$$
Вероятность равна отношению количество спортсменок из Китая к общему количеству спортсменок: $$P=\frac{n}{N}=\frac{5}{20}=0,25$$

Задание 683

При про­из­вод­стве в сред­нем на каж­дые 2982 ис­прав­ных на­со­са при­хо­дит­ся 18 не­ис­прав­ных. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный насос ока­жет­ся не­ис­прав­ным.

Ответ: 0,006
Скрыть

Общее количество насосов в таком случае составляет : $$N=2982+18=3000$$
В таком случае вероятность равна отношению количества подтекающих, к общему количеству насосов:$$P=\frac{18}{3000}=0,006$$

Задание 684

Фаб­ри­ка вы­пус­ка­ет сумки. В сред­нем 8 сумок из 100 имеют скры­тые де­фек­ты. Най­ди­те ве­ро­ят­ность того, что куп­лен­ная сумка ока­жет­ся без де­фек­тов.

Ответ: 0,92
Скрыть

Количество сумок без дефектов: $$n=100-8=92$$
Вероятность, что будет без дефекта вычисляется как отношение количества без дефектов, к общему количеству:$$P=\frac{92}{100}=0,92$$

Задание 685

В со­рев­но­ва­ни­ях по тол­ка­нию ядра участ­ву­ют 4 спортс­ме­на из Фин­лян­дии, 7 спортс­ме­нов из Дании, 9 спортс­ме­нов из Шве­ции и 5 — из Нор­ве­гии. По­ря­док, в ко­то­ром вы­сту­па­ют спортс­ме­ны, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что спортс­мен, ко­то­рый вы­сту­па­ет по­след­ним, ока­жет­ся из Шве­ции.

Ответ: 0,36
Скрыть
Всего спортсменов: $$N=4+7+9+5=25$$. 
В таком случае вероятность того, что последний будет из Швеции вычисляется как отношение количества спортсменов из Швеции к общему количеству: $$P=\frac{9}{25}=0,36$$

Задание 686

На­уч­ная кон­фе­рен­ция про­во­дит­ся в 5 дней. Всего за­пла­ни­ро­ва­но 75 до­кла­дов — пер­вые три дня по 17 до­кла­дов, осталь­ные рас­пре­де­ле­ны по­ров­ну между чет­вер­тым и пятым днями. По­ря­док до­кла­дов опре­де­ля­ет­ся же­ребьёвкой. Ка­ко­ва ве­ро­ят­ность, что до­клад про­фес­со­ра М. ока­жет­ся за­пла­ни­ро­ван­ным на по­след­ний день кон­фе­рен­ции?

Ответ: 0,16
Скрыть

На четвертый день запланировано: $$n=\frac{75-17*3}{2}=12$$. Вероятность того, что выступление будет в последний день вычисляется как отношение количества докладов, запланированных в последний день, к общему количеству докладов: $$P=\frac{12}{75}=0,16$$

Задание 687

Кон­курс ис­пол­ни­те­лей про­во­дит­ся в 5 дней. Всего за­яв­ле­но 80 вы­ступ­ле­ний — по од­но­му от каж­дой стра­ны, участ­ву­ю­щей в кон­кур­се. Ис­пол­ни­тель из Рос­сии участ­ву­ет в кон­кур­се. В пер­вый день за­пла­ни­ро­ва­но 8 вы­ступ­ле­ний, осталь­ные рас­пре­де­ле­ны по­ров­ну между остав­ши­ми­ся днями. По­ря­док вы­ступ­ле­ний опре­де­ля­ет­ся же­ребьёвкой. Ка­ко­ва ве­ро­ят­ность, что вы­ступ­ле­ние ис­пол­ни­те­ля из Рос­сии со­сто­ит­ся в тре­тий день кон­кур­са?

Ответ: 0,225
Скрыть

На оставшиеся 4 дня приходится: 80-8=72 выступления. Следовательно, каждый из оставшихся дней будет проходить : $$\frac{72}{4}=18$$ выступлений ( в том числе и в третий ). Тогда, вероятность выступления исполнителя из России в третий день ( как и в любой и 4 оставшихся ) составляет: $$\frac{18}{80}=0,225$$

Задание 688

На кон­фе­рен­цию при­е­ха­ли 3 уче­ных из Нор­ве­гии, 3 из Рос­сии и 4 из Ис­па­нии. Каж­дый из них де­ла­ет на кон­фе­рен­ции один до­клад. По­ря­док до­кла­дов опре­де­ля­ет­ся же­ребьёвкой. Най­ди­те ве­ро­ят­ность того, что вось­мым ока­жет­ся до­клад уче­но­го из Рос­сии.

Ответ: 0,3
Скрыть

Общее количество исполнителей: 3+3+4=10. Исполнителей из России 3, следовательно, вероятность выступления восьмым ( как и любым другим по счету ) исполнителя из России составит: $$\frac{3}{10}=0,3$$

Задание 689

Перед на­ча­лом пер­во­го тура чем­пи­о­на­та по бад­мин­то­ну участ­ни­ков раз­би­ва­ют на иг­ро­вые пары слу­чай­ным об­ра­зом с по­мо­щью жре­бия. Всего в чем­пи­о­на­те участ­ву­ет 26 бад­мин­то­ни­стов, среди ко­то­рых 10 спортс­ме­нов из Рос­сии, в том числе Рус­лан Орлов. Най­ди­те ве­ро­ят­ность того, что в пер­вом туре Рус­лан Орлов будет иг­рать с каким-либо бад­мин­то­ни­стом из Рос­сии.

Ответ: 0,36
Скрыть

Кроме Руслана Орлова из России 10-1=9 бад­мин­тонистом, а всего 26-1=25 бад­мин­тонистом. Тогда, вероятность играть с кем-либо из России у него составит: $$\frac{9}{25}=0,36$$

Задание 690

В сбор­ни­ке би­ле­тов по био­ло­гии всего 55 би­ле­тов, в 11 из них встре­ча­ет­ся во­прос по теме "Бо­та­ни­ка". Най­ди­те ве­ро­ят­ность того, что в слу­чай­но вы­бран­ном на эк­за­ме­не би­ле­те школь­ни­ку до­ста­нет­ся во­прос по теме "Бо­та­ни­ка".

Ответ: 0,2
Скрыть

Для этого необходимо найти отношения количества вопросов по теме "Ботаника" к общему количеству вопросов: $$\frac{11}{55}=0,2$$

Задание 691

В сбор­ни­ке би­ле­тов по ма­те­ма­ти­ке всего 25 би­ле­тов, в 10 из них встре­ча­ет­ся во­прос по теме "Не­ра­вен­ства". Най­ди­те ве­ро­ят­ность того, что в слу­чай­но вы­бран­ном на эк­за­ме­не би­ле­те школь­ни­ку не до­ста­нет­ся во­про­са по теме "Не­ра­вен­ства".

Ответ: 0,6
Скрыть

Найдем вероятность того, что вопрос будет по теме "Неравенства": $$\frac{10}{25}=0,4$$. Тогда вероятность противоположного события, что вопрос будет не по теме "Неравенства" составляет : $$1-0,4=0,6$$

Задание 692

Вася, Петя, Коля и Лёша бро­си­ли жре­бий — кому на­чи­нать игру. Най­ди­те ве­ро­ят­ность того, что на­чи­нать игру дол­жен будет Петя.

Ответ: 0,25
Скрыть

Для этого необходимо найти отношение количества Петь к общему количеству ребят: $$\frac{1}{4}=0,25$$

Задание 693

В чем­пи­о­на­те мира участ­ву­ют 16 ко­манд. С по­мо­щью жре­бия их нужно раз­де­лить на че­ты­ре груп­пы по че­ты­ре ко­ман­ды в каж­дой. В ящике впе­ре­меш­ку лежат кар­точ­ки с но­ме­ра­ми групп:

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.

Ка­пи­та­ны ко­манд тянут по одной кар­точ­ке. Ка­ко­ва ве­ро­ят­ность того, что ко­ман­да Рос­сии ока­жет­ся во вто­рой груп­пе?

Ответ: 0,25
Скрыть

Количество команд во второй группе - 4, общее количество команд - 16, тогда вероятность того, что команда из России окажется во второй группе (как и в любой другой) составляет: $$\frac{4}{16}=0,25$$

Задание 694

На кла­ви­а­ту­ре те­ле­фо­на 10 цифр, от 0 до 9. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но на­жа­тая цифра будет чётной?

Ответ: 0,5
Скрыть

Количество четных цифр - 5 (0 ; 2 ; 4 ; 6 ; 8), общее количество цифр - 10, тогда вероятность того, что цифра будет четной : $$\frac{5}{10}=0,5$$

Задание 695

Из мно­же­ства на­ту­раль­ных чисел от 10 до 19 на­уда­чу вы­би­ра­ют одно число. Ка­ко­ва ве­ро­ят­ность того, что оно де­лит­ся на 3?

Ответ: 0,3
Скрыть

Количество чисел с данного промежутка, которые делятся на три - 3 (12 ; 15 ; 18), общее количество цифр - 10 (19-9=10, берем 9 вместо 10 как вычитаемое, потому что 10 входит в промежуток), тогда вероятность того, что число делится на три: $$\frac{3}{10}=0,3$$

Задание 696

В груп­пе ту­ри­стов 5 че­ло­век. С по­мо­щью жре­бия они вы­би­ра­ют двух че­ло­век, ко­то­рые долж­ны идти в село в ма­га­зин за про­дук­та­ми. Ка­ко­ва ве­ро­ят­ность того, что ту­рист Д., вхо­дя­щий в со­став груп­пы, пойдёт в ма­га­зин?

Ответ: 0,4
Скрыть

В группе, которая пойдет в магазин 2 человека, всего же туристов - 5, тогда вероятность того, что турист Д. пойдет в магазин (как и любой другой из туристов): $$\frac{2}{5}=0,4$$

Задание 697

Перед на­ча­лом фут­боль­но­го матча судья бро­са­ет мо­нет­ку, чтобы опре­де­лить, какая из ко­манд начнёт игру с мячом. Ко­ман­да «Физик» иг­ра­ет три матча с раз­ны­ми ко­ман­да­ми. Най­ди­те ве­ро­ят­ность того, что в этих играх «Физик» вы­иг­ра­ет жре­бий ровно два раза.

Ответ: 0,375
Скрыть

Распишем все возможные варианты для команды "Физик" (В - выиграла жребий, П - проиграла жребий) - всего их будет 8, так как вариантов исхода жребия -2 (выиграл и проиграл), а игр - 3: $$2^{3}=8$$: ВВВ; ВВП; ВПВ; ПВВ; ВПП; ПВП; ППВ; ППП. Количество вариантов, где встречается два раза В всего 3: ВВП; ВПВ; ПВВ, тогда вероятность составит: $$\frac{3}{8}=0,375$$

Задание 699

В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что на­сту­пит исход ОР (в пер­вый раз вы­па­да­ет орёл, во вто­рой — решка).

Ответ: 0,25
Скрыть

Всего исходов - 4 (количество сторон монеты в степени количества бросков $$2^{2}=4$$), исход ОР - 1, тогда вероятность: $$\frac{1}{4}=0,25$$

Задание 700

На рок-фе­сти­ва­ле вы­сту­па­ют груп­пы — по одной от каж­дой из за­яв­лен­ных стран. По­ря­док вы­ступ­ле­ния опре­де­ля­ет­ся жре­би­ем. Ка­ко­ва ве­ро­ят­ность того, что груп­па из Дании будет вы­сту­пать после груп­пы из Шве­ции и после груп­пы из Нор­ве­гии? Ре­зуль­тат округ­ли­те до сотых.

Ответ: 0,33
Скрыть

Количество команд в таком случае не имеет значение, имеет значение возможные расположения трех команд (Дании (Д), Швеции (Ш), Норвегии (Н)) друг относительно друга - их : ДШН; ДНШ; НДШ; НШД; ШНД; ШДН (вычисляет по формуле числа перестановок: $$N=n!$$, где n - число объектов, потому $$N=3!=1*2*3=6$$), вариантов расположения Дании после Швеции и Норвегии - 2 (ШНД и НШД), тогда вероятность данного события :$$\frac{2}{6}=0,(3)$$. Если округлить до сотых: $$0,3333...\approx 0,33$$

Задание 701

В не­ко­то­ром го­ро­де из 5000 по­явив­ших­ся на свет мла­ден­цев 2512 маль­чи­ков. Най­ди­те ча­сто­ту рож­де­ния де­во­чек в этом го­ро­де. Ре­зуль­тат округ­ли­те до ты­сяч­ных.

Ответ: 0,498
Скрыть

Частота рождения мальчиков вычисляется ,как отношения общего количества родившихся мальчиков, к общему количеству родившихся детей: $$\frac{2512}{5000}=0,5024$$, тогда частота рождения девочек составляет: $$1-0,5024=0,4976\approx 0,498$$

Задание 702

На борту самолёта 12 кре­сел рас­по­ло­же­ны рядом с за­пас­ны­ми вы­хо­да­ми и 18 — за пе­ре­го­род­ка­ми, раз­де­ля­ю­щи­ми са­ло­ны. Все эти места удоб­ны для пас­са­жи­ра вы­со­ко­го роста. Осталь­ные места не­удоб­ны. Пас­са­жир В. вы­со­ко­го роста. Най­ди­те ве­ро­ят­ность того, что на ре­ги­стра­ции при слу­чай­ном вы­бо­ре места пас­са­жи­ру В. до­ста­нет­ся удоб­ное место, если всего в самолёте 300 мест.

Ответ: 0,1
Скрыть

Удобных мест для пассажира: 12+18=30. Всего мест 300, тогда вероятность того, что место достанется удобное: $$\frac{30}{300}=0,1$$

Задание 703

На олим­пиа­де по рус­ско­му языку 250 участ­ни­ков раз­ме­сти­ли в трёх ауди­то­ри­ях. В пер­вых двух уда­лось раз­ме­стить по 120 че­ло­век, остав­ших­ся пе­ре­ве­ли в за­пас­ную ауди­то­рию в дру­гом кор­пу­се. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный участ­ник писал олим­пи­а­ду в за­пас­ной ауди­то­рии.

Ответ: 0,04
Скрыть

В первых двух разместили : 120*2=240 участников, следовательно, в запасной 250-240=10 участников, тогда вероятность попасть в запасную аудиторию составила: $$\frac{10}{250}=0,04$$

Задание 704

В клас­се 26 уча­щих­ся, среди них два друга — Ан­дрей и Сер­гей. Уча­щих­ся слу­чай­ным об­ра­зом раз­би­ва­ют на 2 рав­ные груп­пы. Най­ди­те ве­ро­ят­ность того, что Ан­дрей и Сер­гей ока­жут­ся в одной груп­пе.

Ответ: 0,48
Скрыть

В каждой из групп оказывается по 26/2=13 учащихся. Пусть Андрей уже находится в какой-то из групп. Тогда мест свободных в ней остается 13-1=12, а учащихся, которые могут туда попасть 26-1=25. Следовательно, вероятность того, что Сергей так же попадет в эту группу: $$\frac{12}{25}=0,48$$.

Задание 705

В фирме такси в на­ли­чии 50 лег­ко­вых ав­то­мо­би­лей; 27 из них чёрного цвета с жёлтыми над­пи­ся­ми на бор­тах, осталь­ные — жёлтого цвета с чёрными над­пи­ся­ми. Най­ди­те ве­ро­ят­ность того, что на слу­чай­ный вызов при­е­дет ма­ши­на жёлтого цвета с чёрными над­пи­ся­ми.

Ответ: 0,46
Скрыть

Вероятность того, что приедет черная, составляет :$$\frac{27}{50}=0,54$$, тогда вероятность того, что приедет желтая равна: $$1-0,54=0,46$$ (как противоположное событие приезду черной)

Задание 706

В груп­пе ту­ри­стов 30 че­ло­век. Их вер­толётом в не­сколь­ко приёмов за­бра­сы­ва­ют в труд­но­до­ступ­ный район по 6 че­ло­век за рейс. По­ря­док, в ко­то­ром вер­толёт пе­ре­во­зит ту­ри­стов, слу­ча­ен. Най­ди­те ве­ро­ят­ность того, что ту­рист П. по­ле­тит пер­вым рей­сом вер­толёта.

Ответ: 0,2
Скрыть

Вероятность того, что турист П. полетит каким-либо рейсом вычисляется как отношения мест в этом рейсе к общему количеству туристу, то есть, вероятность того, что полетит первым рейсом: $$\frac{6}{30}=0,2$$

Задание 707

Ве­ро­ят­ность того, что новый DVD-про­иг­ры­ва­тель в те­че­ние года по­сту­пит в га­ран­тий­ный ре­монт, равна 0,045. В не­ко­то­ром го­ро­де из 1000 про­дан­ных DVD-про­иг­ры­ва­те­лей в те­че­ние года в га­ран­тий­ную ма­стер­скую по­сту­пи­ла 51 штука. На сколь­ко от­ли­ча­ет­ся ча­сто­та со­бы­тия «га­ран­тий­ный ре­монт» от его ве­ро­ят­но­сти в этом го­ро­де?

Ответ: 0,006
Скрыть

Частота события составляет: $$\frac{51}{1000}=0,051$$. Разница между частой и вероятностью в таком случае: $$0,051-0,045=0,006$$

Задание 708

В кар­ма­не у Миши было че­ты­ре кон­фе­ты — «Гри­льяж», «Бе­лоч­ка», «Ко­ров­ка» и «Ла­сточ­ка», а также ключи от квар­ти­ры. Вы­ни­мая ключи, Миша слу­чай­но вы­ро­нил из кар­ма­на одну кон­фе­ту. Най­ди­те ве­ро­ят­ность того, что по­те­ря­лась кон­фе­та «Гри­льяж».

Ответ: 0,25
Скрыть

Для этого необходимо количество конфет "Грильяж" поделить на общее количества конфет: $$\frac{1}{4}=0,25$$

Задание 709

Ме­ха­ни­че­ские часы с две­на­дца­ти­ча­со­вым ци­фер­бла­том в какой-то мо­мент сло­ма­лись и пе­ре­ста­ли идти. Най­ди­те ве­ро­ят­ность того, что ча­со­вая стрел­ка оста­но­ви­лась, до­стиг­нув от­мет­ки 10, но не дойдя до от­мет­ки 1.

Ответ: 0,25
Скрыть

Всего на циферблате 12 делений часовых. Между 10 и 1 находится 3 деления-часа (10 ; 11 ; 12, 1 - не входит, так как не достигается), т.е. проходит 3 часа времени (из 12), тогда вероятность составит $$\frac{3}{12}=0,25$$.

Задание 710

За круг­лый стол на 9 сту­льев в слу­чай­ном по­ряд­ке рас­са­жи­ва­ют­ся 7 маль­чи­ков и 2 де­воч­ки. Най­ди­те ве­ро­ят­ность того, что обе де­воч­ки будут си­деть рядом.

Ответ: 0,25
Скрыть

Пусть одна из девочек уже сидит на каком-то стуле, рядом с ней находятся еще два стула. Чтобы вторая девочка села рядом, она должна попасть на один из этих стульев. Но ребят, претендующих на них остается 8 (7 мальчиков и 1 девочка), тогда вероятность составит: $$\frac{2}{8}=0,25$$

Задание 712

У Вити в ко­пил­ке лежит 12 рублёвых, 6 двух­рублёвых, 4 пя­ти­рублёвых и 3 де­ся­ти­рублёвых мо­не­ты. Витя на­у­гад достаёт из ко­пил­ки одну мо­не­ту. Най­ди­те ве­ро­ят­ность того, что остав­ша­я­ся в ко­пил­ке сумма со­ста­вит более 70 руб­лей.

Ответ: 0,72
Скрыть

Всего в копилке: $$12+6*2+4*5+3*10=74$$ рубля. Чтобы оставшаяся сумма составила более 70 рублей, Витя должен достать или рублевую или 2х рублевую монету. Всего монет - 25, рублевых и 2х рублевых - 18. Тогда вероятность составит: $$\frac{18}{25}=0,72$$

Задание 713

На чем­пи­о­на­те по прыж­кам в воду вы­сту­па­ют 20 спортс­ме­нов, среди них 3 пры­гу­на из Чехии и 2 пры­гу­на из Бо­ли­вии. По­ря­док вы­ступ­ле­ний опре­де­ля­ет­ся же­ре­бьев­кой. Най­ди­те ве­ро­ят­ность того, что две­на­дца­тым будет вы­сту­пать пры­гун из Чехии.

Ответ: 0,15
Скрыть

Необходимо количество спортсменов из Чехии поделить на общее количество спортсменов: $$\frac{3}{20}=0,15$$

Задание 714

В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют три­жды. Най­ди­те ве­ро­ят­ность того, что вы­па­дет хотя бы две решки.

Ответ: 0,5
Скрыть

Всего возможных исходов: $$2^{3}=8$$ (количество сторон предмета в степени количества бросков). Найдем варианты выпадения хотя бы двух решек - две решки или три решки: РРО ; РОР ; ОРР ; РРР. Всего исходов - 4. Тогда вероятность составит: $$\frac{4}{8}=0,5$$

Задание 715

В сред­нем из 2000 са­до­вых на­со­сов, по­сту­пив­ших в про­да­жу, 6 под­те­ка­ют. Най­ди­те ве­ро­ят­ность того, что один слу­чай­но вы­бран­ный для кон­тро­ля насос не под­те­ка­ет?

Ответ: 0,997
Скрыть

Вероятность того, что насос подтекает: $$\frac{6}{2000}=0,003$$. Тогда вероятность противоположного события, что не подтекает: $$1-0,003=0,997$$

 

Задание 934

Генератор случайных чисел выводит на экран натуральное число, не превосходящее 100. Какова вероятность, что это число окажется простым?

Ответ: 0.25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Всего натуральных чисел, не превосходящих сто, собственно, сто штук. Простых чисел среди них 25. Следовательно, вероятность будет: $$\frac{25}{100}*4=0.25$$

Задание 2229

На эк­за­ме­не 25 би­ле­тов, Сер­гей не вы­учил 3 из них. Най­ди­те ве­ро­ят­ность того, что ему попадётся вы­учен­ный билет.

Ответ: 0,88

Задание 2231

Те­ле­ви­зор у Маши сло­мал­ся и по­ка­зы­ва­ет толь­ко один слу­чай­ный канал. Маша вклю­ча­ет те­ле­ви­зор. В это время по трем ка­на­лам из два­дца­ти по­ка­зы­ва­ют ки­но­ко­ме­дии. Най­ди­те ве­ро­ят­ность того, что Маша по­па­дет на канал, где ко­ме­дия не идет.

Ответ: 0,85

Задание 2234

В каж­дой де­ся­той банке кофе со­глас­но усло­ви­ям акции есть приз. Призы рас­пре­де­ле­ны по бан­кам слу­чай­но. Варя по­ку­па­ет банку кофе в на­деж­де вы­иг­рать приз. Най­ди­те ве­ро­ят­ность того, что Варя не най­дет приз в своей банке.

Ответ: 0,9

Задание 2235

Миша с папой ре­ши­ли по­ка­тать­ся на ко­ле­се обо­зре­ния. Всего на ко­ле­се два­дцать че­ты­ре ка­бин­ки, из них 5 — синие, 7 — зе­ле­ные, осталь­ные — крас­ные. Ка­бин­ки по оче­ре­ди под­хо­дят к плат­фор­ме для по­сад­ки. Най­ди­те ве­ро­ят­ность того, что Миша про­ка­тит­ся в крас­ной ка­бин­ке.

Ответ: 0,5

Задание 2236

У ба­буш­ки 20 чашек: 5 с крас­ны­ми цве­та­ми, осталь­ные с си­ни­ми. Ба­буш­ка на­ли­ва­ет чай в слу­чай­но вы­бран­ную чашку. Най­ди­те ве­ро­ят­ность того, что это будет чашка с си­ни­ми цве­та­ми.

Ответ: 0,75

Задание 2237

Ро­ди­тель­ский ко­ми­тет за­ку­пил 25 паз­лов для по­дар­ков детям на окон­ча­ние года, из них 15 с ма­ши­на­ми и 10 с ви­да­ми го­ро­дов. По­дар­ки рас­пре­де­ля­ют­ся слу­чай­ным об­ра­зом. Най­ди­те ве­ро­ят­ность того, что Толе до­ста­нет­ся пазл с ма­ши­ной.

Ответ: 0,6

Задание 2238

В сред­нем из каж­дых 80 по­сту­пив­ших в про­да­жу ак­ку­му­ля­то­ров 76 ак­ку­му­ля­то­ров за­ря­же­ны. Най­ди­те ве­ро­ят­ность того, что куп­лен­ный ак­ку­му­ля­тор не за­ря­жен.

Ответ: 0,05

Задание 2239

Для эк­за­ме­на под­го­то­ви­ли би­ле­ты с но­ме­ра­ми от 1 до 50. Ка­ко­ва ве­ро­ят­ность того, что на­у­гад взя­тый уче­ни­ком билет имеет од­но­знач­ный номер?

Ответ: 0,18

Задание 2240

В мешке со­дер­жат­ся же­то­ны с но­ме­ра­ми от 5 до 54 вклю­чи­тель­но. Ка­ко­ва ве­ро­ят­ность, того, что из­вле­чен­ный на­у­гад из мешка жетон со­дер­жит дву­знач­ное число?

Ответ: 0,9

Задание 2241

В де­неж­но-ве­ще­вой ло­те­рее на 100 000 би­ле­тов разыг­ры­ва­ет­ся 1300 ве­ще­вых и 850 де­неж­ных вы­иг­ры­шей. Ка­ко­ва ве­ро­ят­ность по­лу­чить ве­ще­вой вы­иг­рыш?

Ответ: 0,013

Задание 2242

Из 900 новых флеш-карт в сред­нем 54 не при­год­ны для за­пи­си. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но вы­бран­ная флеш-карта при­год­на для за­пи­си?

Ответ: 0,94

Задание 2243

В чем­пи­о­на­те по фут­бо­лу участ­ву­ют 16 ко­манд, ко­то­рые же­ре­бьев­кой рас­пре­де­ля­ют­ся на 4 груп­пы: A, B, C и D. Ка­ко­ва ве­ро­ят­ность того, что ко­ман­да Рос­сии не по­па­да­ет в груп­пу A?

Ответ: 0,75

Задание 2244

В груп­пе из 20 рос­сий­ских ту­ри­стов не­сколь­ко че­ло­век вла­де­ют ино­стран­ны­ми язы­ка­ми. Из них пя­те­ро го­во­рят толь­ко по-ан­глий­ски, трое толь­ко по-фран­цуз­ски, двое по-фран­цуз­ски и по-ан­глий­ски. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но вы­бран­ный ту­рист го­во­рит по-фран­цуз­ски?

Ответ: 0,25

Задание 2245

В ко­роб­ке 14 па­ке­ти­ков с чёрным чаем и 6 па­ке­ти­ков с зелёным чаем. Павел на­у­гад вы­ни­ма­ет один па­ке­тик. Ка­ко­ва ве­ро­ят­ность того, что это па­ке­тик с зелёным чаем?

Ответ: 0,3

Задание 2246

Стас, Денис, Костя, Маша, Дима бро­си­ли жре­бий — кому на­чи­нать игру. Най­ди­те ве­ро­ят­ность того, что на­чи­нать игру долж­на будет де­воч­ка.

Ответ: 0,2

Задание 2247

Перед на­ча­лом фут­боль­но­го матча судья бро­са­ет мо­нет­ку, чтобы опре­де­лить, какая из ко­манд будет пер­вой вла­деть мячом. Ко­ман­да А долж­на сыг­рать два матча — с ко­ман­дой В и с ко­ман­дой С. Най­ди­те ве­ро­ят­ность того, что в обоих мат­чах пер­вой мячом будет вла­деть ко­ман­да А.

Ответ: 0,25

Задание 2248

В лыж­ных гон­ках участ­ву­ют 11 спортс­ме­нов из Рос­сии, 6 спортс­ме­нов из Нор­ве­гии и 3 спортс­ме­на из Шве­ции. По­ря­док, в ко­то­ром спортс­ме­ны стар­ту­ют, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что пер­вым будет стар­то­вать спортс­мен из Рос­сии.

Ответ: 0,55

Задание 2249

Из каж­дых 1000 элек­три­че­ских лам­по­чек 5 бра­ко­ван­ных. Ка­ко­ва ве­ро­ят­ность ку­пить ис­прав­ную лам­поч­ку?

Ответ: 0,995

Задание 2250

Петя, Вика, Катя, Игорь, Антон, По­ли­на бро­си­ли жре­бий — кому на­чи­нать игру. Най­ди­те ве­ро­ят­ность того, что на­чи­нать игру дол­жен будет маль­чик.

Ответ: 0,5

Задание 2251

Из 1600 па­ке­тов мо­ло­ка в сред­нем 80 про­те­ка­ют. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но вы­бран­ный пакет мо­ло­ка не течёт?

Ответ: 0,95

Задание 2252

В со­рев­но­ва­ни­ях по ху­до­же­ствен­ной гим­на­сти­ке участ­ву­ют три гим­наст­ки из Рос­сии, три гим­наст­ки из Укра­и­ны и че­ты­ре гим­наст­ки из Бе­ло­рус­сии. По­ря­док вы­ступ­ле­ний опре­де­ля­ет­ся же­ребьёвкой. Най­ди­те ве­ро­ят­ность того, что пер­вой будет вы­сту­пать гим­наст­ка из Рос­сии.

Ответ: 0,3

Задание 2253

Опре­де­ли­те ве­ро­ят­ность того, что при бро­са­нии иг­раль­но­го ку­би­ка (пра­виль­ной кости) вы­па­дет не­чет­ное число очков.

Ответ: 0,5

Задание 2254

Опре­де­ли­те ве­ро­ят­ность того, что при бро­са­нии ку­би­ка вы­па­ло число очков, не боль­шее 3.

Ответ: 0,5

Задание 2256

Иг­раль­ную кость бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что оба раза вы­па­ло число, боль­шее 3.

Ответ: 0,25

Задание 2257

Стре­лок 4 раза стре­ля­ет по ми­ше­ням. Ве­ро­ят­ность по­па­да­ния в ми­шень при одном вы­стре­ле равна 0,5. Най­ди­те ве­ро­ят­ность того, что стре­лок пер­вые 3 раза попал в ми­ше­ни, а по­след­ний раз про­мах­нул­ся.

Ответ: 0,0625

Задание 2258

В таб­ли­це пред­став­ле­ны ре­зуль­та­ты четырёх стрел­ков, по­ка­зан­ные ими на тре­ни­ров­ке.

Номер

стрел­ка

Число

вы­стре­лов

Число

по­па­да­ний

1

42

28

2

70

20

3

54

45

4

46

42

Тре­нер решил по­слать на со­рев­но­ва­ния того стрел­ка, у ко­то­ро­го от­но­си­тель­ная ча­сто­та по­па­да­ний выше. Кого из стрел­ков вы­бе­рет тре­нер? Ука­жи­те в от­ве­те его номер.

Ответ: 4

Задание 2259

В ма­га­зи­не канц­то­ва­ров продаётся 100 ручек, из них 37 – крас­ные, 8 – зелёные, 17 – фи­о­ле­то­вые, ещё есть синие и чёрные, их по­ров­ну. Най­ди­те ве­ро­ят­ность того, что Алиса на­у­гад вы­та­щит крас­ную или чёрную ручку.

Ответ: 0,56

Задание 2260

В сред­нем из 100 кар­ман­ных фо­на­ри­ков, по­сту­пив­ших в про­да­жу, во­семь не­ис­прав­ных. Най­ди­те ве­ро­ят­ность того, что вы­бран­ный на­уда­чу в ма­га­зи­не фо­на­рик ока­жет­ся ис­пра­вен.

Ответ: 0,92
 

Задание 2347

В соревнованиях по толканию ядра участвуют 6 спортсменов из Великобритании, 3 спортсмена из Франции, 6 спортсменов из Германии и 10 – из Италии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, выступающий последним, окажется из Франции.

Ответ: 0,12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Всего спортсменов: $$N=25$$, из Франции - $$n=3$$ Вероятность: $$P=\frac{n}{N}=\frac{3}{25}=0,12$$

 

Задание 2489

На олимпиаде по русскому языку 400 участников разместили в трёх аудиториях. В первых двух удалось разместить по 120 человек, оставшихся перевели в запасную аудиторию в другом корпусе. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.

Ответ: 0,4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$400-2\cdot 120=160$$ $$P=\frac{160}{400}=0,4$$

 

Задание 2729

В чемпионате мира участвуют 12 команд. С помощью жребия их нужно разделить на четыре группы по три команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4. Капитаны команд тянут по одной карточке. Какова вероятность того, что команда Канады окажется в третьей группе?

Ответ: 0,25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

В третьей группе 3 команды. Всего команд 12. $$P=\frac{3}{12}=0,25$$

 

Задание 2820

Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 12 спортсменов из России, в том числе Святослав Кашин. Найдите вероятность того, что в первом туре Святослав Кашин будет играть с каким‐либо бадминтонистом из России.

Ответ: 0,44
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

11 человек из РФ, кроме Кашина. Всего 25 кроме него. $$P=\frac{11}{25}=0,44$$

 

Задание 2896

В чемпионате по гимнастике участвуют 60 спортсменок: 16 из Чехии, 17 из словаки, остальные из Австрии. Порядок, в котором выступают гимнастки определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Австрии.

Ответ: 0,45
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$60-16-17=27$$ из Австрии $$p=\frac{27}{60}=0,45$$

 

Задание 3025

В случайном эксперименте бросают две игральные кости (кубика). Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.

Ответ: 0,14
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\left.\begin{matrix}2+6\\3+5\\4+4\\5+3\\6+2\end{matrix}\right\}$$ $$\Rightarrow 5$$ исходов $$G^{2}=36$$ - всего исходов $$P=\frac{5}{36}=0,13(8)\approx 0,14$$

 

Задание 3239

В группе туристов 32 человека. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 4 человека за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист Петров полетит третьим рейсом вертолёта. (Известно, что в туристической группе однофамильцев нет).

Ответ: 0,125
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$P=\frac{n}{N}=\frac{4}{32}=\frac{1}{8}=0,125$$

 

Задание 3652

В зале театра имеется 20 рядов по 15 мест в каждом. Какова вероятность, что в случайно взятом билете номер ряда и номер места окажутся равны?

Ответ: 0,05
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Всего мест: $$N=15\cdot20=300$$ Всего одинаковых: $$n=15$$ $$P=\frac{n}{N}=\frac{15}{300}=0,05$$

 

Задание 4563

Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию А = {сумма очков равна 8}?

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Благоприятные исходы: $$2+6;3+5;4+4;5+3;6+2$$ Всего 5.

 

Задание 4853

На столе лежат 10 карточек, на которых написаны числа от 1 до 10. Даша случайно вытягивает одну карточку. С какой вероятностью число на выбранной карточке больше 7?

Ответ: 0,3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Карточек с числом больше 7 всего 3 (8,9,10). Всего карточек 10. Тогда вероятность $$P=\frac{3}{10}$$

 

Задание 5184

Дан правильный пятиугольник. Учитель предлагает ученику выбрать наугад две вершины. Найдите вероятность того, что выбранные вершины принадлежат одной стороне пятиугольника.

Ответ: 0,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Рядом с вершиной есть 2 другие и 2 на на одной стороне с ней: $$P=\frac{2}{4}=0,5$$

 

Задание 5279

При изготовлении подшипников диаметром 61 мм вероятность того, что диаметр будет отличаться от заданного не больше, чем на 0,01 мм, равна 0,976. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше, чем 60,99 мм, или больше, чем 61,01 мм.

Ответ: 0,024
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Вероятность того, что будет отличаться менее, чем на 0,01 составляет 0,976, следовательно, вероятность противоположного события, что отличаться будет более чем на 0,01: $$P=1-0,976=0,024$$

Задание 5761

Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «А = сумма очков равна 5»?

Ответ:

Задание 5762

Проводится жеребьёвка Лиги Чемпионов. На первом этапе жеребьёвки восемь команд, среди которых команда «Барселона», распределились случайным образом по восьми игровым группам — по одной команде в группу. Затем по этим же группам случайным образом распределяются еще восемь команд, среди которых команда «Зенит». Найдите вероятность того, что команды «Барселона» и «Зенит» окажутся в одной игровой группе.

Ответ:

Задание 5763

В соревновании по биатлону участвуют спортсмены из 25 стран, одна из которых ― Россия. Всего на старт вышло 60 участников, из которых 6 ― из России. Порядок старта определяется жребием, стартуют спортсмены друг за другом. Какова вероятность того, что десятым стартовал спортсмен из России?

Ответ:
 

Задание 6363

Бросают два игральных кубика. Найдите вероятность того, что произведение выпавших очков больше или равно 10. Ответ округлите до сотых.

Ответ: 0,53
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Рассмотрим возможные произведения (по центру будут произведение выпавших чисел)

Первый кубик/Второй кубик (число) 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 8 10 12
3 3 6 9 12 15 18
4 4 8 12 16 20 24
5 5 10 15 20 25 30
6 6 12 18 24 30 36

Количество произведений $$\geq 10$$: 19 (выделены жирным шрифтом)

Общее количество - 36

$$P=\frac{19}{36}\approx 0,527\approx 0,53$$

 

Задание 6410

Квадратный лист бумаги со стороной 10 см разбивают на 100 квадратиков со стороной 1 см и среди этих квадратиков случайным образом выбирают один. Какова вероятность, что расстояние от одной из сторон выбранного квадратика до границы листа составит не более 3 см?

Ответ: 0,96
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

 

     Если взять расстояние от сторон в 3 клетки, то получим квадрат FGHE. Но расстояние от сторон его составляет 3 квадрата, то есть пападает в условие не более трех. Тогда убираем еще по одному квадрату и получаем квадрат IJKE. Его площадь 2*2=4.

     Тогда площадь оставшейся части :100-4=96.

     Тогда вероятность составит: $$P=\frac{96}{100}=0,96$$

 

Задание 6512

В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 16 очков. Результат округлите до сотых.

Ответ: 0,03
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Общее количество исходов: $$N=6^{3}$$ исходы с выпадением 16 очков: 466;565;556;655;664;646 $$\Rightarrow$$ 6 исходов . Тогда вероятность: $$P=\frac{6}{6^{3}}=$$$$\frac{1}{6^{2}}=\frac{1}{36}\approx 0, 03$$

 

Задание 6914

Вероятность того, что новый DVD‐проигрыватель в течение года поступит в гарантийный ремонт, равна 0,045. В некотором городе из 1000 проданных DVD‐ проигрывателей в течение года в гарантийную мастерскую поступила 51 штука. На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?

Ответ: 0,006
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Частота события: $$\frac{51}{1000}=0,051$$ Разница: $$0,051-0,045=0,006$$

 

Задание 6962

Витя пишет на доске любую цифру от 1 до 8. После этого Наташа рядом (либо справа, либо слева) приписывает также любую цифру от 1 до 8. Найдите вероятность того, что записанное двузначное число будет делиться на 7. Ответ округлите до сотых.

Ответ: 0,14
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Всего чисел возможных от 11 до 88 - N=78 штук (88-10). При этом делятся на 7 из них $$n=div(\frac{88}{7})-div(\frac{11}{7})=11$$ (разность целых частей от деления). Но следует учитывать, что цифра 0 и 9 в записи не участвовала. Следовательно, из N необходимо исключить числа 19,20,29,30,39,40,49,50,59,60,69,70,79,80. Тогда чисел остается 64. А из n числа 49 и 70, то есть останется их 9. Рассматривать ситуации, когда справа или слева ставится цифра нет смысла, так количество возможных исходов (64) удвоится, но и количество делящихся на 7 (9) тоже удвоится. Тогда $$P=\frac{9}{64}\approx 0,14$$

 

Задание 7009

На трех крючках в ряд висели три полотенца—красное, синее и зеленое. Их отправили в стирку, а потом снова повесили на те же крючки в случайном порядке. Найдите вероятность того, что теперь полотенца висят не в том порядке, в каком висели раньше. Ответ округлите до сотых.

Ответ: 0,83
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Всего возможных расположений: $$N=3!=1*2*3=6$$, 5 из них не соответствуют первоначальному расположению. Тогда не в том же порядке : $$P=\frac{5}{6}\approx 0,83$$

 

Задание 7286

Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 спортсменов из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким‐либо бадминтонистом из России.

Ответ: 0,36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Кроме Руслана есть еще 9 спортсменов из России. Всего же участников кроме него 25 человек .Тогда вероятность игры с участниками из России составит $$P=\frac{9}{25}=0,36$$

 

Задание 7353

Из множества натуральных чисел от 58 до 82 наудачу выбирают одно число. Какова вероятность того, что оно делится на 6?

Ответ: 0,16
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 7868

Механические часы с двенадцатичасовым циферблатом в какой‐то момент сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась, достигнув отметки 7, но не дойдя до отметки 1.

Ответ: 0,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 7933

В классе 21 ученик, среди них два друга – Коля и Толя. На уроке физкультуры класс случайным образом разбивают на 3 равных группы. Найдите вероятность того, что Коля и Толя попали в одну группу.

Ответ: 0,3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8769

На заводе делают электрические лампочки. 5 % всех изготовленных лампочек неисправны. Система контроля качества выявляет все неисправные лампочки, но по ошибке бракует еще 1 % исправных лампочек. Все забракованные лампочки отправляются в переработку, а остальные — в продажу. Найдите вероятность того, что случайно выбранная изготовленная лампочка отправится в переработку.

Ответ: 0,0595
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8788

На заводе выпускают насосы для колодцев, из них 3 % выходят со сборочной линии со скрытым дефектом. При контроле качества продукции выявляется 90 % дефектных насосов. Остальные насосы поступают в продажу. Найдите вероятность того, что произведённый насос окажется в продаже.

Ответ: 0,973
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9101

В коробке 8 чёрных и 5 белых шаров. Случайным образом достают 6 шаров. Во сколько раз событие «среди выбранных шаров ровно четыре чёрных» более вероятно, чем событие «среди выбранных шаров ровно пять чёрных»?

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9138

Иван Петрович регистрирует автомобиль в ГИБДД и получает новый номер. Все три цифры нового номера случайны, но номер 000 не разрешен. Раньше номер автомобиля у Ивана Петровича был 769. Найдите вероятность того, что при случайном выборе нового номера он будет записан теми же тремя цифрами (в любом порядке). Ответ округлите до тысячных.

Ответ: 0,006
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9150

Перед началом первого тура чемпионата по теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 51 спортсмен, среди которых 14 спортсменов из России, в том числе Т. Найдите вероятность того, что в первом туре Т. будет играть с каким-либо спортсменом из России.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9333

В треугольнике АВС на сторонах АВ и ВС случайным образом выбираются точки А1 и С1 так, что отрезок А1С1 оказывается параллелен стороне АС. Найдите вероятность того, что длина отрезка А1С1 окажется больше 3, если АС=5.

Ответ: 0,4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9353

В группе туристов 12 человек. С помощью жребия они выбирают трёх человек, которые должны идти в село в магазин за продуктами. Какова вероятность того, что турист Д., входящий в состав группы, пойдёт в магазин?

Ответ: 0,25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9373

На чемпионате по прыжкам в воду выступают 40 спортсменов, среди них 3 прыгуна из Голландии и 6 прыгунов из Аргентины. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что тринадцатым будет выступать прыгун из Аргентины.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9498

Клиент получает в банке кредитную карту. Три последние цифры номера карты случайные. Какова вероятность того, что эти последние три цифры идут подряд в порядке убывания, например 876 или 432?

Ответ: 0,008
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9623

Только один из 9 ключей подходит к замку. Какова вероятность того, что придется опробовать 5 ключей для открывания замка? Ответ округлите до сотых.

Ответ: 0,11
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9651

В группе туристов 20 человек. Их вертолётом доставляют в труднодоступный район, перевозя по 4 человека за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист В., входящий в состав группы, полетит первым рейсом вертолёта.

Ответ: 0,2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9791

На конференцию приехали учёные из трёх стран: 7 из Сербии, 3 из России и 2 из Дании. Каждый из них делает на конференции один доклад. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что десятым окажется доклад учёного из России.

Ответ: 0,25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10086

На плоскости нарисованы две концентрические окружности, радиусы которых 3 см и 5 см. Какова вероятность того, что точка, брошенная наудачу в больший круг, попадет в кольцо, образованное этими окружностями?

Ответ: 0,64
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10105

Наугад выбирают два числа из отрезка [0;1]. Найдите вероятность того, что их сумма заключена между 1/4 и 1.

Ответ: 0,46875
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10143

Даны три цифры {0;1;3}. Найдите вероятность того, что эти цифры, расположенные в случайном порядке, составят нечетное число, большее числа 10. (Число не может начинаться с нуля)

Ответ: 0,5
 

Задание 10183

Петя и Таня независимо друг от друга загадывают по одной цифре. С какой вероятностью сумма этих цифр окажется больше 16?

Ответ: 0,03
 

Задание 10251

Бросаются одновременно две игральные кости. Найдите вероятность того, что сумма выпавших очков будет больше, чем их произведение. Ответ округлите до сотых.

Ответ: 0,31
 

Задание 10381

Участники жеребьевки тянут из ящика жетоны с номерами от 1 до 100. Найдите вероятность того, что номер первого наудачу извлеченного жетона не содержит цифры 5.

Ответ: 0,81
 

Задание 10477

Магазин покупает сливочное масло у двух молокозаводов. 40% масла первого и 20% масла второго молокозавода имеет жирность 80%. Всего жирность 80% имеет 35% закупленного масла. Найдите вероятность того, что масло, купленное в магазине, произведено первым молокозаводом.

Ответ: 0,75
 

Задание 10487

В зале театра имеется 10 рядов по 20 мест в каждом. Какова вероятность, что в случайно взятом билете номер ряда и номер места окажутся равны?

Ответ: 0,05
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10518

В среднем из 3000 садовых насосов, поступивших в продажу, 12 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем вероятность противоположного события A: "насос подтекает": $$P(A)=\frac{12}{3000}=0,004$$. Тогда вероятность события "насос не подтекает": $$P(A_{1})=1-P(A)=1-0,004=0,996$$

 

Задание 10646

На отрезке $$\left[-7;18\right]$$ числовой оси случайным образом отмечают одну точку. Найти вероятность того, что координата отмеченной точки будет больше $$-5$$, но меньше 9.

Ответ: 0,56
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть Длина отрезка $$\left[-7;18\right]:18-\left(-7\right)=25$$. От -5 до 9: $$9-\left(-5\right)=14$$, тогда $$P\left(A\right)=\frac{14}{25}=0,56$$
 

Задание 10682

Павел Иванович регистрирует автомобиль и получает новый трехзначный номер. Все три цифры нового номера случайны (номер 000 не разрешен). Найдите вероятность того, что при случайном выборе в новом номере все три цифры будут одинаковы. Результат округлить до тысячных.

Ответ: 0,009
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Всего номеров $$999-0=999=N$$. Три цифры одинаковы в $$n=9$$ номерах $$(111,222,\dots ,999)$$.

Тогда вероятность: $$P\left(A\right)=\frac{n}{N}=\frac{1}{111}=0,(009)\approx 0,009$$

 

Задание 10831

Гигрометр измеряет влажность в помещении картинной галереи. Вероятность того, что влажность окажется выше 40%, равна 0,82. Вероятность того, что влажность окажется ниже 56%, равна 0,74. Найдите вероятность того, что влажность находится в пределах от 40% до 56%.
Ответ: 0,56
Скрыть

Введем два события:

А: «влажность окажется не выше 40%»

В: «влажность окажется в пределах от 40% до 56%»

Тогда, сумма этих двух событий $$C=A+B\ $$будет означать «влажность окажется ниже 56%». Вероятность события A, равна $$P(A)=1-0,82\ =\ 0,18$$, а вероятность события $$P(C)=0,74$$. Учитывая несовместность событий A и B, имеем:

$$P\left(A\right)+P\left(B\right)=P\left(C\right)\to P\left(B\right)=P\left(C\right)-P\left(A\right)=0,56$$.

 

Задание 10850

Миша, Олег, Настя и Галя бросили жребий - кому начинать игру. Найдите вероятность того, что начинать игру должна будет не Галя.
Ответ: 0,75
Скрыть Всего четыре участника игры. Среди них Галя - это один участник, остальных $$4-1=3$$ участника. Следовательно, вероятность того, что не Галя будет начинать игру, равна $$\frac{3}{4}=0,75$$.
 

Задание 10869

В роддоме измеряют вес новорождённого. Вероятность того, что вес окажется больше 3 кг, равна 0,87, вероятность того, что вес окажется меньше 3 кг 600 г, равна 0,93. Найдите вероятность того, что вес случайно выбранного новорождённого окажется в пределах от 3 кг до 3 кг 600 г.

Ответ: 0,8
Скрыть Определим два события: А: «вес окажется меньше или равен 3 кг»; В: «вес окажется от 3кг до 3 кг 600 г». Можно заметить, что сумма этих двух несовместных событий $$C=A+B$$, соответствует событию «вес окажется меньше 3 кг 600 г». Следовательно, можно записать такое равенство: $$P\left(C\right)=P\left(A\right)+P\left(B\right)\to P\left(B\right)=0,93-\left(1-0,87\right)=0,8$$.
 

Задание 10888

На складе на одном стеллаже лежат в случайном порядке 50 запакованных клавиатур: 30 чёрных, 10 белых и 10 серых. На другом стеллаже лежат в случайном порядке 50 запакованных компьютерных мышей: 30 чёрных, 10 белых и 10 серых. Найдите вероятность того, что случайно выбранные клавиатура и мышь будут чёрного цвета.
Ответ: 0,36
Скрыть Введем два события: А - случайно выбранная клавиатура черного цвета; B - случайно выбранная мышь черного цвета. Так как эти события никак не зависят друг от друга, то они независимы. Нас интересует вероятность $$P(AB)=P(A)\cdot P(B)$$, то есть, возникновение и события А и события B одновременно. Вероятность события $$P\left(A\right)=\frac{30}{50}=\frac{3}{5}$$ (так как на 30 черных клавиатур всего приходится 50 клавиатур), а вероятность $$P\left(B\right)=\frac{30}{50}=\frac{3}{5}$$ (на 30 черных мышей всего приходится 50 различных мышей). Вычисляем искомую вероятность, $$P\left(AB\right)=\frac{3}{5}\cdot \frac{3}{5}=\frac{9}{25}=0,36$$.
 

Задание 11095

Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 18 пассажиров, равна 0,95. Вероятность того, что окажется меньше 12 пассажиров, равна 0,6. Найдите вероятность того, что число пассажиров будет от 12 до 17.

Ответ: 0,35
Скрыть Выделим два события: A - в автобусе меньше 12 пассажиров; B - в автобусе от 12 до 17 пассажиров. Сумма вероятностей этих несовместных событий есть не что иное, как вероятность того, что в автобусе окажется меньше 18 пассажиров, с известной вероятностью 0,95 (дана по условию задачи), т.е. можно записать равенство: $$0,95=P\left(A\right)+P\left(B\right).$$ Вероятность события A дана в задаче и равна $$0,6$$, следовательно, вероятность события B равна $$P\left(B\right)=0,95-0,6=0,35.$$
 

Задание 11115

Максим с папой решили покататься на колесе обозрения. Всего на колесе 30 кабинок, из них 11 - синие, 7 - зелёные, остальные - оранжевые. Кабинки по очереди подходят к платформе для посадки. Найдите вероятность того, что Максим прокатится в оранжевой кабинке.

Ответ: 0,4
Скрыть Оранжевых кабинок $$30-11-7=12.$$ Всего кабинок 30. Тогда вероятность попадания в оранжевую кабинку будет равна $$\frac{12}{30}=0,4.$$
 

Задание 11720

Подбросили два игральных кубика. Найдите вероятность того, что сумма выпавших очков будет простым числом. Результат округлите до сотых.

Ответ: 0,42
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11739

Игрок зажал в кулаке носовой платок так, что между пальцами торчат только четыре уголка. Второй игрок наудачу выбирает два уголка. Он выигрывает, если взял платок за диагональ, и проигрывает в противном случае. Найдите вероятность выигрыша второго игрока. Ответ округлите до соты

Ответ: 0,33
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11758

В магазине на полке стоят DVD‐диски с фильмами, среди которых 130 детективов, 160 боевиков, 92 фильма в жанре «вестерн» и 218 мелодрам. Какова вероятность, что взятый наугад диск будет содержать либо боевик, либо фильм в жанре «вестерн»?

Ответ: 0,42
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12281

В кафе на одной полке в случайном порядке стоят 50 чайных чашек: 30 зелёных, 10 красных и 10 синих. На другой полке в случайном порядке стоят 50 блюдец: 30 зелёных, 10 красных и 10 синих. Найдите вероятность того, что случайно выбранные чашка и блюдце будут зелёного цвета.

Ответ: 0,36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12302

Научная конференция проводится в 4 дня. Всего запланировано 50 докладов: первые два дня по 13 докладов, остальные распределены поровну между третьим и четвёртым днями. На конференции планируется доклад профессора М. Порядок докладов определяется жеребьёвкой. Какова вероятность того, что доклад профессора М. окажется запланированным на последний день конференции?

Ответ: 0,24
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12322

Найдите вероятность того, что случайно выбранное натуральное число из чисел от 1 до 25 (включительно) будет делиться на 3.

Ответ: 0,32
 

Задание 12342

В кафе на одной полке в случайном порядке стоят 50 чайных чашек: 30 зелёных, 10 красных и 10 синих. На другой полке в случайном порядке стоят 50 блюдец: 30 зелёных, 10 красных и 10 синих. Найдите вероятность того, что случайно выбранные чашка и блюдце будут одинакового цвета.

Ответ: 0,44
 

Задание 12363

В магазине в одной коробке лежат вперемешку ручки с чёрными, синими или красными чернилами одинаковые на вид. Покупатель случайным образом выбирает одну ручку. Вероятность того, что она окажется чёрной, равна 0,37, а того, что она окажется синей, равна 0,45. Найдите вероятность того, что ручка окажется красной.

Ответ: 0,18
 

Задание 12503

Два автомобилиста, независимо друг от друга, выезжают из пункта А в пункт В. Навигатор предлагает каждому из них 5 равноценных маршрутов, и автомобилисты выбирают маршрут случайным образом. Найдите вероятность того, что автомобилисты выберут один и тот же маршрут.

Ответ: 0,2
 

Задание 12522

Два автомобилиста, независимо друг от друга, выезжают из пункта А в пункт В. Навигатор предлагает каждому из них 8 равноценных маршрутов, и автомобилисты выбирают маршрут случайным образом. Найдите вероятность того, что автомобилисты выберут различные маршруты.

Ответ: 0,875
 

Задание 12541

Вероятность того, что новый фен прослужит больше года, равна 0,97. Вероятность того, что он прослужит больше двух лет, равна 0,88. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.

Ответ: 0,09
 

Задание 12583

Перед началом первого тура чемпионата по теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 51 спортсмен, среди которых 14 спортсменов из России, в том числе Т. Найдите вероятность того, что в первом туре Т. будет играть с каким-либо спортсменом из России.

Ответ: 0,26
 

Задание 12603

Из ящика, в котором лежат фломастеры, не глядя достали два фломастера. Найдите вероятность того, что эти фломастеры оказались одного цвета, если известно, что в ящике 12 синих и 13 красных фломастеров.

Ответ: 0,48

Задание 12623

В группе туристов 12 человек. С помощью жребия они выбирают трёх человек, которые должны идти в село в магазин за продуктами. Какова вероятность того, что турист Д., входящий в состав группы, пойдёт в магазин?

Ответ: 0,25
 

Задание 12663

В группе туристов 20 человек. Их вертолётом доставляют в труднодоступный район, перевозя по 4 человека за рейс. Порядок, в котором вертолет перевозит туристов, случаен. Найдите вероятность того, что турист В., группы, полетит первым рейсом вертолёта.

Ответ: 0,2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12683

На конференцию приехали ученые из трех разных стран: 7 из Сербии, 3 из России и 2 из Дании. Каждый из них делает на конференции один доклад. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что десятым окажется доклад учёного из России.

Ответ: 0,25
 

Задание 12742

В среднем из 600 садовых насосов, поступивших в продажу, 3 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

Ответ: 0,995
 

Задание 12763

В среднем из 3000 садовых насосов, поступивших в продажу, 12 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

Ответ: 0,996
 

Задание 12783

Какова вероятность того, что последние три цифры телефонного номера случайного абонента совпадают?

Ответ: 0,01
 

Задание 12804

Какова вероятность того, что последние две цифры телефонного номера случайного абонента в сумме дают 10?

Ответ: 0,09
Скрыть

Две цифры могут давать в сумме 10 в следующих комбинациях:

1+9; 2+8; 3+7; 4+6; 5+5; 6+4; 7+3; 8+2; 9+1, то есть, всего 9 вариантов.

Общее число всех возможных комбинаций из двух цифр, равно 100. Получаем значение искомой вероятности:

$$P=\frac{9}{100}=0,09$$

 

Задание 12865

На чемпионате по прыжкам в воду выступают 40 спортсменов, среди них 3 прыгуна из Голландии и 6 прыгунов из Аргентины. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что тринадцатым будет выступать прыгун из Аргентины.

Ответ: 0,15
 

Задание 13361

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,1. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Ответ: 0,25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13380

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Вписанная окружность», равна 0,25. Вероятность того, что это вопрос по теме «Площадь», равна 0,3. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Ответ: 0,55
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13531

На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет чётной и меньше 7?

Ответ: 0,4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13550

Из множества натуральных чисел от 56 до 80 (включительно) наудачу выбирают одно число. Какова вероятность того, что оно делится на 4?

Ответ: 0,28
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13681

При изготовлении подшипников диаметром 62 мм вероятность того, что диаметр будет отличаться от заданного не больше, чем на 0,01 мм, равна 0,986. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше, 61,99 мм, чем или больше, чем 62,01 мм.

Ответ: 0,014
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13764

Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже чем 36,8 °C, равна 0,71. Найдите вероятность того, что в случайный момент времени у здорового человека температура окажется 36,8 °C или выше.

Ответ: 0,29
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13786

Перед началом первого тура чемпионата по шахматам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 16 шахматистов, среди которых 4 спортсмена из России, в том числе Фёдор Волков. Найдите вероятность того, что в первом туре Фёдор Волков будет играть с каким-либо шахматистом из России.

Ответ: 0,2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13890

Перед началом первого тура чемпионата по шашкам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шашистов, среди которых 3 спортсмена из России, в том числе Василий Лукин. Найдите вероятность того, что в первом туре Василий Лукин будет играть с каким-либо шашистом из России.

Ответ: 0,08
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 14019

Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась, достигнув отметки 7, но не дойдя до отметки 10.

Ответ: 0,25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 14206

Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась, достигнув отметки 2, но не дойдя до отметки 11.

Ответ:
 

Задание 14351

Бросаются наугад две игральные кости. Найти вероятность того, что сумма выпавших очков больше, чем из произведение. Ответ округлите до сотых.

Ответ: 0,31
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!