Перейти к основному содержанию

ЕГЭ Профиль

ЕГЭ (профиль) / (C6) Задача с параметром

 
Аналоги к этому заданию:

Задание 10532

Найдите все значения а, при каждом из которых уравнение $$\sqrt{2-5x}\cdot \ln(36x^{2}-a^{2})=\sqrt{2-5x}\cdot \ln(6x+a)$$ имеет ровно один корень.

Ответ: $$(\frac{-12}{5};-\frac{1}{2}]\cup[\frac{7}{5};\frac{12}{5})$$
 
Аналоги к этому заданию:

Задание 10512

Найдите все значения параметра
$$a\neq 0$$, такие что неравенство $$\log^{2}_{2}(x^{2}+2ax+a^{2}-a+1)-\log_{2}\frac{a^{2}}{6}\cdot \log_{2}(x^{2}+2ax+a^{2}-a+1)\leq 0$$
не имеет решений.
Ответ: $$(-3-\sqrt{15};0)$$
 
Аналоги к этому заданию:

Задание 10501

Найдите все значения параметра a, при каждом из которых уравнение
$$(1+a^{2})x^{6}+3a^{2}x^{4}+2(1-6a)x^{3}+3a^{2}x^{2}+a^{2}+1=0$$
имеет единственное решение.
Ответ: -1,5;0;0,5;1
 
Аналоги к этому заданию:

Задание 10445

При каких значениях b неравенство $$x^{2}+(2a+4b)x+2a^{2}b+4b^{2}-2ab+6b+15\leq 0$$ не имеет решений ни при одном значении a?

Ответ: $$(\frac{5}{7};1)$$
 
Аналоги к этому заданию:

Задание 10395

Найти все значения параметра a, при которых уравнение $$\frac{(x^{2}-4x+a)^{3}}{2}=(a-4x)(3x^{4}+(a-4x)^{2})$$ имеет единственное решение на промежутке $$(-2-\sqrt{2};0]$$

Ответ: $$-4;[-2;0]$$
 
Аналоги к этому заданию:

Задание 10291

Найдите все значения параметра a, при каждом из которых наименьшее значение функции $$f(x)=-x^{4}+\frac{2ax^{3}}{9}+\frac{a^{2}x^{2}}{3}$$ на отрезке [-1;0] не превышает единицы и достигается на левом конце отрезка.

Ответ:
 
Аналоги к этому заданию:

Задание 10265

Найдите все значения параметра a , при каждом из которых функция $$f(x)=x(1-a)+3(1-2a)\sin \frac{x}{3}+\frac{3}{2}\sin \frac{2x}{3}+\pi a$$ имеет не более двух экстремумов на промежутке $$(\pi;5\pi)$$

Ответ: $$(-\infty;-1]\cup {-\frac{1}{2}}\cup [\frac{1}{2};+\infty)$$
 
Аналоги к этому заданию:

Задание 10218

Найдите все значения параметра а, при каждом из которых система неравенств $$\left\{\begin{matrix} (a-x^{2})(a+x-2)<0\\x^{2}\leq 1 \end{matrix}\right.$$ не имеет решений

Ответ:
 
Аналоги к этому заданию:

Задание 10197

Найдите все значения параметра $$a\in [-6;6]$$ при которых неравенство $$(a+3)\cdot ((x+1)(a+2)+3x)>0$$ выполняется при любых $$x \geq 0$$.

Ответ: [-6;-5];(-2;6]
 
Аналоги к этому заданию:

Задание 10177

Найдите все значения параметра a , при каждом из которых система $$\left\{\begin{matrix} 2^{x}\cdot (y+1)(1-y\cdot 2^{x})=a^3\\(1+2^{x})(1-y\cdot 2^{x})=a \end{matrix}\right.$$ имеет хотя бы одно решение.

Ответ:
 
Аналоги к этому заданию:

Задание 10172

Найдите все значения параметра a , при каждом из которых уравнение $$a+\sqrt{6x-x^2-8}=3+\sqrt{1+2ax-a^2-x^2}$$ имеет единственное решение

Ответ:
 
Аналоги к этому заданию:

Задание 10138

Найдите все значения a , при которых уравнение $$x^{2}+2a=x+|x^2-a|$$ имеет три корня

Ответ: $$(\frac{1}{9};\frac{1}{8})$$
 
Аналоги к этому заданию:

Задание 10119

Найдите все значения a, при которых наименьшее значение функции $$y=|x+4|+|2x-a|$$ меньше 3

Ответ: (-14;-2)
 
Аналоги к этому заданию:

Задание 10100

Найдите все значения параметра a, при каждом из которых число корней уравнения $$|x^2-5x+6|=a$$ равно наименьшему значению выражения $$|x-a|+|2x-a|+4|x-1|+1$$

Ответ: $$[1;2]$$
 
Аналоги к этому заданию:

Задание 10077

Найдите все значения параметра a, при каждом из которых уравнение $$\sqrt{(x^2+|x|)(x^2+5|x|+6)+1}=3|x|-3ax-a^2+1$$ имеет корни как большие -3, так и меньшие -3

Ответ: $$(\frac{9-3\sqrt{5}}{2};\frac{9+3\sqrt{5}}{2})$$
 
Аналоги к этому заданию:

Задание 10057

Найдите все значения а, при каждом из которых система уравнений $$\left\{\begin{matrix}\frac{x^2+y^2-2x+2y-6}{\sqrt{2-|y-x|}}=0\\ y-ax=3a-3\end{matrix}\right.$$ имеет ровно одно решение.

Ответ: $$(0;\frac{2}{3}]\cup (2);(\frac{2+\sqrt{6}}{2})$$
 
Аналоги к этому заданию:

Задание 9952

Найдите все значения параметра a, при каждом из которых уравнение $$\sqrt{3a+\sqrt{3a+2x-x^2}}=2x-x^2$$ имеет решения.

Ответ:
 
Аналоги к этому заданию:

Задание 9932

Найдите все значения параметра a, при каждом из которых система уравнений $$\left\{\begin{matrix} y=a(x-3)\\\frac{1}{\log_{x}2} +\frac{1}{\log_{y}2} =1 \end{matrix}\right.$$ не имеет решений

Ответ:
 
Аналоги к этому заданию:

Задание 9880

Найдите все значения параметра a, при которых система $$\left\{\begin{matrix} y-\ln(x-a)-a=x^2-4x+4\\ y=\frac{x+|x|\cdot\ln(ex-ea)}{|x|} \end{matrix}\right.$$ имеет единственное решение.

Ответ:
 
Аналоги к этому заданию:

Задание 9805

Найдите все значения параметра а, при каждом из которых система уравнений $$\left\{\begin{matrix} x^4+y^2=a^2-1\\x^2-y=|a-1| \end{matrix}\right.$$ имеет ровно четыре решения.

Ответ: $$(-\infty;-3)$$
 
Аналоги к этому заданию:

Задание 9785

Найдите все значения параметра а, при которых уравнение $$\cos^{2} x-a^{2}\cos x+(a^{2}-a+\frac{1}{2})(a-\frac{1}{2})=0$$ имеет ровно одно решение на промежутке $$(-\frac{\pi}{3};\frac{\pi}{2}]$$.

Ответ:
 
Аналоги к этому заданию:

Задание 9685

Найдите значения а, при которых система уравнений $$\left\{\begin{matrix} 6x^2-5xy+y^2+x-y-2=0\\ y=ax-5 \end{matrix}\right.$$ имеет ровно одно решение.

Ответ: $$\frac{2}{3};2;3$$
 
Аналоги к этому заданию:

Задание 9665

Найдите все значения параметра а, при каждом из которых система уравнений $$\left\{\begin{matrix} x^{4}+y^{2}=a^{2}\\x^{2}+y=|a+1| \end{matrix}\right.$$ имеет ровно четыре решения.

Ответ: $$(-0,5;1-\sqrt{2})\cup(1+\sqrt{2};+\infty)$$
 
Аналоги к этому заданию:

Задание 9637

Найдите все значения параметра а, при которых система уравнений $$\left\{\begin{matrix} x^2+y^2=a\\\sin(\pi x+\pi y)=0 \end{matrix}\right.$$ имеет ровно четыре решения.

Ответ:
 
Аналоги к этому заданию:

Задание 9532

Найдите все значения а, при каждом из которых функция $$f(x)=x^{2}-4|x-a^{2}|-8x$$ имеет хотя бы одну точку максимума.

Ответ: $$a\in(-\sqrt{6};-\sqrt{2})\cup(\sqrt{2};\sqrt{6})$$
 
Аналоги к этому заданию:

Задание 9512

Найдите все значения параметра а, при которых уравнение $$\sqrt{x^{4}+x^{2}-5a^{2}}=\sqrt{x^{4}-4ax}$$ имеет ровно одно решение.

Ответ:
 
Аналоги к этому заданию:

Задание 9492

Найдите все значения а, при каждом из которых функция $$f(x)=x^{2}-3|x-a^{2}|-5x$$ имеет более двух точек экстремума.

Ответ:
 
Аналоги к этому заданию:

Задание 9367

Найдите все значения а, при каждом из которых система уравнений $$\left\{\begin{matrix} (a+1)(x^2+y^2)+(a+1)x+(a+1)y+2=0\\ xy-1=x-y \end{matrix}\right.$$ имеет ровно четыре различных решения.

Ответ:
 
Аналоги к этому заданию:

Задание 9347

Найдите все значения параметра a , при которых система уравнений $$\left\{\begin{matrix} a=x^2+2x+5\\ a=(2x+8-2y)y-5 \end{matrix}\right.$$ имеет единственное решение

Ответ:
 
Аналоги к этому заданию:

Задание 9250

Найдите все значения а, при каждом из которых система уравнений

$$\left\{\begin{matrix} (ay-ax+2)(y-x+3a)=0\\ |xy|=a \end{matrix}\right.$$

имеет ровно восемь решений.

Ответ:
 
Аналоги к этому заданию:

Задание 9233

Найдите все значения а, при каждом из которых система уравнений

$$\left\{\begin{matrix} (ay-ax+2)(y-x+3a)=0\\ |xy|=a \end{matrix}\right.$$

имеет ровно шесть решений.

Ответ:
 
Аналоги к этому заданию:

Задание 9166

Найдите все значения параметра a, при которых уравнение $$4x+7-4\sqrt{4x-x^2}=x^2+a^2+2a$$ имеет хотя бы одно решение.

Ответ: $$[-2\sqrt{2}-1;-3]\cup [1;2\sqrt{2}-1]$$
 
Аналоги к этому заданию:

Задание 9115

Найдите все значения a, при каждом из которых система уравнений $$\left\{\begin{matrix}y=(a+2)x^{2}+2ax+a-2\\y^2=x^2\end{matrix}\right.$$ имеет ровно четыре различных решения.

Ответ:
 
Аналоги к этому заданию:

Задание 9096

Найдите все значения а, при каждом из которых уравнение $$\frac{x^{2}+x+a}{x^{2}-2x+a^{2}+6a}=0$$ имеет ровно два различных корня.

Ответ:
 
Аналоги к этому заданию:

Задание 9050

Найдите все значения параметра при которых уравнение $$(\sin x-a)(tg x-a)=0$$ имеет единственное решение на интервале $$(-\frac{\pi}{2};\frac{3\pi}{4})$$

Ответ:
 
Аналоги к этому заданию:

Задание 8917

Найдите все значения а, при каждом из которых линии $$y=a|3-x|+|a|-3$$ и $$y=\frac{a}{3}$$ ограничивают многоугольник, площадь которого не менее $$\frac{1}{3}$$

Ответ:
 
Аналоги к этому заданию:

Задание 8897

Найдите все значения а, при каждом из которых линии $$y=a|x-2|+|a|-2$$ и $$y=\frac{a}{2}$$ ограничивают многоугольник, площадь которого не более 0,5.

Ответ: $$[-2;\frac{4}{3})\cup [2;4)$$
Аналоги к этому заданию:

Задание 8802

Найдите все значения а, при каждом из которых любое значение из промежутка [-1,5; -0,5] является решением неравенства $$(4|x|-a-3)(x^{2}-2x-2-a)\geq 0$$

Ответ: $$(-\infty;-3)\cup(-3;-1]\cup$$$$1\cup [3,25;+\infty)$$
Аналоги к этому заданию:

Задание 8783

Найдите все значения а, при каждом из которых неравенство $$(4|x|-a-3)(x^2-2x-2-a)\leq 0$$ имеет хотя бы одно решение из промежутка [-4; 4].

Ответ: [-3;22]
Аналоги к этому заданию:

Задание 8764

Найдите все значения параметра а, при которых система уравнений $$\frac{(y-\sqrt{10-x^2})((x+5)^2+(y+5)^2-10(x+7,5)+x^2-y^2+5)}{y=ax+a-1}=0$$ имеет одно решение

Ответ: $$-\frac{\sqrt{10}+1}{9};\frac{\sqrt{10}-1}{9};[1,4;2)$$
Аналоги к этому заданию:

Задание 8745

Найдите все значения параметра а, при которых система уравнений $$\left\{\begin{matrix}\frac{(\sqrt{12-x^{2}}-y)((x+4)^2+(y+4)^2-8(x+4)+x^2-y^2-24)}{2-x^{2}}=0\\ y=1-2a\end{matrix}\right.$$ имеет ровно два решения.
Ответ: $$(-\frac{2\sqrt{3}-1}{2};-\frac{\sqrt{10}-1}{2})\cup$$$$(-\frac{-\sqrt{10}-1}{2};-1);-\frac{3}{4};\frac{1}{2}$$
Аналоги к этому заданию:

Задание 8722

Найдите все значения а, при каждом из которых уравнение $$\frac{|x-6|+a-6}{x^{2}-10x+a^{2}}=0$$ имеет ровно два различных корня.

Ответ: $$(-\infty;0)\cup (0;3)\cup$$$$(3;4)\cup (4;5)\cup$$$$(5;6)$$
Аналоги к этому заданию:

Задание 8702

Найдите все значения а, при каждом из которых уравнение $$\frac{|3x|-2x-2-a}{x^2-2x-a}=0$$ имеет ровно два различных корня.

Ответ: $$(-2;-1)\cup (-1;0)\cup$$$$(0;3)\cup (3;8)\cup$$$$(8;+\infty)$$
Аналоги к этому заданию:

Задание 1329

Найдите все такие значения параметра $$a$$, при каждом из которых уравнение $$(4x-x^{2})^{2}-32\sqrt{4x-x^{2}}=a^{2}-14a$$ имеет хотя бы одно решение

Ответ: $$[0;6]\cup [8;14]$$
Аналоги к этому заданию:

Задание 1328

Найдите все значения параметра $$a$$, при каждом из которых множество значений функции $$y=\frac{a+3x-ax}{x^{2}+2ax+a^{2}+1}$$ содержит отрезок $$[0;1]$$

Ответ: $$\left(-\infty;\frac{7-2\sqrt{6}}{5}\right]\cup \left[\frac{7+2\sqrt{6}}{5};3\right)\cup \left(3;+\infty\right)$$
Аналоги к этому заданию:

Задание 1327

Найдите все значения $$a$$, при каждом из которых график функции $$f(x)=x^{2}-3x+2-|x^{2}-5x+4|-a$$

Ответ: $$(-\infty ;-2]\cup [0;+\infty)$$
Аналоги к этому заданию:

Задание 1326

Найдите все значения параметра $$a$$, при каждом из которых среди значений функции $$y=\frac{x^{2}-2x+a}{6+x^{2}}$$ есть ровно одно целое число

Ответ: $$(1 ; 11)$$
Аналоги к этому заданию:

Задание 1325

Найдите все значения $$a$$, при каждом из которых функция $$f(x)=x^{2}-2|x-a^{2}|-4x$$ имеет хотя бы одну точку максимума

Ответ: $$(-\sqrt{3};-1)\cup (1;\sqrt{3})$$
Аналоги к этому заданию:

Задание 1324

Найдите все значения $$a$$, при каждом из которых функция $$f(x)=x^{2}-2|x-a^{2}|-8x$$ имеет более двух точек экстремума

Ответ: $$(-\sqrt{5};-\sqrt{3})\cup (\sqrt{3};\sqrt{5})$$
Аналоги к этому заданию:

Задание 1323

Найдите все значения $$a$$, при каждом из которых наименьшее значение функции $$f(x)=4x^{2}+4ax+a^{2}-2a+2$$ на множестве $$|x|\geqslant 1$$ не менее 6

Ответ: $$a\leq -2 ; a = 0$$
Аналоги к этому заданию:

Задание 1322

Найдите все значения $$a$$, при каждом из которых наименьшее значение функции $$f(x)=4ax+|x^{2}+6x+5|$$ больше, чем -24

Ответ: $$\left ( \frac{3-\sqrt{29}}{2};\frac{3+\sqrt{29}}{2} \right )$$
Аналоги к этому заданию:

Задание 1321

Найдите все значения $$a$$, при каждом из которых наибольшее значение функции $$f(x)= |x-a|-x^{2}$$ не меньше 1

Ответ: $$(-\infty;-\frac{3}{4} ]\cup [\frac{3}{4};+\infty )$$
Аналоги к этому заданию:

Задание 1320

Най­ди­те все зна­че­ния па­ра­мет­ра а, при каж­дом из ко­то­рых си­сте­ма имеет единственное решение:

$$\left\{\begin{matrix}( x-1 )( x+2 )\leqslant 0,\\ 8x^{2}+8y^{2}-16a ( x-y ) + 15a^{2}-48y-50a+72=0\end{matrix}\right.$$

Ответ: $$-\frac{16}{7};-2;0;2$$