Найдите все значения $$a$$, при каждом из которых наименьшее значение функции $$f(x)=4x^{2}+4ax+a^{2}-2a+2$$ на множестве $$|x|\geqslant 1$$ не менее 6
Найдите все значения параметра $$a$$, при каждом из которых множество значений функции $$y=\frac{a+3x-ax}{x^{2}+2ax+a^{2}+1}$$ содержит отрезок $$[0;1]$$
Найдите все значения параметра b, при которых система $$ \left\{\begin{matrix}x=-|b-y^{2}|\\ y=a(x+b^{2})\end{matrix}\right.$$ имеет решение при любом значении параметра а.
При каких значениях параметра a среди решений неравенства $$\log_{2}(x-100)-\log_{\frac{1}{2}}\frac{|x-101|}{105-x}+\log_{2}\frac{|x-103|(105-x)}{x-100}> a$$ содержится единственное целое число?
Найдите все значения а, при каждом из которых неравенство $$\frac{a^{2}-4x-5}{x^{2}-4x-5}\geq1$$ имеет ровно четыре целочисленных решения. Для каждого такого a укажите эти решения.