Перейти к основному содержанию

ЕГЭ Профиль

ЕГЭ (профиль) / Стереометрия

 
Аналоги к этому заданию:

Задание 10522

Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 16. Найдите объём цилиндра.

Ответ: 48
Скрыть

Объем конуса вычисляется как: $$V_{1}=\frac{1}{3}S_{1}h_{1}$$, где $$S_{1}$$ - площадь основания конуса, $$h_{1}$$ - его высота. Объем цилиндра вычисляется как: $$V_{2}=S_{2}h_{2}$$, где$$S_{2}$$ - площадь основания конуса, $$h_{2}$$ - его высота.

Так как основания и высота одинаковые, то объемы будут отличаться в три раза. То есть объем цилиндра составит $$16\cdot 3=48$$

 
Аналоги к этому заданию:

Задание 10491

Масса однородного бетонного куба равна 0,5 т. Сколько тонн будет составлять масса куба, сделанного из того же бетона, но ребро которого в 2 раза больше, чем ребро маленького кубика?

Ответ: 4
 
Аналоги к этому заданию:

Задание 10481

В правильной треугольной пирамиде SABC сторона основания $$AB=8\sqrt{3}$$ , а боковое ребро $$SA=\sqrt{73}$$. Найдите расстояние от точки В до плоскости SAC.

Ответ: 7,2
 
Аналоги к этому заданию:

Задание 10435

Площадь основания кругового конуса равна $$64\pi$$ см2.Образующая конуса длиннее его высоты на 2 см. Найти отношение площади боковой поверхности конуса к площади его основания.

Ответ: 2,125
 
Аналоги к этому заданию:

Задание 10385

Полная поверхность усеченного конуса равна $$572\pi$$ м2, а длины радиусов оснований равны 6 м и 14 м. Определить (в метрах) длину высоты усеченного конуса.

Ответ: 15
 
Аналоги к этому заданию:

Задание 10281

Четырехугольная пирамида весом 27 кг горизонтальными плоскостями разрезана на 3 части одинаковой высоты. Найдите вес в килограммах нижней части пирамиды.

Ответ: 19
 
Аналоги к этому заданию:

Задание 10255

Боковое ребро правильной треугольной призмы на 20% больше ее стороны основания. Расстояние между серединами двух непараллельных ребер, принадлежащих разным основаниям, равно 13. Найдите площадь боковой поверхности призмы.

Ответ: 360
 
Аналоги к этому заданию:

Задание 10208

Расстояние между серединами ребер ВС и С1D1 куба ABCDA1B1C1D1 равно 6 . Найдите объем куба.

Ответ: 8
 
Аналоги к этому заданию:

Задание 10187

Точки M и N расположены на окружностях верхнего и нижнего основания цилиндра, радиус основания которого равен 2, а высота — 3. Длина отрезка MN равна 4. Через отрезок MN проведена плоскость, параллельная образующей цилиндра. Найдите расстояние от оси цилиндра до этой плоскости.

Ответ: 1,5
 
Аналоги к этому заданию:

Задание 10162

Найдите объем части куба, изображенной на рисунке.

Ответ: 207
 
Аналоги к этому заданию:

Задание 10147

Высота основания правильной треугольной пирамиды равна 9, а высота боковой грани пирамиды, проведенная к ребру основания, равна $$\sqrt{73}$$. Найдите боковое ребро пирамиды.

Ответ: 10
 
Аналоги к этому заданию:

Задание 10128

Площадь боковой поверхности конуса равна 16 см2. Радиус основания конуса уменьшили в 4 раза, а образующую увеличили в 2 раза. Найдите площадь боковой поверхности получившегося конуса. Ответ дайте в см2.

Ответ: 8
 
Аналоги к этому заданию:

Задание 10109

Площадь сечения правильной треугольной пирамиды плоскостью, проходящей через боковое ребро и середину противолежащей стороны основания, равна 15. Найдите объем пирамиды, если сторона ее основания равна 4.

Ответ: 20
 
Аналоги к этому заданию:

Задание 10090

Через точку окружности основания цилиндра проведены два сечения: одно через ось цилиндра, а второе параллельно ей. Угол между плоскостями сечений равен 45°. Площадь боковой поверхности цилиндра равна $$18\pi\sqrt{2}$$. Найдите меньшую из площадей данных сечений.

Ответ: 18
 
Аналоги к этому заданию:

Задание 10067

Через образующую цилиндра проведены два сечения, одно из которых осевое. Площадь осевого сечения равна $$50\sqrt{3}$$ . Угол между плоскостями сечений равен 30°. Найдите площадь второго сечения.

Ответ: 75
 
Аналоги к этому заданию:

Задание 10047

Найдите площадь боковой поверхности правильной шестиугольной призмы, описанной около цилиндра, радиус основания которого равен $$\sqrt{3}$$, если известно, что высота призмы равна 6.

Ответ: 72
 
Аналоги к этому заданию:

Задание 9942

В правильной треугольной пирамиде SABC ребра ВА и ВС разделены точками K и L так, что ВК=BL=4 и KA=LC=2. Найдите угол между плоскостью основания АВС и плоскостью сечения SKL. Ответ выразите в градусах.

Ответ:
 
Аналоги к этому заданию:

Задание 9895

Цилиндрическая кастрюля, диаметр дна которой равен 30 см, наполнена водой. Какое минимальное число кастрюль той же высоты и с диаметром дна, равным 15 см, потребуется для того, чтобы перелить в них эту воду?

Ответ:
 
Аналоги к этому заданию:

Задание 9870

Найдите расстояние между вершинами B1 и D2 изображённого на рисунке многогранника. Все двугранные углы многогранника прямые.

Ответ: 3
Аналоги к этому заданию:

Задание 9795

Дана правильная треугольная призма АВСА1В1С1, площадь основания которой равна 8, а боковое ребро равно 6. Найдите объём многогранника, вершинами которого являются точки А, С, А1, B1, С1.

Ответ: 32
 
Аналоги к этому заданию:

Задание 9775

Радиусы трех шаров равны 6, 8 и 10. Найдите радиус шара, объем которого равен сумме их объемов.

Ответ: 12
 
Аналоги к этому заданию:

Задание 9674

Объем правильной шестиугольной призмы равен 180. Сначала каждое ее боковое ребро увеличили в два раза, а затем каждую сторону каждого основания уменьшили в три раза. Найдите объем полученной призмы.

Ответ: 40
 
Аналоги к этому заданию:

Задание 9655

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 36. Найдите площадь боковой поверхности исходной призмы.

Ответ: 72
 
Аналоги к этому заданию:

Задание 9627

В прямой призме АВСА1В1С1 АВ=ВС, СВ1=10, ВВ1=3, АС=8. Найдите угол между прямой СВ1 и плоскостью АА1С.

Ответ: 60
 
Аналоги к этому заданию:

Задание 9522

В основании прямой призмы лежит прямоугольный треугольник с катетами 5 и 6. Боковые рёбра призмы равны $$\frac{4}{\pi}$$. Найдите объём цилиндра, описанного около этой призмы.

Ответ: 61
 
Аналоги к этому заданию:

Задание 9502

В правильной четырехугольной призме ABCDA1B1C1D1 ребро АА1 равно 10, а стороны основания равны 8. Найдите площадь сечения призмы плоскостью, проходящей через точки А1 , С1 и середину ребра АВ.

Ответ: 36
 
Аналоги к этому заданию:

Задание 9482

Площадь боковой поверхности конуса равна 30. Параллельно основанию конуса проведено сечение, делящее высоту в отношении 2:3, считая от вершины конуса. Найдите площадь боковой поверхности отсечённого конуса.

Ответ: 4,8
 
Аналоги к этому заданию:

Задание 9377

Через среднюю линию основания треугольной призмы, объём которой равен 52, проведена плоскость, параллельная боковому ребру. Найдите объём отсечённой треугольной призмы.

Ответ:
 
Аналоги к этому заданию:

Задание 9357

Найдите объём многогранника, вершинами которого являются вершины А, В, С, D, В1 прямоугольного параллелепипеда АВСВА1В1С1D1, у которого АВ=9, ВС=3, BB1=8

Ответ:
 
Аналоги к этому заданию:

Задание 9337

Найдите площадь поверхности пространственного креста, изображенного на рисунке и составленного из кубов со стороной 3.

Ответ: 270
 
Аналоги к этому заданию:

Задание 9240

Шар вписан в цилиндр. Площадь поверхности шара равна 26. Найдите площадь полной поверхности цилиндра

Ответ:
 
Аналоги к этому заданию:

Задание 9154

В правильной четырёхугольной пирамиде SABCD точка О-центр основания, S-вершина, SO=9, SC=15. Найдите длину отрезка BD.

Ответ:
 
Аналоги к этому заданию:

Задание 9142

Основанием наклонной призмы ABCDA1B1C1D1 является квадрат ABCD, а диагональ AC1 призмы перпендикулярна плоскости основания. Найдите площадь основания призмы, если $$AC_{1}=2\sqrt{7}$$, $$AA_{1}=6$$.

Ответ: 4
Скрыть

Рассмотрим сечение $$A_{1}C_{1}CA$$ - это параллелограмм. При этом $$AC_{1}$$ - его высота. Тогда по теореме Пифагора из треугольника $$ACC_{1}$$: $$AC=\sqrt{CC_{1}^{2}-AC_{1}^{2}}=\sqrt{36-28}=8$$

В основании находится квадрат. Пусть сторона основания равна х. Тогда по теореме Пифагора из треугольника ABC: $$AB^{2}+AC^{2}=AC^{2}\Leftrightarrow$$$$x^{2}+x^{2}=8\Leftrightarrow$$$$x^{2}=4=S_{ABCD}$$

 
Аналоги к этому заданию:

Задание 9105

Шар вписан в цилиндр. Площадь поверхности шара равна 74. Найдите площадь полной поверхности цилиндра.

Ответ:
 
Аналоги к этому заданию:

Задание 9059

Шар, объём которого равен 64, вписан в цилиндр. Найдите объём цилиндра.

Ответ:
 
Аналоги к этому заданию:

Задание 9038

Дан параллелепипед ABCDA1B1C1D1, в основании которого лежит прямоугольник ABCD, AB=45, BC =24. Найдите расстояние от точки A1 до прямой CC1, если высота параллелепипеда равна 20, а боковое ребро равно 34 (проекция A1 на плоскость основания принадлежит AC)

Ответ: 30
 
Аналоги к этому заданию:

Задание 8906

Найдите объём правильной треугольной пирамиды, стороны основания которой равны 12, а высота равна $$6\sqrt{3}$$.

Ответ:
 
Аналоги к этому заданию:

Задание 8886

От треугольной пирамиды, объём которой равен 42, отсечена треугольная пирамида плоскостью, проходящей через вершину пирамиды и среднюю линию основания. Найдите объём отсечённой треугольной пирамиды.

Ответ: 10,5
 
Аналоги к этому заданию:

Задание 8866

Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна плоскости основания, а три другие боковые грани наклонены к плоскости основания под углом 300. Высота пирамиды равна 8. Найдите объем пирамиды.

Ответ: 1024
 
Аналоги к этому заданию:

Задание 8792

Объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины, равен 11. Найдите объём куба.

 

Ответ: 88
 
Аналоги к этому заданию:

Задание 8773

Объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины, равен 25. Найдите объём куба.

Ответ: 200
 
Аналоги к этому заданию:

Задание 8754

Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём конуса равен 19. Найдите объём шара.

Ответ: 76
Аналоги к этому заданию:

Задание 8735

Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём шара равен 188. Найдите объём конуса.

Ответ: 47
 
Аналоги к этому заданию:

Задание 8712

Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности цилиндра равна $$27\sqrt{2}$$. Найдите площадь боковой поверхности конуса.

Ответ: 27
 
Аналоги к этому заданию:

Задание 8692

Цилиндр и конус имеют общие основание и высоту. Объём цилиндра равен 162. Найдите объём конуса.

Ответ: 54
 
Аналоги к этому заданию:

Задание 8675

Сторона основания правильной шестиугольной пирамиды равна 8, боковое ребро равно 16. Найдите объем пирамиды.

Ответ: 768
 
Аналоги к этому заданию:

Задание 8337

Жёсткий диск представляет из себя прямоугольный параллелепипед, ширина которого у старых дисков равна 3,5 дюйма, а у современных — 2,5 дюйма. Объём старого жёсткого диска равен 22,05 кубических дюйма при высоте в 1 дюйм. Объём современного жёсткого диска равен 5,25 кубических дюймов при вдвое меньшей, чем у старого, высоте. Во сколько раз длина старого жёсткого диска больше длины современного жёсткого диска?

Ответ: 1,5
 
Аналоги к этому заданию:

Задание 8319

На рисунке изображена прямая призма. Найдите площадь её полной поверхности, если все двугранные углы прямые.

Ответ: 54
 
Аналоги к этому заданию:

Задание 8281

В кубе ABCDA1B1C1D1 со стороной 6 вычислите квадрат расстояния между точками К и М – серединами сторон AD и СС1 соответственно.

 

Ответ: 54
 
Аналоги к этому заданию:

Задание 8262

В треугольной пирамиде объемом 1000 см3 плоскостями, параллельными основаниям и делящими соответствующие высоты пирамиды в отношении 1:4, считая от вершины, срезаны все четыре вершины. Найти объем оставшейся части пирамиды.

Ответ: 968
Скрыть Так как отсекается плоскостью, параллельной основанию, то получаем пирамиды треугольные, подобные изначальной пирамиде. Объемы подобных фигур относятся, как квадрат коэффициента подобия. Так как делится в отношении 1 к 4 (то есть на 5 частей всего), то коэффициент подобия составит 1 к 5, а объему будут относиться, как $$(\frac{1}{5})^{3}=\frac{1}{125}$$. Пусть P - объем исходной пирамиды, тогда $$\frac{1}{125}P$$ - объем отсеченной, тогда объем 4х отсеченных $$\frac{4}{125}P$$, а объем оставшейся части: $$P-\frac{4}{125}P=$$$$\frac{121}{125}P=$$$$\frac{121}{125}*1000=968$$
 
Аналоги к этому заданию:

Задание 8231

В аквариум кубической формы с ребром 50 см, наполовину заполненный водой, брошена стальная деталь цилиндрической формы с радиусом основания $$\frac{5}{\pi}$$ см и высотой 10 см. На сколько сантиметров поднялся уровень воды в аквариуме?

Ответ: 0,1
Скрыть Найдем объем детали: $$V=\pi*(\frac{5}{\sqrt{\pi}})*10=\pi*\frac{25}{\pi}*10=250$$ Следовательно, этот объем добавляется к объему воды. При этом объем куба вычисляется как произведение площади основания на высоту. Площадь основания $$S=50*50=2500$$ квадратных сантиметров. Тогда, чтобы найти увеличение уровня воды, мы должны добавленный объем поделить на площадь основания: $$h=\frac{250}{2500}=0,1$$ см
 
Аналоги к этому заданию:

Задание 7937

В правильной треугольной пирамиде SABC ребра ВА и ВС разделены точками К и L так, что ВК=BL=4 и KA=LC=2. Найдите угол между плоскостью основания АВС и плоскостью сечения SKL. Ответ дайте в градусах.

Ответ: 90
Аналоги к этому заданию:

Задание 6658

Найдите площадь поверхности пространственного креста, изображенного на рисунке и составленного из единичных кубов.

Ответ: 30
Скрыть

Площадь поверхности одного куба, входящего в крест: $$S=1*5=5$$ (учитываем, что одна грань лежит»внутри» креста , потому и берем 5,а не 6)

Площадь всего креста : $$5*6=30$$ (так как в снаружи находится 6 кубов)

Аналоги к этому заданию:

Задание 6610

Объём куба равен 12. Найдите объём треугольной призмы, отсекаемой от него плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины.

Ответ: 1,5
Скрыть

$$S_{C_{1}M_{1}N_{1}}=\frac{1}{2}*\frac{1}{2}B_{1}C_{1}*\frac{1}{2}C_{1}D_{1}=\frac{1}{8}S_{A_{1}B_{1}C_{1}D_{1}}$$

$$\frac{V_{MNCM_{1}N_{1}C_{1}}}{V_{ABCDA_{1}B_{1}C_{1}D_{1}}}=\frac{S_{M_{1}N_{1}C_{1}}}{S_{A_{1}B_{1}C_{1}D_{1}}}=\frac{1}{8}$$

$$V_{MNCM_{1}N_{1}C_{1}}=\frac{1}{8}V_{ABCDA_{1}B_{1}C_{1}D_{1}}=\frac{1}{8}*12=1,5$$

Аналоги к этому заданию:

Задание 5991

Радиус ос­но­ва­ния цилиндра равен 26, а его об­ра­зу­ю­щая равна 9. Сечение, па­рал­лель­ное оси цилиндра, уда­ле­но от неё на расстояние, рав­ное 24. Най­ди­те площадь этого сечения.

Ответ:
Аналоги к этому заданию:

Задание 5990

Най­ди­те объем V части цилиндра, изоб­ра­жен­ной на рисунке. В от­ве­те укажите $$\frac{V}{\pi}$$.

Ответ:
Аналоги к этому заданию:

Задание 5989

Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите $$\frac{V}{\pi}$$.

Ответ:
Аналоги к этому заданию:

Задание 5988

Найдите объем призмы, в основаниях которой лежат правильные шестиугольники со сторонами 2, а боковые ребра равны $$2\sqrt{3}$$ и наклонены к плоскости основания под углом 30.

Ответ:
Аналоги к этому заданию:

Задание 5987

В треугольной призме две боковые грани перпендикулярны. Их общее ребро равно 10 и отстоит от других боковых ребер на 6 и 8. Найдите площадь боковой поверхности этой призмы.

Ответ:
Аналоги к этому заданию:

Задание 5985

Через сред­нюю линию ос­но­ва­ния треугольной приз­мы проведена плоскость, па­рал­лель­ная боковому ребру. Пло­щадь боковой по­верх­но­сти отсеченной тре­уголь­ной призмы равна 8. Най­ди­те площадь бо­ко­вой поверхности ис­ход­ной призмы

.

Ответ:
Аналоги к этому заданию:

Задание 5984

Ответ:
Скрыть

Через сред­нюю линию ос­но­ва­ния треугольной приз­мы проведена плоскость, па­рал­лель­ная боковому ребру. Объем от­се­чен­ной треугольной приз­мы равен 5. Най­ди­те объем ис­ход­ной призмы.

Аналоги к этому заданию:

Задание 5983

Диа­го­наль прямоугольного па­рал­ле­ле­пи­пе­да равна $$\sqrt{8}$ и об­ра­зу­ет углы 30, 30 и 45 с плос­ко­стя­ми граней параллелепипеда. Най­ди­те объем параллелепипеда.

Ответ:
Аналоги к этому заданию:

Задание 3952

Объем шара равен $$288\pi$$. Най­ди­те пло­щадь его по­верх­но­сти, де­лен­ную на $$\pi$$.

Ответ: 144
Аналоги к этому заданию:

Задание 3951

Ра­ди­у­сы двух шаров равны 6 и 8. Най­ди­те ра­ди­ус шара, пло­щадь по­верх­но­сти ко­то­ро­го равна сумме пло­ща­дей по­верх­но­стей двух дан­ных шаров.

Ответ: 10
Аналоги к этому заданию:

Задание 3950

Объем од­но­го шара в 27 раз боль­ше объ­е­ма вто­ро­го. Во сколь­ко раз пло­щадь по­верх­но­сти пер­во­го шара боль­ше пло­ща­ди по­верх­но­сти вто­ро­го?

Ответ: 9
Аналоги к этому заданию:

Задание 3949

Ра­ди­у­сы трех шаров равны 6, 8 и 10. Най­ди­те ра­ди­ус шара, объем ко­то­ро­го равен сумме их объ­е­мов.

Ответ: 12
Аналоги к этому заданию:

Задание 3948

Во сколь­ко раз уве­ли­чит­ся объем шара, если его ра­ди­ус уве­ли­чить в три раза?

Ответ: 27
Аналоги к этому заданию:

Задание 3947

Дано два шара. Ра­ди­ус пер­во­го шара в 2 раза боль­ше ра­ди­у­са вто­ро­го. Во сколь­ко раз пло­щадь по­верх­но­сти пер­во­го шара боль­ше пло­ща­ди по­верх­но­сти вто­ро­го?

Ответ: 4
Аналоги к этому заданию:

Задание 3946

Пло­щадь боль­шо­го круга шара равна 3. Най­ди­те пло­щадь по­верх­но­сти шара.

Ответ: 12
Аналоги к этому заданию:

Задание 3945

Около ко­ну­са опи­са­на сфера (сфера со­дер­жит окруж­ность ос­но­ва­ния ко­ну­са и его вер­ши­ну). Центр сферы сов­па­да­ет с цен­тром ос­но­ва­ния ко­ну­са. Ра­ди­ус сферы равен $$10\sqrt{2}$$. Най­ди­те об­ра­зу­ю­щую ко­ну­са.

Ответ: 20
Аналоги к этому заданию:

Задание 3943

Диа­метр ос­но­ва­ния ко­ну­са равен 12, а длина об­ра­зу­ю­щей — 10. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

Ответ: 48
Аналоги к этому заданию:

Задание 3942

Вы­со­та ко­ну­са равна 8, а длина об­ра­зу­ю­щей — 10. Най­ди­те пло­щадь осе­во­го се­че­ния этого ко­ну­са.

Ответ: 48
Аналоги к этому заданию:

Задание 3941

Пло­щадь ос­но­ва­ния ко­ну­са равна 18. Плос­кость, па­рал­лель­ная плос­ко­сти ос­но­ва­ния ко­ну­са, делит его вы­со­ту на от­рез­ки дли­ной 3 и 6, счи­тая от вер­ши­ны. Най­ди­те пло­щадь се­че­ния ко­ну­са этой плос­ко­стью.

Ответ: 2
Аналоги к этому заданию:

Задание 3940

Пло­щадь ос­но­ва­ния ко­ну­са равна 16π, вы­со­та — 6. Най­ди­те пло­щадь осе­во­го се­че­ния ко­ну­са.

Ответ: 24
Аналоги к этому заданию:

Задание 3939

В со­су­де, име­ю­щем форму ко­ну­са, уро­вень жид­ко­сти до­сти­га­ет $$\frac{1}{2}$$ вы­со­ты. Объём жид­ко­сти равен 70 мл. Сколь­ко мил­ли­лит­ров жид­ко­сти нужно до­лить, чтобы пол­но­стью на­пол­нить сосуд?

Ответ: 490
Аналоги к этому заданию:

Задание 3938

Диа­метр ос­но­ва­ния ко­ну­са равен 6, а длина об­ра­зу­ю­щей — 5. Най­ди­те вы­со­ту ко­ну­са.

Ответ: 4
Аналоги к этому заданию:

Задание 3937

Вы­со­та ко­ну­са равна 4, а длина об­ра­зу­ю­щей — 5. Най­ди­те диа­метр ос­но­ва­ния ко­ну­са.

Ответ: 6
Аналоги к этому заданию:

Задание 3936

Вы­со­та ко­ну­са равна 4, а диа­метр ос­но­ва­ния — 6. Най­ди­те об­ра­зу­ю­щую ко­ну­са.

Ответ: 5
Аналоги к этому заданию:

Задание 3935

Най­ди­те объем V части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те $$\frac{V}{\pi}$$.

Ответ: 607,5
Аналоги к этому заданию:

Задание 3934

Най­ди­те объем V части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те $$\frac{V}{\pi}$$.

Ответ: 216
Аналоги к этому заданию:

Задание 3933

Най­ди­те объем V части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те $$\frac{V}{\pi}$$.

Ответ: 243
Аналоги к этому заданию:

Задание 3932

Най­ди­те объем V части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те $$\frac{V}{\pi}$$.

Ответ: 87,75
Аналоги к этому заданию:

Задание 3931

Ра­ди­ус ос­но­ва­ния ко­ну­са равен 3, вы­со­та равна 4. Най­ди­те пло­щадь пол­ной по­верх­но­сти ко­ну­са, де­лен­ную на $$\pi$$.

Ответ: 24
Аналоги к этому заданию:

Задание 3930

Пло­щадь пол­ной по­верх­но­сти ко­ну­са равна 12. Па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, де­ля­щее вы­со­ту в от­но­ше­нии 1:1, счи­тая от вер­ши­ны ко­ну­са. Най­ди­те пло­щадь пол­ной по­верх­но­сти отсечённого ко­ну­са.

Ответ: 3
Аналоги к этому заданию:

Задание 3929

Пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са в два раза боль­ше пло­ща­ди ос­но­ва­ния. Най­ди­те угол между об­ра­зу­ю­щей ко­ну­са и плос­ко­стью ос­но­ва­ния. Ответ дайте в гра­ду­сах.

Ответ: 60
Аналоги к этому заданию:

Задание 3928

Вы­со­та ко­ну­са равна 6, об­ра­зу­ю­щая равна 10. Най­ди­те пло­щадь его пол­ной по­верх­но­сти, де­лен­ную на $$\pi$$.

Ответ: 144
Аналоги к этому заданию:

Задание 3927

Во сколь­ко раз умень­шит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если ра­ди­ус его ос­но­ва­ния умень­шит­ся в 1,5 раза, а об­ра­зу­ю­щая оста­нет­ся преж­ней?

Ответ: 1,5
Аналоги к этому заданию:

Задание 3926

Во сколь­ко раз уве­ли­чит­ся пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если его об­ра­зу­ю­щая уве­ли­чит­ся в 3 раза, а ра­ди­ус ос­но­ва­ния оста­нет­ся преж­ним?

Ответ: 3
Аналоги к этому заданию:

Задание 3925

Длина окруж­но­сти ос­но­ва­ния ко­ну­са равна 3, об­ра­зу­ю­щая равна 2. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.

Ответ: 3
Аналоги к этому заданию:

Задание 3924

Конус по­лу­ча­ет­ся при вра­ще­нии рав­но­бед­рен­но­го пря­мо­уголь­но­го тре­уголь­ни­ка ABC во­круг ка­те­та, рав­но­го 6. Най­ди­те его объем, де­лен­ный на $$\pi$$.

Ответ: 72
Аналоги к этому заданию:

Задание 3923

Диа­метр ос­но­ва­ния ко­ну­са равен 6, а угол при вер­ши­не осе­во­го се­че­ния равен 90°. Вы­чис­ли­те объем ко­ну­са, де­лен­ный на π.

Ответ: 9
Аналоги к этому заданию:

Задание 3922

Вы­со­та ко­ну­са равна 6, об­ра­зу­ю­щая равна 10. Най­ди­те его объем, де­лен­ный на $$\pi$$.

Ответ: 128
Аналоги к этому заданию:

Задание 3921

Во сколь­ко раз уве­ли­чит­ся объем ко­ну­са, если ра­ди­ус его ос­но­ва­ния уве­ли­чит­ся в 1,5 раза, а вы­со­та оста­нет­ся преж­ней?

Ответ: 2,25
Аналоги к этому заданию:

Задание 3920

Во сколь­ко раз умень­шит­ся объем ко­ну­са, если его вы­со­та умень­шит­ся в 3 раза, а ра­ди­ус ос­но­ва­ния оста­нет­ся преж­ним?

Ответ: 3
Аналоги к этому заданию:

Задание 3919

Най­ди­те объем V ко­ну­са, об­ра­зу­ю­щая ко­то­ро­го равна 2 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 30°. В от­ве­те ука­жи­те $$\frac{V}{\pi}$$.

Ответ: 1
Аналоги к этому заданию:

Задание 3918

Объем ко­ну­са равен 16. Через се­ре­ди­ну вы­со­ты па­рал­лель­но ос­но­ва­нию ко­ну­са про­ве­де­но се­че­ние, ко­то­рое яв­ля­ет­ся ос­но­ва­ни­ем мень­ше­го ко­ну­са с той же вер­ши­ной. Най­ди­те объем мень­ше­го ко­ну­са.

Ответ: 2
Аналоги к этому заданию:

Задание 3917

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна $$2\pi$$, а вы­со­та — 1. Най­ди­те диа­метр ос­но­ва­ния

Ответ: 2
Аналоги к этому заданию:

Задание 3916

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна $$2\pi$$, а диа­метр ос­но­ва­ния — 1. Най­ди­те вы­со­ту ци­лин­дра.

Ответ: 2
Аналоги к этому заданию:

Задание 3915

Длина окруж­но­сти ос­но­ва­ния ци­лин­дра равна 3. Пло­щадь бо­ко­вой по­верх­но­сти равна 6. Най­ди­те вы­со­ту ци­лин­дра.

Ответ: 2
Аналоги к этому заданию:

Задание 3914

Най­ди­те объем V части ци­лин­дра, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те $$\frac{V}{\pi}$$.

Ответ: 105
Аналоги к этому заданию:

Задание 3913

Най­ди­те объем V части ци­лин­дра, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те $$\frac{V}{\pi}$$.

Ответ: 14
Аналоги к этому заданию:

Задание 3912

Най­ди­те объем V части ци­лин­дра, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те $$\frac{V}{\pi}$$.

Ответ: 937,5
Аналоги к этому заданию:

Задание 3911

Най­ди­те объем V части ци­лин­дра, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те $$\frac{V}{\pi}$$.

Ответ: 144
Аналоги к этому заданию:

Задание 3910

Най­ди­те объем V части ци­лин­дра, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те $$\frac{V}{\pi}$$.

Ответ: 3,75
Аналоги к этому заданию:

Задание 3909

Най­ди­те объем V части ци­лин­дра, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те $$\frac{V}{\pi}$$.

Ответ: 45
Аналоги к этому заданию:

Задание 3908

Пло­щадь осе­во­го се­че­ния ци­лин­дра равна 4. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра, де­лен­ную на $$\pi$$.

Ответ: 4
Аналоги к этому заданию:

Задание 3907

Длина окруж­но­сти ос­но­ва­ния ци­лин­дра равна 3, вы­со­та равна 2. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра.

Ответ: 6
Аналоги к этому заданию:

Задание 3906

Одна ци­лин­дри­че­ская круж­ка вдвое выше вто­рой, зато вто­рая в пол­то­ра раза шире. Най­ди­те от­но­ше­ние объ­е­ма вто­рой круж­ки к объ­е­му пер­вой.

Ответ: 1,125
Аналоги к этому заданию:

Задание 3905

В ци­лин­дри­че­ский сосуд на­ли­ли 6 куб. см воды. В воду пол­но­стью по­гру­зи­ли де­таль. При этом уро­вень жид­ко­сти в со­су­де уве­ли­чил­ся в 1,5 раза. Най­ди­те объём де­та­ли. Ответ вы­ра­зи­те в куб. см.

 

Ответ: 3
Аналоги к этому заданию:

Задание 3904

Ра­ди­ус ос­но­ва­ния ци­лин­дра равен 2, вы­со­та равна 3. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра, де­лен­ную на $$\pi$$.

Ответ: 12
Аналоги к этому заданию:

Задание 3903

Объем пер­во­го ци­лин­дра равен 12 м3. У вто­ро­го ци­лин­дра вы­со­та в три раза боль­ше, а ра­ди­ус ос­но­ва­ния — в два раза мень­ше, чем у пер­во­го. Най­ди­те объем вто­ро­го ци­лин­дра. Ответ дайте в ку­би­че­ских мет­рах.

Ответ: 9
Аналоги к этому заданию:

Задание 3902

В ци­лин­дри­че­ском со­су­де уро­вень жид­ко­сти до­сти­га­ет 16 см. На какой вы­со­те будет на­хо­дить­ся уро­вень жид­ко­сти, если ее пе­ре­лить во вто­рой сосуд, диа­метр ко­то­ро­го в 2 раза боль­ше пер­во­го? Ответ вы­ра­зи­те в см.

Ответ: 4
Аналоги к этому заданию:

Задание 3901

В ци­лин­дри­че­ский сосуд на­ли­ли 2000 см3 воды. Уро­вень воды при этом до­сти­га­ет вы­со­ты 12 см. В жид­кость пол­но­стью по­гру­зи­ли де­таль. При этом уро­вень жид­ко­сти в со­су­де под­нял­ся на 9 см. Чему равен объем де­та­ли? Ответ вы­ра­зи­те в см3.

Ответ: 1500
Аналоги к этому заданию:

Задание 3900

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной ше­сти­уголь­ной приз­мы, опи­сан­ной около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен $$\sqrt{3}$$, а вы­со­та равна 2.

Ответ: 24
Аналоги к этому заданию:

Задание 3899

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы, впи­сан­ной в ци­линдр, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен $$2\sqrt{3}$$, а вы­со­та равна 2.

Ответ: 36
Аналоги к этому заданию:

Задание 3898

Пра­виль­ная че­ты­рех­уголь­ная приз­ма опи­са­на около ци­лин­дра, ра­ди­ус ос­но­ва­ния и вы­со­та ко­то­ро­го равны 1. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти приз­мы.

Ответ: 8
Аналоги к этому заданию:

Задание 3897

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы, опи­сан­ной около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен $$\sqrt{3}$$, а вы­со­та равна 2.

Ответ: 36
Аналоги к этому заданию:

Задание 3896

Куб опи­сан около сферы ра­ди­у­са 6. Най­ди­те объём куба.

Ответ: 1728
Аналоги к этому заданию:

Задание 3895

Ци­линдр и конус имеют общие ос­но­ва­ние и вы­со­ту. Вы­со­та ци­лин­дра равна ра­ди­у­су ос­но­ва­ния. Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна $$3\sqrt{2}$$. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.

Ответ: 3
Аналоги к этому заданию:

Задание 3894

Шар, объём ко­то­ро­го равен 6π, впи­сан в куб. Най­ди­те объём куба.

Ответ: 36
Аналоги к этому заданию:

Задание 3893

Шар впи­сан в ци­линдр. Пло­щадь по­верх­но­сти шара равна 111. Най­ди­те пло­щадь пол­ной по­верх­но­сти ци­лин­дра.

Ответ: 166,5
Аналоги к этому заданию:

Задание 3892

Около ко­ну­са опи­са­на сфера (сфера со­дер­жит окруж­ность ос­но­ва­ния ко­ну­са и его вер­ши­ну). Центр сферы на­хо­дит­ся в цен­тре ос­но­ва­ния ко­ну­са. Ра­ди­ус сферы равен $$28\sqrt{2}$$. Най­ди­те об­ра­зу­ю­щую ко­ну­са.

Ответ: 56
Аналоги к этому заданию:

Задание 3891

Около ко­ну­са опи­са­на сфера (сфера со­дер­жит окруж­ность ос­но­ва­ния ко­ну­са и его вер­ши­ну). Центр сферы на­хо­дит­ся в цен­тре ос­но­ва­ния ко­ну­са. Об­ра­зу­ю­щая ко­ну­са равна $$7\sqrt{2}$$. Най­ди­те ра­ди­ус сферы.

Ответ: 7
Аналоги к этому заданию:

Задание 3890

Куб впи­сан в шар ра­ди­у­са $$\sqrt{3}$$. Най­ди­те объем куба.

Ответ: 8
Аналоги к этому заданию:

Задание 3889

Пра­виль­ная че­ты­рех­уголь­ная приз­ма опи­са­на около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен 2. Пло­щадь бо­ко­вой по­верх­но­сти приз­мы равна 48. Най­ди­те вы­со­ту ци­лин­дра.

Ответ: 3
Аналоги к этому заданию:

Задание 3888

Конус впи­сан в шар. Ра­ди­ус ос­но­ва­ния ко­ну­са равен ра­ди­у­су шара. Объем ко­ну­са равен 6. Най­ди­те объем шара.

Ответ: 24
Аналоги к этому заданию:

Задание 3887

Конус впи­сан в шар. Ра­ди­ус ос­но­ва­ния ко­ну­са равен ра­ди­у­су шара. Объем шара равен 28. Най­ди­те объем ко­ну­са.

Ответ: 7
Аналоги к этому заданию:

Задание 3886

Конус и ци­линдр имеют общее ос­но­ва­ние и общую вы­со­ту (конус впи­сан в ци­линдр). Вы­чис­ли­те объём ци­лин­дра, если объём ко­ну­са равен 5.

Ответ: 15
Аналоги к этому заданию:

Задание 3885

Ци­линдр опи­сан около шара. Объем шара равен 24. Най­ди­те объем ци­лин­дра.

Ответ: 36
Аналоги к этому заданию:

Задание 3884

Ци­линдр опи­сан около шара. Объем ци­лин­дра равен 33. Най­ди­те объем шара.

Ответ: 22
Аналоги к этому заданию:

Задание 3883

Объём тет­ра­эд­ра равен 19. Най­ди­те объём мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся се­ре­ди­ны рёбер дан­но­го тет­ра­эд­ра.

Ответ: 9,5
Аналоги к этому заданию:

Задание 3882

Се­ре­ди­на ребра куба со сто­ро­ной 1,9 яв­ля­ет­ся цен­тром шара ра­ди­у­са 0,95. Най­ди­те пло­щадь S части по­верх­но­сти шара, ле­жа­щей внут­ри куба. В от­ве­те за­пи­ши­те $$\frac{S}{\pi}$$.

Ответ: 0,9025
Аналоги к этому заданию:

Задание 3881

Вер­ши­на A куба $$ABCDA_{1}B_{1}C_{1}D_{1}$$с реб­ром 1,6 яв­ля­ет­ся цен­тром сферы, про­хо­дя­щей через точку A1. Най­ди­те пло­щадь S части сферы, со­дер­жа­щей­ся внут­ри куба. В от­ве­те за­пи­ши­те ве­ли­чи­ну $$\frac{S}{\pi}$$.

Ответ: 1,28
Аналоги к этому заданию:

Задание 3880

Около куба с реб­ром $$\sqrt{3}$$ опи­сан шар. Най­ди­те объем этого шара, де­лен­ный на $$\pi$$.

Ответ: 4,5
Аналоги к этому заданию:

Задание 3879

В куб с реб­ром 3 впи­сан шар. Най­ди­те объем этого шара, де­лен­ный на $$\pi$$.

Ответ: 4,5
Аналоги к этому заданию:

Задание 3878

Во сколь­ко раз объем ко­ну­са, опи­сан­но­го около пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды, боль­ше объ­е­ма ко­ну­са, впи­сан­но­го в эту пи­ра­ми­ду?

Ответ: 2
Аналоги к этому заданию:

Задание 3877

Конус опи­сан около пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды со сто­ро­ной ос­но­ва­ния 4 и вы­со­той 6. Най­ди­те его объем, де­лен­ный на $$\pi$$.

Ответ: 16
Аналоги к этому заданию:

Задание 3876

Объём куба, опи­сан­но­го около сферы, равен 216. Най­ди­те ра­ди­ус сферы.

Ответ: 3
Аналоги к этому заданию:

Задание 3875

Ци­линдр и конус имеют общие ос­но­ва­ние и вы­со­ту. Най­ди­те объем ко­ну­са, если объем ци­лин­дра равен 150.

 

Ответ: 50
Аналоги к этому заданию:

Задание 3874

Ци­линдр и конус имеют общие ос­но­ва­ние и вы­со­ту. Объём ко­ну­са равен 25. Най­ди­те объём ци­лин­дра.

Ответ: 75
Аналоги к этому заданию:

Задание 3873

Из еди­нич­но­го куба вы­ре­за­на пра­виль­ная че­ты­рех­уголь­ная приз­ма со сто­ро­ной ос­но­ва­ния 0,5 и бо­ко­вым реб­ром 1. Най­ди­те пло­щадь по­верх­но­сти остав­шей­ся части куба.

Ответ: 7,5
Аналоги к этому заданию:

Задание 3872

Шар впи­сан в ци­линдр. Пло­щадь пол­ной по­верх­но­сти ци­лин­дра равна 18. Най­ди­те пло­щадь по­верх­но­сти шара.

Ответ: 12
Аналоги к этому заданию:

Задание 3871

В ос­но­ва­нии пря­мой приз­мы лежит квад­рат со сто­ро­ной 2. Бо­ко­вые ребра равны $$\frac{2}{\pi}$$. Най­ди­те объем ци­лин­дра, опи­сан­но­го около этой приз­мы.

Ответ: 4
Аналоги к этому заданию:

Задание 3870

В ос­но­ва­нии пря­мой приз­мы лежит пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми 6 и 8. Бо­ко­вые ребра равны $$\frac{5}{\pi}$$. Най­ди­те объем ци­лин­дра, опи­сан­но­го около этой приз­мы.

Ответ: 125
Аналоги к этому заданию:

Задание 3869

В куб впи­сан шар ра­ди­у­са 1. Най­ди­те объем куба.

Ответ: 8
Аналоги к этому заданию:

Задание 3868

Пря­мо­уголь­ный па­рал­ле­ле­пи­пед опи­сан около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен 4. Объем па­рал­ле­ле­пи­пе­да равен 16. Най­ди­те вы­со­ту ци­лин­дра.

Ответ: 0,25
Аналоги к этому заданию:

Задание 3867

Пря­мо­уголь­ный па­рал­ле­ле­пи­пед опи­сан около ци­лин­дра, ра­ди­ус ос­но­ва­ния и вы­со­та ко­то­ро­го равны 1. Най­ди­те объем па­рал­ле­ле­пи­пе­да.

Ответ: 4
Аналоги к этому заданию:

Задание 3819

В пра­виль­ной тре­уголь­ной пи­ра­ми­де бо­ко­вое ребро равно 5, а тан­генс угла между бо­ко­вой гра­нью и плос­ко­стью ос­но­ва­ния равен $$0,25\sqrt{11}$$. Найти сто­ро­ну ос­но­ва­ния пи­ра­ми­ды.

Ответ: 8
Аналоги к этому заданию:

Задание 3818

В пра­виль­ной четырёхуголь­ной пи­ра­ми­де бо­ко­вое ребро равно 22, а тан­генс угла между бо­ко­вой гра­нью и плос­ко­стью ос­но­ва­ния равен $$\sqrt{11}$$. Найти сто­ро­ну ос­но­ва­ния пи­ра­ми­ды.

Ответ: 11
Аналоги к этому заданию:

Задание 3817

Даны две пра­виль­ные четырёхуголь­ные пи­ра­ми­ды. Объём пер­вой пи­ра­ми­ды равен 16. У вто­рой пи­ра­ми­ды вы­со­та в 2 раза боль­ше, а сто­ро­на ос­но­ва­ния в 1,5 раза боль­ше, чем у пер­вой. Най­ди­те объём вто­рой пи­ра­ми­ды.

Ответ: 72
Аналоги к этому заданию:

Задание 3815

В пра­виль­ной четырёхуголь­ной пи­ра­ми­де SABCD вы­со­та SO равна 13, диа­го­наль ос­но­ва­ния BD равна 8. Точки К и М- се­ре­ди­ны рёбер CD и ВС со­от­вет­ствен­но. Най­ди­те тан­генс угла между плос­ко­стью SMK и плос­ко­стью ос­но­ва­ния ABC.

Ответ: 6,5
Аналоги к этому заданию:

Задание 3813

Диа­го­наль $$AC$$ ос­но­ва­ния пра­виль­ной четырёхуголь­ной пи­ра­ми­ды $$SABCD$$ равна $$6$$. Вы­со­та пи­ра­ми­ды $$SO=4$$. Най­ди­те длину бо­ко­во­го ребра $$SB$$.

Ответ: 5
Аналоги к этому заданию:

Задание 3812

В пра­виль­ной четырёхуголь­ной пи­ра­ми­де все рёбра равны 1. Най­ди­те пло­щадь се­че­ния пи­ра­ми­ды плос­ко­стью, про­хо­дя­щей через се­ре­ди­ны бо­ко­вых рёбер.

Ответ: 0,25
Аналоги к этому заданию:

Задание 3810

В пра­виль­ной тре­уголь­ной пи­ра­ми­де $$SABC$$ ме­ди­а­ны ос­но­ва­ния пе­ре­се­ка­ют­ся в точке $$P$$. Объем пи­ра­ми­ды равен $$1,PS=1$$. Най­ди­те пло­щадь тре­уголь­ни­ка $$ABC$$.

Ответ: 3
Аналоги к этому заданию:

Задание 3801

Най­ди­те объем пи­ра­ми­ды, изоб­ра­жен­ной на ри­сун­ке. Ее ос­но­ва­ни­ем яв­ля­ет­ся мно­го­уголь­ник, со­сед­ние сто­ро­ны ко­то­ро­го пер­пен­ди­ку­ляр­ны, а одно из бо­ко­вых ребер пер­пен­ди­ку­ляр­но плос­ко­сти ос­но­ва­ния и равно 3.

Ответ: 27
Аналоги к этому заданию:

Задание 3800

Най­ди­те объем па­рал­ле­ле­пи­пе­да $$ABCDA_{1}B_{1}C_{1}D_{1}$$, если объем тре­уголь­ной пи­ра­ми­ды $$ABDA_{1}$$ равен 3.

Ответ: 18
Аналоги к этому заданию:

Задание 3799

Объем куба равен 12. Най­ди­те объем че­ты­рех­уголь­ной пи­ра­ми­ды, ос­но­ва­ни­ем ко­то­рой яв­ля­ет­ся грань куба, а вер­ши­ной — центр куба.

Ответ: 2
Аналоги к этому заданию:

Задание 3798

Объем па­рал­ле­ле­пи­пе­да $$ABCDA_{1}B_{1}C_{1}D_{1}$$ равен 12. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды $$B_{1}ABC$$.

Ответ: 2
Аналоги к этому заданию:

Задание 3797

Сто­ро­на ос­но­ва­ния пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды равна 4, а угол между бо­ко­вой гра­нью и ос­но­ва­ни­ем равен 45 °. Най­ди­те объем пи­ра­ми­ды.

Ответ: 48
Аналоги к этому заданию:

Задание 3796

Объем пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды 6. Сто­ро­на ос­но­ва­ния равна 1. Най­ди­те бо­ко­вое ребро.

Ответ: 7
Аналоги к этому заданию:

Задание 3795

Сто­ро­на ос­но­ва­ния пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды равна 2, бо­ко­вое ребро равно 4. Най­ди­те объем пи­ра­ми­ды.

Ответ: 12
Аналоги к этому заданию:

Задание 3794

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 12, объем равен 200. Най­ди­те бо­ко­вое ребро этой пи­ра­ми­ды.

Ответ: 13
Аналоги к этому заданию:

Задание 3793

Най­ди­те объем пи­ра­ми­ды, вы­со­та ко­то­рой равна 6, а ос­но­ва­ние – пря­мо­уголь­ник со сто­ро­на­ми 3 и 4.

Ответ: 24
Аналоги к этому заданию:

Задание 3792

Ребра тет­ра­эд­ра равны 1. Най­ди­те пло­щадь се­че­ния, про­хо­дя­ще­го через се­ре­ди­ны че­ты­рех его ребер.

 

Ответ: 0,25
Аналоги к этому заданию:

Задание 3791

Во сколь­ко раз уве­ли­чит­ся пло­щадь по­верх­но­сти пи­ра­ми­ды, если все ее ребра уве­ли­чить в 2 раза?

Ответ: 4
Аналоги к этому заданию:

Задание 3790

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды, сто­ро­на ос­но­ва­ния ко­то­рой равна 6 и вы­со­та равна 4.

Ответ: 60
Аналоги к этому заданию:

Задание 3789

Во сколь­ко раз уве­ли­чит­ся пло­щадь по­верх­но­сти ок­та­эд­ра, если все его ребра уве­ли­чить в 3 раза?

Ответ: 9
Аналоги к этому заданию:

Задание 3788

Най­ди­те пло­щадь по­верх­но­сти пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 6 и вы­со­та равна 4.

Ответ: 96
Аналоги к этому заданию:

Задание 3787

Во сколь­ко раз уве­ли­чит­ся пло­щадь по­верх­но­сти пра­виль­но­го тет­ра­эд­ра, если все его ребра уве­ли­чить в два раза?

Ответ: 4
Аналоги к этому заданию:

Задание 3786

Объем тре­уголь­ной пи­ра­ми­ды равен 15. Плос­кость про­хо­дит через сто­ро­ну ос­но­ва­ния этой пи­ра­ми­ды и пе­ре­се­ка­ет про­ти­во­по­лож­ное бо­ко­вое ребро в точке, де­ля­щей его в от­но­ше­нии 1 : 2, счи­тая от вер­ши­ны пи­ра­ми­ды. Най­ди­те боль­ший из объ­е­мов пи­ра­мид, на ко­то­рые плос­кость раз­би­ва­ет ис­ход­ную пи­ра­ми­ду.

Ответ: 10
Аналоги к этому заданию:

Задание 3785

От тре­уголь­ной пи­ра­ми­ды, объем ко­то­рой равен 12, от­се­че­на тре­уголь­ная пи­ра­ми­да плос­ко­стью, про­хо­дя­щей через вер­ши­ну пи­ра­ми­ды и сред­нюю линию ос­но­ва­ния. Най­ди­те объем от­се­чен­ной тре­уголь­ной пи­ра­ми­ды.

Ответ: 3
Аналоги к этому заданию:

Задание 3784

Объем пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды SABCD равен 12. Точка E — се­ре­ди­на ребра SB. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды EABC.

Ответ: 3
Аналоги к этому заданию:

Задание 3783

Объем тре­уголь­ной пи­ра­ми­ды $$SABC$$, яв­ля­ю­щей­ся ча­стью пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды $$SABCDEF$$, равен 1. Най­ди­те объем ше­сти­уголь­ной пи­ра­ми­ды.

Ответ: 6
Аналоги к этому заданию:

Задание 3782

Бо­ко­вые ребра тре­уголь­ной пи­ра­ми­ды вза­им­но пер­пен­ди­ку­ляр­ны, каж­дое из них равно 3. Най­ди­те объем пи­ра­ми­ды.

Ответ: 4,5
Аналоги к этому заданию:

Задание 3781

Ос­но­ва­ни­ем пи­ра­ми­ды слу­жит пря­мо­уголь­ник, одна бо­ко­вая грань пер­пен­ди­ку­ляр­на плос­ко­сти ос­но­ва­ния, а три дру­гие бо­ко­вые грани на­кло­не­ны к плос­ко­сти ос­но­ва­ния под углом 60 °. Вы­со­та пи­ра­ми­ды равна 6. Най­ди­те объем пи­ра­ми­ды.

Ответ: 48
Аналоги к этому заданию:

Задание 3780

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 6, бо­ко­вое ребро равно 10. Най­ди­те ее объем.

Ответ: 256
Аналоги к этому заданию:

Задание 3779

Во сколь­ко раз уве­ли­чит­ся объем пи­ра­ми­ды, если ее вы­со­ту уве­ли­чить в че­ты­ре раза?

Ответ: 4
Аналоги к этому заданию:

Задание 3778

Най­ди­те вы­со­ту пра­виль­ной тре­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 2, а объем равен $$\sqrt{3}$$

Ответ: 3
Аналоги к этому заданию:

Задание 3777

Най­ди­те объем пра­виль­ной тре­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 1, а вы­со­та равна $$\sqrt{3}$$

Ответ: 0,25
Аналоги к этому заданию:

Задание 3776

Ос­но­ва­ни­ем пи­ра­ми­ды яв­ля­ет­ся пря­мо­уголь­ник со сто­ро­на­ми 3 и 4. Ее объем равен 16. Най­ди­те вы­со­ту этой пи­ра­ми­ды.

Ответ: 4
Аналоги к этому заданию:

Задание 3775

Во сколь­ко раз уве­ли­чит­ся объем пра­виль­но­го тет­ра­эд­ра, если все его ребра уве­ли­чить в два раза?

Ответ: 8
Аналоги к этому заданию:

Задание 3774

Объем па­рал­ле­ле­пи­пе­да $$ABCDA_{1}B_{1}C_{1}D_{1}$$ равен 9. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды $$ABCA_{1}$$.

Ответ: 1,5
Аналоги к этому заданию:

Задание 3773

Сто­ро­ны ос­но­ва­ния пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды равны 10, бо­ко­вые ребра равны 13. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти этой пи­ра­ми­ды.

Ответ: 360
Аналоги к этому заданию:

Задание 3772

Сто­ро­ны ос­но­ва­ния пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды равны 10, бо­ко­вые ребра равны 13. Най­ди­те пло­щадь по­верх­но­сти этой пи­ра­ми­ды.

Ответ: 340
Аналоги к этому заданию:

Задание 3771

В пра­виль­ной тре­уголь­ной пи­ра­ми­де $$SABC$$ Q– се­ре­ди­на ребра $$AB$$, $$S$$ – вер­ши­на. Из­вест­но, что $$BC=7$$, а пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды равна 42. Най­ди­те длину от­рез­ка $$SQ$$.

Ответ: 4
Аналоги к этому заданию:

Задание 3769

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC точка K – се­ре­ди­на ребра BCS – вер­ши­на. Из­вест­но, что SK = 4, а пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды равна 54. Най­ди­те длину ребра AC.

Ответ: 9
Аналоги к этому заданию:

Задание 3768

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC точка L — се­ре­ди­на ребра ACS — вер­ши­на. Из­вест­но, что BC = 6, а SL = 5. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды.

Ответ: 45
Аналоги к этому заданию:

Задание 3767

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC точка M – се­ре­ди­на ребра ABS – вер­ши­на. Из­вест­но, что BC = 3, а пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды равна 45. Най­ди­те длину от­рез­ка SM.

Ответ: 10
Аналоги к этому заданию:

Задание 3762

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де $$SABCD$$ точка $$O$$ – центр ос­но­ва­ния, $$S$$ – вер­ши­на, $$SO=15,BD=16$$. Най­ди­те бо­ко­вое ребро $$SA$$.

Ответ: 17
Аналоги к этому заданию:

Задание 3760

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC с вер­ши­ной S бис­сек­три­сы тре­уголь­ни­ка ABC пе­ре­се­ка­ют­ся в точке O. Пло­щадь тре­уголь­ни­ка ABC равна 2; объем пи­ра­ми­ды равен 6. Най­ди­те длину от­рез­ка OS.

Ответ: 9
Аналоги к этому заданию:

Задание 3759

В пра­виль­ной ше­сти­уголь­ной приз­ме $$ABCDEFA_{1}B_{11}C_{1}D_{1}E_{1}F_{1}$$ все ребра равны 1. Най­ди­те угол $$AC_{1}C$$ Ответ дайте в гра­ду­сах.

Ответ: 60
Аналоги к этому заданию:

Задание 3758

В пра­виль­ной ше­сти­уголь­ной приз­ме $$ABCDEFA_{1}B_{1}C_{1}D_{1}E_{1}F_{1}$$ все ребра равны 1. Най­ди­те тан­генс угла $$AD_{1}D$$

Ответ: 2
Аналоги к этому заданию:

Задание 3757

В пра­виль­ной ше­сти­уголь­ной приз­ме $$ABCDEFA_{1}B_{1}C_{1}D_{1}E_{1}F_{1}$$ все ребра равны $$\sqrt{5}$$. Най­ди­те рас­сто­я­ние между точ­ка­ми $$B$$ и $$E_{1}$$.

Ответ: 5
Аналоги к этому заданию:

Задание 3756

В пра­виль­ной ше­сти­уголь­ной приз­ме $$ABCDEFA_{1}B_{1}C_{1}D_{1}E_{1}F_{1}$$ все ребра равны 1. Най­ди­те рас­сто­я­ние между точ­ка­ми $$A$$ и $$E_{1}$$.

Ответ: 2
Аналоги к этому заданию:

Задание 3755

В пра­виль­ной ше­сти­уголь­ной приз­ме ABCDEFA1B1C1D1E1F1, все рёбра ко­то­рой равны 5, най­ди­те угол между пря­мы­ми FA и D1E1. Ответ дайте в гра­ду­сах.

Ответ: 60
Аналоги к этому заданию:

Задание 3754

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де ABCDA2B1C1D1 из­вест­ны длины рёбер: AB = 9, AD = 12 , AA1 = 18. Най­ди­те синус угла между пря­мы­ми A1D1 и AC.

Ответ: 0,6
Аналоги к этому заданию:

Задание 3753

Объём тре­уголь­ной приз­мы, от­се­ка­е­мой от куба плос­ко­стью, про­хо­дя­щей через се­ре­ди­ны двух рёбер, вы­хо­дя­щих из одной вер­ши­ны, и па­рал­лель­ной тре­тье­му ребру, вы­хо­дя­ще­му из этой же вер­ши­ны, равен 2. Най­ди­те объём куба.

Ответ: 16
Аналоги к этому заданию:

Задание 3752

В пра­виль­ной четырёхуголь­ной приз­ме ABCDA1B1C1D1 ребро AA1 равно 15, а диа­го­наль BD1 равна 17. Най­ди­те пло­щадь се­че­ния приз­мы плос­ко­стью, про­хо­дя­щей через точки AA1 и C.

Ответ: 120
Аналоги к этому заданию:

Задание 3751

В пра­виль­ной тре­уголь­ной приз­ме ABCA1B1C1 сто­ро­ны ос­но­ва­ний равны 2, бо­ко­вые рёбра равны 5. Най­ди­те пло­щадь се­че­ния приз­мы плос­ко­стью, про­хо­дя­щей через се­ре­ди­ны рёбер ABACA1B1 и A1C1.

Ответ: 5
Аналоги к этому заданию:

Задание 3750

В пра­виль­ной четырёхуголь­ной приз­ме $$ABCDA_{1}B_{1}C_{1}D_{1}$$ из­вест­но, что $$AC_{1}=2BC$$. Най­ди­те угол между диа­го­на­ля­ми $$BD_{1}$$ и $$CA_{1}$$. Ответ дайте в гра­ду­сах.

Ответ: 60
Аналоги к этому заданию:

Задание 3749

В пра­виль­ной тре­уголь­ной приз­ме $$ABCA_{1}B_{1}C_{1}$$, все ребра ко­то­рой равны 3, най­ди­те угол между пря­мы­ми $$AA_{1}$$ и $$BC_{1}$$. Ответ дайте в гра­ду­сах.

Ответ: 45
Аналоги к этому заданию:

Задание 3748

В кубе $$ABCDA_{1}B_{1}C_{1}D_{1}$$ най­ди­те угол между пря­мы­ми $$AD_{1}$$ и $$B_{1}D_{1}$$. Ответ дайте в гра­ду­сах.

Ответ: 60
Аналоги к этому заданию:

Задание 3747

В пра­виль­ной ше­сти­уголь­ной приз­ме $$ABCDEFA_{1}B_{1}C_{1}D_{1}E_{1}F_{1}$$, все ребра ко­то­рой равны 8, най­ди­те угол между пря­мы­ми $$FA$$ и $$D_{1}E_{1}$$. Ответ дайте в гра­ду­сах.

Ответ: 60
Аналоги к этому заданию:

Задание 3746

В пра­виль­ной ше­сти­уголь­ной приз­ме $$ABCDEFA_{1}B_{1}C_{1}D_{1}E_{1}F_{1}$$ все ребра равны 1. Най­ди­те угол $$DAB$$. Ответ дайте в гра­ду­сах.

Ответ: 60
Аналоги к этому заданию:

Задание 3745

В пра­виль­ной ше­сти­уголь­ной приз­ме $$ABCDEFA_{1}B_{1}C_{1}D_{1}E_{1}F_{1}$$ все ребра равны 1. Най­ди­те рас­сто­я­ние между точ­ка­ми $$B$$ и $$E$$.

Ответ: 2
Аналоги к этому заданию:

Задание 3744

Най­ди­те рас­сто­я­ние между вер­ши­на­ми А и D  пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, для ко­то­ро­го AB = 5, AD = 4, AA  = 3.

Ответ: 5
Аналоги к этому заданию:

Задание 3743

Най­ди­те квад­рат рас­сто­я­ния между вер­ши­на­ми C и A1 пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, для ко­то­ро­го AB = 5, AD = 4, AA1=3.

Ответ: 50
Аналоги к этому заданию:

Задание 3742

Пло­щадь по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы равна 6. Какой ста­нет площадь по­верх­но­сти приз­мы, если все её рёбра уве­ли­чат­ся в три раза, а форма оста­нет­ся преж­ней?

Ответ: 54
Аналоги к этому заданию:

Задание 3741

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки A, B, C, D, A1, B1, C1, D1 пра­виль­ной ше­сти­уголь­ной приз­мы ABCDEFA1B1C1D1E1F1, пло­щадь ос­но­ва­ния ко­то­рой равна 6, а бо­ко­вое ребро равно 2.

Ответ: 6
Аналоги к этому заданию:

Задание 3740

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки $$A,B,D,E,A_{1},B_{1},D_{1},E_{1}$$ пра­виль­ной ше­сти­уголь­ной приз­мы $$ABCDEFA_{1}B_{1}C_{1}D_{1}E_{1}F_{1}$$, пло­щадь ос­но­ва­ния ко­то­рой равна 6, а бо­ко­вое ребро равно 2.

Ответ: 8
Аналоги к этому заданию:

Задание 3739

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки $$A,B,C,A_{1},B_{1},C_{1}$$ пра­виль­ной ше­сти­уголь­ной приз­мы $$ABCDEFA_{1}B_{1}C_{1}D_{1}E_{1}F_{1}$$, пло­щадь ос­но­ва­ния ко­то­рой равна 6, а бо­ко­вое ребро равно 3.

Ответ: 3
Аналоги к этому заданию:

Задание 3738

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки $$A,B,C,D,E,F,A_{1}$$ пра­виль­ной ше­сти­уголь­ной приз­мы $$ABCDEFA_{1}B_{1}C_{1}D_{1}E_{1}F_{1}$$, пло­щадь ос­но­ва­ния ко­то­рой равна 4, а бо­ко­вое ребро равно 3.

Ответ: 4
Аналоги к этому заданию:

Задание 3737

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки $$A_{1},B_{1},B,C$$пра­виль­ной тре­уголь­ной приз­мы $$ABCA_{1}B_{1}C_{1}$$, пло­щадь ос­но­ва­ния ко­то­рой равна 4, а бо­ко­вое ребро равно 3.

Ответ: 4
Аналоги к этому заданию:

Задание 3736

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки $$A,B,C,A_{1},C_{1}$$ пра­виль­ной тре­уголь­ной приз­мы $$ABCA_{1}B_{1}C_{1}$$, пло­щадь ос­но­ва­ния ко­то­рой равна 3, а бо­ко­вое ребро равно 2.

Ответ: 4
Аналоги к этому заданию:

Задание 3735

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки ABCA1 пра­виль­ной тре­уголь­ной приз­мы ABCA1B1C1, пло­щадь ос­но­ва­ния ко­то­рой равна 2, а бо­ко­вое ребро равно 3.

Ответ: 2
Аналоги к этому заданию:

Задание 3734

Объём куба равен 12. Най­ди­те объём тре­уголь­ной приз­мы, от­се­ка­е­мой от куба плос-ко­стью, про­хо­дя­щей через се­ре­ди­ны двух рёбер, вы­хо­дя­щих из одной вер­ши­ны, и парал-лель­ной тре­тье­му ребру, вы­хо­дя­ще­му из этой же вер­ши­ны.

Ответ: 1,5
Аналоги к этому заданию:

Задание 3733

Ос­но­ва­ни­ем пря­мой тре­уголь­ной приз­мы слу­жит пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми 6 и 8, вы­со­та приз­мы равна 10. Най­ди­те пло­щадь ее по­верх­но­сти.

Ответ: 288
Аналоги к этому заданию:

Задание 3732

От тре­уголь­ной приз­мы, объем ко­то­рой равен 6, от­се­че­на тре­уголь­ная пи­ра­ми­да плос­ко­стью, про­хо­дя­щей через сто­ро­ну од­но­го ос­но­ва­ния и про­ти­во­по­лож­ную вер­ши­ну дру­го­го ос­но­ва­ния. Най­ди­те объем остав­шей­ся части.

Ответ: 4
Аналоги к этому заданию:

Задание 3731

Через сред­нюю линию ос­но­ва­ния тре­уголь­ной приз­мы, объем ко­то­рой равен 32, про­ве­де­на плос­кость, па­рал­лель­ная бо­ко­во­му ребру. Най­ди­те объем от­се­чен­ной тре­уголь­ной приз­мы.

Ответ: 8
Аналоги к этому заданию:

Задание 3730

Гра­нью па­рал­ле­ле­пи­пе­да яв­ля­ет­ся ромб со сто­ро­ной 1 и ост­рым углом $$60^{\circ}$$. Одно из ребер па­рал­ле­ле­пи­пе­да со­став­ля­ет с этой гра­нью угол в $$60^{\circ}$$ и равно 2. Най­ди­те объем па­рал­ле­ле­пи­пе­да.

Ответ: 1,5
Аналоги к этому заданию:

Задание 3729

Ос­но­ва­ни­ем пря­мой тре­уголь­ной приз­мы слу­жит пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми 6 и 8, бо­ко­вое ребро равно 5. Най­ди­те объем приз­мы.

Ответ: 120
Аналоги к этому заданию:

Задание 3728

Най­ди­те бо­ко­вое ребро пра­виль­ной че­ты­рех­уголь­ной приз­мы, если сто­ро­на ее ос­но­ва­ния равна 20, а пло­щадь по­верх­но­сти равна 1760.

Ответ: 12
Аналоги к этому заданию:

Задание 3727

Най­ди­те пло­щадь по­верх­но­сти пря­мой приз­мы, в ос­но­ва­нии ко­то­рой лежит ромб с диа­го­на­ля­ми, рав­ны­ми 6 и 8, и бо­ко­вым реб­ром, рав­ным 10.

Ответ: 248
Аналоги к этому заданию:

Задание 3726

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной ше­сти­уголь­ной приз­мы, сто­ро­на ос­но­ва­ния ко­то­рой равна 5, а вы­со­та – 10.

Ответ: 300
Аналоги к этому заданию:

Задание 3725

В сосуд, име­ю­щий форму пра­виль­ной тре­уголь­ной приз­мы, на­ли­ли воду. Уро­вень воды до­сти­га­ет 80 см. На какой вы­со­те будет на­хо­дить­ся уро­вень воды, если ее пе­ре­лить в дру­гой такой же сосуд, у ко­то­ро­го сто­ро­на ос­но­ва­ния в 4 раза боль­ше, чем у пер­во­го? Ответ вы­ра­зи­те в см.

Ответ: 5
Аналоги к этому заданию:

Задание 3724

В сосуд, име­ю­щий форму пра­виль­ной тре­уголь­ной приз­мы, на­ли­ли 2300 см3 воды и по­гру­зи­ли в воду де­таль. При этом уро­вень воды под­нял­ся с от­мет­ки 25 см до от­мет­ки 27 см. Най­ди­те объем де­та­ли. Ответ вы­ра­зи­те в см3.

Ответ: 184
Аналоги к этому заданию:

Задание 3723

Най­ди­те объем мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке (все дву­гран­ные углы пря­мые).

Ответ: 78
Аналоги к этому заданию:

Задание 3722

Най­ди­те объем мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке (все дву­гран­ные углы пря­мые).

Ответ: 45
Аналоги к этому заданию:

Задание 3721

Най­ди­те объем мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке (все дву­гран­ные углы пря­мые).

Ответ: 18
Аналоги к этому заданию:

Задание 3720

Най­ди­те объем мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке (все дву­гран­ные углы пря­мые).

Ответ: 90
Аналоги к этому заданию:

Задание 3719

Най­ди­те объем мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке (все дву­гран­ные углы пря­мые).

Ответ: 34
Аналоги к этому заданию:

Задание 3718

Най­ди­те объем мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке (все дву­гран­ные углы пря­мые).

Ответ: 40
Аналоги к этому заданию:

Задание 3717

Най­ди­те объем мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке (все дву­гран­ные углы пря­мые).

Ответ: 56
Аналоги к этому заданию:

Задание 3716

Най­ди­те объем про­стран­ствен­но­го кре­ста, изоб­ра­жен­но­го на ри­сун­ке и со­став­лен­но­го из еди­нич­ных кубов.

Ответ: 7
Аналоги к этому заданию:

Задание 3715

Най­ди­те объем мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке (все дву­гран­ные углы мно­го­гран­ни­ка пря­мые).

Ответ: 8
Аналоги к этому заданию:

Задание 3713

Най­ди­те пло­щадь по­верх­но­сти мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке (все дву­гран­ные углы пря­мые).

Ответ: 96
Аналоги к этому заданию:

Задание 3712

Най­ди­те пло­щадь по­верх­но­сти мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке (все дву­гран­ные углы пря­мые).

Ответ: 92
Аналоги к этому заданию:

Задание 3711

Най­ди­те пло­щадь по­верх­но­сти мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке (все дву­гран­ные углы пря­мые).

Ответ: 76
Аналоги к этому заданию:

Задание 3710

Най­ди­те пло­щадь по­верх­но­сти мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке (все дву­гран­ные углы пря­мые).

Ответ: 18
Аналоги к этому заданию:

Задание 3709

Най­ди­те угол EAD2 мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке. Все дву­гран­ные углы мно­го­гран­ни­ка пря­мые. Ответ дайте в гра­ду­сах.

Ответ: 60
Аналоги к этому заданию:

Задание 3708

Най­ди­те угол D2EF мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке. Все дву­гран­ные углы мно­го­гран­ни­ка пря­мые. Ответ дайте в гра­ду­сах.

Ответ: 45
Аналоги к этому заданию:

Задание 3707

На ри­сун­ке изоб­ражён мно­го­гран­ник, все дву­гран­ные углы мно­го­гран­ни­ка пря­мые. Най­ди­те квад­рат рас­сто­я­ния между вер­ши­на­ми D и C2 

Ответ: 6
Аналоги к этому заданию:

Задание 3706

На ри­сун­ке изоб­ражён мно­го­гран­ник, все дву­гран­ные углы мно­го­гран­ни­ка пря­мые. Най­ди­те тан­генс угла C3D3B3.

Ответ: 3
Аналоги к этому заданию:

Задание 3705

На ри­сун­ке изоб­ражён мно­го­гран­ник, все дву­гран­ные углы мно­го­гран­ни­ка пря­мые. Най­ди­те тан­генс угла ABB3.

Ответ: 2
Аналоги к этому заданию:

Задание 3703

На ри­сун­ке изоб­ражён мно­го­гран­ник, все дву­гран­ные углы мно­го­гран­ни­ка пря­мые. Най­ди­те квад­рат рас­сто­я­ния между вер­ши­на­ми $$A$$ и $$C_{3}$$.

Ответ: 17
Аналоги к этому заданию:

Задание 3702

На ри­сун­ке изоб­ражён мно­го­гран­ник, все дву­гран­ные углы мно­го­гран­ни­ка пря­мые. Най­ди­те квад­рат рас­сто­я­ния между вер­ши­на­ми B и D2 

Ответ: 14
Аналоги к этому заданию:

Задание 3701

На ри­сун­ке изоб­ражён мно­го­гран­ник, все дву­гран­ные углы мно­го­гран­ни­ка пря­мые. Най­ди­те квад­рат рас­сто­я­ния между вер­ши­на­ми $$B_{2}$$ и$$D_{3}$$.

Ответ: 11
Аналоги к этому заданию:

Задание 3700

На ри­сун­ке изоб­ражён мно­го­гран­ник, все дву­гран­ные углы мно­го­гран­ни­ка пря­мые. Най­ди­те тан­генс угла B2A2C2.

Ответ: 2
Аналоги к этому заданию:

Задание 3699

Най­ди­те угол ABD мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке. Все дву­гран­ные углы мно­го­гран­ни­ка пря­мые. Ответ дайте в гра­ду­сах.

Ответ: 45
Аналоги к этому заданию:

Задание 3698

Най­ди­те угол CAD2 мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке. Все дву­гран­ные углы мно­го­гран­ни­ка пря­мые. Ответ дайте в гра­ду­сах.

Ответ: 60
Аналоги к этому заданию:

Задание 3697

На ри­сун­ке изоб­ражён мно­го­гран­ник, все дву­гран­ные углы мно­го­гран­ни­ка пря­мые. Най­ди­те рас­сто­я­ние между вер­ши­на­ми $$B_{1}$$ и $$D_{2}$$.

Ответ: 3
Аналоги к этому заданию:

Задание 3696

Най­ди­те квад­рат рас­сто­я­ния между вер­ши­на­ми $$D$$ и $$C_{2}$$ мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке. Все дву­гран­ные углы мно­го­гран­ни­ка пря­мые.

Ответ: 5
Аналоги к этому заданию:

Задание 3695

На ри­сун­ке изоб­ражён мно­го­гран­ник, все дву­гран­ные углы мно­го­гран­ни­ка пря­мые. Най­ди­те рас­сто­я­ние между вер­ши­на­ми $$A$$ и $$C_{2}$$.

Ответ: 3
Аналоги к этому заданию:

Задание 3694

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де $$ABCDA_{1}B_{1}C_{1}D_{1}$$ из­вест­ны длины рёбер: $$AB=3$$, $$AD=5$$, $$AA_{1}=12$$ Най­ди­те пло­щадь се­че­ния па­рал­ле­ле­пи­пе­да плос­ко­стью, про­хо­дя­щей через точки AB и C1.

Ответ: 39
Аналоги к этому заданию:

Задание 3693

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де $$ABCDA_{1}B_{1}C_{1}D_{1}$$ из­вест­ны длины рёбер $$AB=8$$, $$AD=6$$, $$AA_{1}=21$$. Най­ди­те синус угла между пря­мы­ми $$CD$$ и $$A_{1}C_{1}$$.

Ответ: 0,6
Аналоги к этому заданию:

Задание 3692

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де $$ABCDA_{1}B_{1}C_{1}D_{1}$$ из­вест­ны длины рёбер: $$AB=24$$, $$AD=10$$, $$AA_{1}=22$$. Най­ди­те пло­щадь се­че­ния, про­хо­дя­ще­го через вер­ши­ны $$A,A_{1}$$ и $$C$$.

Ответ: 572
Аналоги к этому заданию:

Задание 3691

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де $$ABCDA_{1}B_{1}C_{1}D_{1}$$ ребро $$AB=2$$, ребро $$AD=\sqrt{5}$$, ребро $$AA_{1}$$. Точка $$K$$ — се­ре­ди­на ребра $$BB_{1}$$. Най­ди­те пло­щадь се­че­ния, про­хо­дя­ще­го через точки $$A_{1},D_{1}$$ и $$C$$.

Ответ: 5
Аналоги к этому заданию:

Задание 3690

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де $$ABCDA_{1}B_{1}C_{1}D_{1}$$ из­вест­но, что $$BD_{1}=3$$, $$CD=2$$, $$AD=2$$. Най­ди­те длину ребра $$AA_{1}$$

Ответ: 1
Аналоги к этому заданию:

Задание 3689

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де $$ABCDA_{1}B_{1}C_{1}D_{1}$$ из­вест­но, что $$AB=4$$, $$AD=3$$, $$AA_{1}=5$$. Най­ди­те угол DBD1. Ответ дайте в гра­ду­сах.

Ответ: 45
Аналоги к этому заданию:

Задание 3688

Най­ди­те угол $$ABD_{1}$$ пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, для ко­то­ро­го $$AB=3$$, $$AD=4$$, $$AA_{1}=5$$. Дайте ответ в гра­ду­сах.

Ответ: 45
Аналоги к этому заданию:

Задание 3687

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки $$A,B,B_{1},C_{1}$$ пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да $$ABCDA_{1}B_{1}C_{1}D_{1}$$, у ко­то­ро­го $$AB=5$$, $$AD=3$$, $$AA_{1}=4$$.

Ответ: 10
Аналоги к этому заданию:

Задание 3686

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки $$A,B,C,B_{1}$$ пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да $$ABCDA_{1}B_{1}C_{1}D_{1}$$, у ко­то­ро­го $$AB=3$$, $$AD=3$$, $$AA_{1}=4$$.

Ответ: 6
Аналоги к этому заданию:

Задание 3685

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки $$A_{1},B,C,B_{1}$$ пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да $$ABCDA_{1}B_{1}C_{1}D_{1}$$, у ко­то­ро­го $$AB=4$$, $$AD=3$$, $$AA_{1}=4$$.

Ответ: 16
Аналоги к этому заданию:

Задание 3684

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки $$A,B,C,D_{1}$$ пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да $$ABCDA_{1}B_{1}C_{1}D_{1}$$, у ко­то­ро­го $$AB=4$$, $$AD=3$$, $$AA_{1}=4$$.

Ответ: 8
Аналоги к этому заданию:

Задание 3683

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки $$A,D,A_{1},B,C,B_{1}$$ пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да $$ABCDA_{1}B_{1}C_{1}D_{1}$$, у ко­то­ро­го $$AB=3$$, $$AD=4$$, $$AA_{1}=5$$.

Ответ: 30
Аналоги к этому заданию:

Задание 3682

Объем па­рал­ле­ле­пи­пе­да $$ABCDA_{1}B_{1}C_{1}D_{1}$$ равен 4,5. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды $$AD_{1}CB_{1}$$.

Ответ: 1,5
Аналоги к этому заданию:

Задание 3681

Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 1, 2. Объем па­рал­ле­ле­пи­пе­да равен 6. Най­ди­те пло­щадь его по­верх­но­сти.

Ответ: 22
Аналоги к этому заданию:

Задание 3680

Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2, 4. Диа­го­наль па­рал­ле­ле­пи­пе­да равна 6. Най­ди­те пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да.

Ответ: 64
Аналоги к этому заданию:

Задание 3679

Ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 1, 2, 3. Най­ди­те его пло­щадь по­верх­но­сти.

 

Ответ: 22
Аналоги к этому заданию:

Задание 3678

Одна из гра­ней пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да — квад­рат. Диа­го­наль па­рал­ле­ле­пи­пе­да равна $$\sqrt{8}$$ и об­ра­зу­ет с плос­ко­стью этой грани угол 45°. Най­ди­те объем па­рал­ле­ле­пи­пе­да.

 

Ответ: 4
Аналоги к этому заданию:

Задание 3677

Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2, 3. Объем па­рал­ле­ле­пи­пе­да равен 36. Най­ди­те его диа­го­наль.

Ответ: 7
Аналоги к этому заданию:

Задание 3676

Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2, 4. Диа­го­наль па­рал­ле­ле­пи­пе­да равна 6. Най­ди­те объем па­рал­ле­ле­пи­пе­да.

Ответ: 32
Аналоги к этому заданию:

Задание 3675

Три ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 4, 6, 9. Най­ди­те ребро рав­но­ве­ли­ко­го ему куба.

Ответ: 6
Аналоги к этому заданию:

Задание 3674

Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2 и 6. Объем па­рал­ле­ле­пи­пе­да равен 48. Най­ди­те тре­тье ребро па­рал­ле­ле­пи­пе­да, вы­хо­дя­щее из той же вер­ши­ны.

Ответ: 4
Аналоги к этому заданию:

Задание 3673

Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равен 60. Пло­щадь одной его грани равна 12. Най­ди­те ребро па­рал­ле­ле­пи­пе­да, пер­пен­ди­ку­ляр­ное этой грани.

Ответ: 5
Аналоги к этому заданию:

Задание 3672

Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равен 24. Одно из его ребер равно 3. Най­ди­те пло­щадь грани па­рал­ле­ле­пи­пе­да, пер­пен­ди­ку­ляр­ной этому ребру.

Ответ: 8
Аналоги к этому заданию:

Задание 3671

Пло­щадь грани пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равна 12. Ребро, пер­пен­ди­ку­ляр­ное этой грани, равно 4. Най­ди­те объем па­рал­ле­ле­пи­пе­да.

Ответ: 48
Аналоги к этому заданию:

Задание 3670

Пря­мо­уголь­ный па­рал­ле­ле­пи­пед опи­сан около еди­нич­ной сферы. Най­ди­те его пло­щадь по­верх­но­сти.

Ответ: 24
Аналоги к этому заданию:

Задание 3669

Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 1, 2. Пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да равна 16. Най­ди­те его диа­го­наль.

Ответ: 3
Аналоги к этому заданию:

Задание 3668

Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 3 и 4. Пло­щадь по­верх­но­сти этого па­рал­ле­ле­пи­пе­да равна 94. Най­ди­те тре­тье ребро, вы­хо­дя­щее из той же вер­ши­ны.

Ответ: 5
Аналоги к этому заданию:

Задание 1081

В кубе  ABCDA1B1C1D1  точка  K  — се­ре­ди­на ребра  AA1 , точка  L  — се­ре­ди­на ребра  A1B1 , точка  M  — се­ре­ди­на ребра  A1D1 . Най­ди­те угол  MLK . Ответ дайте в гра­ду­сах.

Ответ: 60
Аналоги к этому заданию:

Задание 1080

Объем од­но­го куба в 8 раз боль­ше объ­е­ма дру­го­го куба. Во сколь­ко раз пло­щадь по­верх­но­сти пер­во­го куба боль­ше пло­ща­ди по­верх­но­сти вто­ро­го куба?

Ответ: 4
Аналоги к этому заданию:

Задание 1079

Пло­щадь по­верх­но­сти куба равна 24. Най­ди­те его объем.

Ответ: 8
Аналоги к этому заданию:

Задание 1078

Диа­го­наль куба равна 1. Най­ди­те пло­щадь его по­верх­но­сти.

Ответ: 2
Аналоги к этому заданию:

Задание 1077

Во сколь­ко раз уве­ли­чит­ся пло­щадь по­верх­но­сти куба, если его ребро уве­ли­чить в три раза?

Ответ: 9
Аналоги к этому заданию:

Задание 1076

Если каж­дое ребро куба уве­ли­чить на 1, то его объем уве­ли­чит­ся на 19. Най­ди­те ребро куба.

Ответ: 2
Аналоги к этому заданию:

Задание 1075

Объем куба равен  $$24\sqrt{3}$$ . Най­ди­те его диа­го­наль.

Ответ: 6
Аналоги к этому заданию:

Задание 1074

Диа­го­наль куба равна  $$\sqrt{12}$$. Най­ди­те его объем.

Ответ: 8
Аналоги к этому заданию:

Задание 1073

Во сколь­ко раз уве­ли­чит­ся объем куба, если его ребра уве­ли­чить в три раза?

Ответ: 27
Аналоги к этому заданию:

Задание 1072

Если каж­дое ребро куба уве­ли­чить на 1, то его пло­щадь по­верх­но­сти уве­ли­чит­ся на 54. Най­ди­те ребро куба.

Ответ: 4
Аналоги к этому заданию:

Задание 1071

Объем куба равен 8. Най­ди­те пло­щадь его по­верх­но­сти.

Ответ: 24
Аналоги к этому заданию:

Задание 1070

Пло­щадь по­верх­но­сти куба равна 18. Най­ди­те его диа­го­наль.

Ответ: 3