Перейти к основному содержанию

ЕГЭ Профиль

ЕГЭ (профиль) / Стереометрия

 

Задание 902

Дана правильная шестиугольная призма ABCDEFA1B1C1D1E1F1, площадь основания которой равна 12, а боковое ребро равно 6. Найдите объем многогранника с вершинами в точках AB1C1D1E1F1.

Ответ: 20
Скрыть

Рассмотрим новое основание. Оно представляет из себя пятиугольник. Площадь этого пятиугольника составляет 5/6 от площади шестиугольника, поэтому: площадь основания нового: 12 * 5/6=10

Объем пирамиды вычисляется как одна третья основания на высоту: объем = 1/3 * 6*10 = 20

 

Задание 938

В прямоугольном параллелепипеде ABCDA1B1C1D1 известно ВС=4, АВ=8, СС1=14. Найдите расстояние между серединами ребер АА1 и С1D1.

 

Ответ: 9
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Для этого рассмотрим треугольник HA1M:

HA1=0.5AA1=7

A1M=$$\sqrt{A_{1}D_{1}^{2}+D_{1}M^{2}}=\sqrt{4^{2}+4^{2}}=\sqrt{32}$$

MH=$$\sqrt{A_{1}H^{2}+A_{1}M^{2}}=\sqrt{7^{2}+32}=\sqrt{81}=9$$

 

Задание 974

Объем пирамиды SABC равен 54. На ребрах SA, АВ и АС взяты точки М, N и Р соответственно так, что SM:MA= BN:NA=CP:PA=1:2. Найдите объем пирамиды МАNP.

Ответ: 16
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Треугольники AHS и AKM подобны (SH и MK высоты в пирамидах) и коэффициент подобия равен 2/3 (так как AM:MS = 2:1, значит AS составляет 3 (2+1)  части)

Аналогично треугольники APN и ACB подобны и коэффициент подобия равен 2/3. Пусть h - высота ABCS (SH), a h1 - высота ANPM (MK), S - площадь ABC, а S1 - площадь ANP.

Тогда, $$\frac{1}{3}Sh=54$$.

$$h_1=\frac{2}{3}h$$ 

$$S_1=\frac{4}{9}S$$ (так как площади относятся, как квадрат коэффициента подобия)

$$\frac{1}{3}S_1h_1=\frac{1}{3}*\frac{4}{9}S\frac{2}{3}h=\frac{8}{27}*\frac{1}{3}Sh=\frac{8}{27}*54=16$$

 

Задание 1014

В многограннике, приведенном на рисунке, все двугранные углы прямые. Найдите расстояние между точками А и В.

Ответ: 9
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Для этого рассмотрим прямоугольный треугольник BHA: BH = 3 + 4 = 7. HA неизвестно, найдем ее из треугольника прямоугольного HMA: $$HA = \sqrt{HM^2+MA^2}$$

$$HA = \sqrt{HM^2+MA^2}=\sqrt{4^2+(7-3)^2}=\sqrt{32}$$

$$AB = \sqrt{BH^2+AH^2}=\sqrt{7^2+\sqrt{32}^2}=\sqrt{49+32}=\sqrt{81}=9$$

Задание 1070

Пло­щадь по­верх­но­сти куба равна 18. Най­ди­те его диа­го­наль.

Ответ: 3

Задание 1071

Объем куба равен 8. Най­ди­те пло­щадь его по­верх­но­сти.

Ответ: 24

Задание 1072

Если каж­дое ребро куба уве­ли­чить на 1, то его пло­щадь по­верх­но­сти уве­ли­чит­ся на 54. Най­ди­те ребро куба.

Ответ: 4

Задание 1073

Во сколь­ко раз уве­ли­чит­ся объем куба, если его ребра уве­ли­чить в три раза?

Ответ: 27

Задание 1074

Диа­го­наль куба равна  $$\sqrt{12}$$. Най­ди­те его объем.

Ответ: 8

Задание 1075

Объем куба равен  $$24\sqrt{3}$$ . Най­ди­те его диа­го­наль.

Ответ: 6

Задание 1076

Если каж­дое ребро куба уве­ли­чить на 1, то его объем уве­ли­чит­ся на 19. Най­ди­те ребро куба.

Ответ: 2

Задание 1077

Во сколь­ко раз уве­ли­чит­ся пло­щадь по­верх­но­сти куба, если его ребро уве­ли­чить в три раза?

Ответ: 9

Задание 1078

Диа­го­наль куба равна 1. Най­ди­те пло­щадь его по­верх­но­сти.

Ответ: 2

Задание 1079

Пло­щадь по­верх­но­сти куба равна 24. Най­ди­те его объем.

Ответ: 8

Задание 1080

Объем од­но­го куба в 8 раз боль­ше объ­е­ма дру­го­го куба. Во сколь­ко раз пло­щадь по­верх­но­сти пер­во­го куба боль­ше пло­ща­ди по­верх­но­сти вто­ро­го куба?

Ответ: 4