Перейти к основному содержанию

ЕГЭ Профиль

(C3) Неравенства

Смешанные неравенства

 

Задание 2946

 Решите неравенство $$(2^{x}-3)(2\log_2 x -1)\log_2 ^{2}x\leq 0$$

Ответ: $$\left \{ 1 \right \}\cup \left [\sqrt{2}; \log_2 3 \right ]$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 3663

Решите неравенство $$2\sqrt{\sin^{2}x-\sin x-1}\geq\cos^{2}x+\sin x+3$$

Ответ: $$-\frac{\pi }{2}+2\pi k, k\in Z$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 4019

Решите неравенство $$(2^{2}+3\cdot2^{-x})^{2\log_{2}x-\log_{2}(x+6)}>1$$

Ответ: $$x\in(3;+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$(2^{2}+3\cdot2^{-x})^{2\log_{2}x-\log_{2}(x+6)}>1$$

$$(2^{2}+3\cdot2^{-x})^{2\log_{2}x-\log_{2}(x+6)}>(2^{2}+3\cdot2^{-x})^{0}$$

ОДЗ: $$\left\{\begin{matrix}x>0\\x+6>0\end{matrix}\right.\Leftrightarrow x>0$$

$$2^{x}+3\cdot2^{-x}>1$$ $$\Leftrightarrow$$

$$2^{x}+3\cdot2^{-x}-1>0$$ $$\Leftrightarrow$$

$$\frac{2^{2x}-2^{x}+3}{2^{x}}>0$$

Пусть $$2^{x}=y>0$$

$$\frac{y^{2}-y+3}{y}>0$$

$$D=1-12<0$$ $$\Rightarrow$$ всегда больше нуля

$$\left\{\begin{matrix}2^{x}+3\cdot2^{-x}>1\\2\log_{2}x-\log_{2}(x+6)>0\end{matrix}\right.\Leftrightarrow$$

$$\left\{\begin{matrix}\frac{2^{2x}-2^{x}+3}{2^{x}}>0\\2\log_{2}x>\log_{2}(x+6)\end{matrix}\right.\Leftrightarrow$$

$$\log_{2}x^{2}>\log_{2}(x+6)$$

$$(x^{2}-x-6)(2-1)>0$$

$$x^{2}-x-6>0$$

$$D=1+24=25$$

$$x_{1}=\frac{1+5}{2}=3$$

$$x_{2}=\frac{1-5}{2}=-2$$

С учетом ОДЗ: $$x>3$$

 

Задание 4189

Решите неравенство: $$\frac{\log_{8}x}{\log_{2}(1+2x)}\leq\frac{\log_{2}\sqrt[3]{1+2x}}{\log_{2}x}$$

Ответ: $$x\in(0;0,5]\cup(1;+\infty;)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

ОДЗ: $$\left\{\begin{matrix}x>0\\1+2x>0\\x\neq1\\1+2x\neq1\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x>0\\x>-0,5\\x\neq1\\x\neq0\end{matrix}\right.$$ $$\Leftrightarrow$$ $$x\in(0;1)\cup(1;+\infty)$$; $$\frac{\frac{1}{3}\log_{2}x}{\log_{2}(1+2x)}\leq\frac{\frac{1}{3}\log_{2}(1+2x)}{\log_{2}x}$$; $$\log_{1+2x}x\leq\log_{x}(1+2x)$$;

Пусть $$\log_{1+2x}x=y$$; $$y\leq\frac{1}{y}$$; $$\frac{y^{2}-1}{y}\leq0$$ $$\Leftrightarrow$$ $$\frac{(y-1)(y+1)}{y}\leq0$$

 

$$\left\{\begin{matrix}y\leq-1\\\left\{\begin{matrix}y>0\\y\leq1\end{matrix}\right.\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}\log_{1+2x}x\leq-1(1)\\\left\{\begin{matrix}\log_{1+2x}x>0(2)\\\log_{1+2x}x\leq1(3)\end{matrix}\right.\end{matrix}\right.$$

1) $$\log_{1+2x}x\leq\log_{1+2x}\frac{1}{1+2x}$$; $$(x-\frac{1}{1+2x})(1+2x-1)\leq0$$; $$\frac{x+2x^{2}-1}{1+2x}\cdot2x\leq0$$; $$\frac{2x(x-0,5)(x+1)}{1+2x}\leq0$$

$$x\in[-1;-0,5)\cup[0;0,5]$$

2) $$\log_{1+2x}x>0$$; $$(x-1)(1+2x-1)>0$$; $$(x-1)\cdot2x>0$$

 

$$x\in(-\infty;0)\cup(1;+\infty)$$

3) $$\log_{1+2x}x\leq1$$; $$\log_{1+2x}x\leq\log_{1+2x}(1+2x)$$; $$(x-1-2x)(1+2x)\leq0$$; $$(-x-1)(2x+1)\leq0$$

$$x\in(-\infty;-1]\cup[-0,5;+\infty)$$

Найдем пересечение 2 и 3 и объединим результаты с 1: $$x\in(-\infty;0,5]\cup(1;+\infty;)$$

Ответ с учетом ОДЗ: $$x\in(0;0,5]\cup(1;+\infty;)$$

Задание 4538

Решите неравенство: $$\log_{2} ((7^{-x^{2}}-3)(7^{-x^{2}+16}-1))+\log_{2} \frac{7^{-x^{2}}-3}{7^{-x^{2}+16}-1}> \log_{2} ((7^{7-x^{2}}-3)^{2}$$

Ответ:

Задание 4539

Решите неравенство: $$(2x+1)\log_{5}10 + \log_{5}(4^{x}-\frac{1}{10})\leq 2x-1$$

Ответ:

Задание 4540

Решите неравенство: $$5^{-|x-2|}\cdot \log_{2}(4x-x^{2}-2)\geq 1$$

Ответ:

Задание 4541

Решите неравенство: $$\frac{\log_{4}(2^{x}-1)}{x-1}\leq 1$$

Ответ:

Задание 4542

Решите неравенство: $$\frac{(x^{2}+x)\lg(x^{2}+x-2)}{|x-1|}\geq \frac{\lg(-x^{2}-2x+2)^{2}}{x-1}$$

Ответ:

Задание 4543

Решите неравенство: $$\frac{1-\sqrt{1-4\log_{8}^{2} x}}{\log_{8} x}< 2$$

Ответ:

Задание 4544

Решите неравенство: $$(3^{\frac{x-2}{x}}-1)\sqrt{3^{x}-10\sqrt{3^{x}}+9}\geq 0$$

Ответ:

Задание 4545

Решите неравенство: $$\log_{x}(\log_{9}(3^{x}-9))< 1$$

Ответ:

Задание 4546

Решите неравенство: $$\sqrt{2\cdot 9^{x}-7\cdot 3^{x+1}+10}\geq 3^{x}-10$$

Ответ:

Задание 4547

Решите неравенство:$$(x^{2}+1)^{\lg(7x^{2}-3x+1)}+(7x^{2}-3x+1)^{\lg(x^{2}+1)}\leq 2$$

Ответ:

Задание 4548

Решите неравенство: $$\frac{8\cdot 7^{x}-4^{x\log_{2}7}-11}{(2x-1)^{2}}\geq 0$$

Ответ:

Задание 4549

Решите неравенство: $$|6-7^{x}|\leq (7^{x}-6)\cdot \log_{6} (x+1)$$

Ответ:

Задание 4550

Решите неравенство: $$\frac{14^{1+\lg x}}{7\lg^{2}(100x)\lg (0,1x)}\geq \frac{(4\cdot 2^{\lg (10x)})^{1+\lg x}}{4\lg^{2} (100x)\lg(0,1x)}$$

Ответ:

Задание 4551

Решите неравенство: $$\frac{35^{|x|}-5^{|x|}-5\cdot 7^{|x|}+5}{2^{\sqrt{x+2}}+1}\geq 0$$

Ответ:
 

Задание 5058

Решите неравенство: $$\sqrt{\log_{9}(3x^{2}-4x+2)}+1>\log_{3}(3x^{2}-4x+2)$$

Ответ: $$(-1 ;\frac{1}{3}]\cup [1;\frac{7}{3})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть $$t=\sqrt{\log_{9}(3x^{2}-4x+2)}=$$$$\sqrt{\log_{3^{2}}(3x^{2}-4x+2)}=$$$$\sqrt{\frac{\log_{3}(3x^{2}-4x+2)}{2}}$$, $$t\geq 0$$ тогда: $$\sqrt{\log_{3}(3x^{2}-4x+2)}=2t^{2}$$.

     Неравенство примет вид: $$t+1>2t^{2}\Leftrightarrow$$ $$2t^{2}-t-1<0$$; $$y=2t^{2}-t-1$$, графиком является парабола, ветви направлены вверх ;$$t_{1,2}=\frac{1\pm 3}{4}=-\frac{1}{2};1$$ $$0\leq t\leq 1$$.

     Вернёмся к переменной : $$0\leq \sqrt{\log_{9}(3x^{2}-4x+2)}<1\Leftrightarrow$$ $$0\leq \log_{9}(3x^{2}-4x+2)<1\Leftrightarrow$$ $$\log_{9}1\leq \log_{9}(3x^{2}-4x+2)<\log_{9}9\Leftrightarrow$$ $$\left\{\begin{matrix}3x^{2}-4x+2\geq 1\\3x^{2}-4x+2<9\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}3x^{2}-4x+1\geq 0\\3x^{2}-4x-7<0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}3(x-\frac{1}{3})(x-1)\geq 0\\3(x+1)(x-\frac{7}{3})<0\end{matrix}\right.$$$$\left\{\begin{matrix}x \in (-\infty;\frac{1}{3}] \cup [1;+\infty)\\ x\in(-1;\frac{7}{3})\end{matrix}\right.$$

В итоге получим: $$x\in (-1 ;\frac{1}{3}]\cup [1;\frac{7}{3}).$$

 

Задание 6231

Решите неравенство $$x*3^{log_{\frac{1}{9}(16x^{4}-8x^{2}+1)}}<\frac{1}{3}$$

Ответ: $$(-\infty ;-\frac{1}{2})(-\frac{1}{2}; -\frac{1}{4})\cup (-\frac{1}{4}; \frac{1}{4})\cup (1;+\infty )$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Область определения:

$$16x^{4}-8x^{2}+1>0\Leftrightarrow (4 x^{2}-1)^{2}>0\Leftrightarrow$$$$x^{2}\neq \frac{1}{4}\Leftrightarrow x\neq \pm \frac{1}{2}$$

Решим данное неравенство:

$$x*3^{log_{\frac{1}{9}(4x^{2}-1)^{2}}}*3<1$$

$$x*3^{2*(-\frac{1}{2})log_{3}\left | 4x^{2}-1 \right |)}*3<1$$

$$x*\frac{1}{\left | 4x^{2}-1 \right |}*3<1$$

$$\frac{3x-\left | 4x^{2}-1 \right |}{\left | 4x^{2}-1 \right |}<0$$

Умножим обе части на $$\left | 4x^{2}-1 \right |$$ так как оно положительно при любой х: 

$$3x<\left | 4x^{2}-1 \right |\Leftrightarrow$$ $$\left[\begin{matrix}4x^{2}-1>3x & & \\4x^{2}-1 <-3x \end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}4x^{2}-1+3x>0 & & \\4x^{2}-1-3x <0 \end{matrix}\right.\Leftrightarrow$$$$\left[\begin{matrix}(x-1)(x+\frac{1}{4})>0 & & \\(x+1)(x-\frac{1}{4})<0 & &\end{matrix}\right.$$

Получаем $$x\in (-\infty ;-\frac{1}{4})\cup (-\frac{1}{4}; \frac{1}{4})\cup (1;+\infty )$$

С учетом области определения получим:

$$x\in (-\infty ;-\frac{1}{2})(-\frac{1}{2}; -\frac{1}{4})\cup (-\frac{1}{4}; \frac{1}{4})\cup (1;+\infty )$$

 

Задание 6279

Решите неравенство $$\frac{1}{x}\log _{7}(\frac{9}{2}-2*7^{-x})>1$$

Ответ: $$(\log_{7}\frac{4}{9}; \log _{7}\frac{1}{2})\cup (0; \log_{7}4)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Ограничения для логарифмируемой функции:

$$\frac{9}{2}-27^{-x}>0\Leftrightarrow 2*7^{-x}<\frac{9}{2}\Leftrightarrow$$ $$7^{-x}<\frac{9}{4}\Leftrightarrow$$ $$7^{-x}<7^{\log_{7}\frac{9}{4}}\Leftrightarrow$$ $$x>-\log_{7}\frac{9}{4}=\log _{7}\frac{4}{9}$$

     Решим неравенство:

$$\frac{\log_{7}(\frac{9}{2}-2*7^{-x})-x}{x}>0\Leftrightarrow \frac{\log _{7}(\frac{9}{2}-2*7^{-x})*7^{-x}}{x}>0$$$$\Leftrightarrow \frac{\frac{9}{2}*7^{-x}-1}{x}>0$$

     Рассмотрим числитель : пусть $$7^{-x}=y>0$$

$$\frac{9}{2}y-2y^{2}-1=0\Leftrightarrow$$$$4y^{2}-9y+2=0\Leftrightarrow$$$$D=81-32=49$$

$$y_{1}=\frac{9+7}{8}=2$$ и $$y_{2}=\frac{9-7}{8}=\frac{1}{4}$$

     В соответствии с полученными корнями разложим числитель на множители, используя формулу $$ax^{2}+bx+c=a(x-x_{1})(x-x_{2})$$, а так же умножим на минус один обе части:

$$\frac{(7^{-x}-2)(7^{-x}-\frac{1}{4})}{x}<0\Leftrightarrow$$$$\frac{(7^{-x}-7^{\log _{7} 2)})(7^{-x}-7^{\log_{7}\frac{1}{4}})}{x}<0\Leftrightarrow$$ $$\frac{(-x-\log _{7}2)(-x-\log_{7}\frac{1}{4})}{x}<0\Leftrightarrow$$$$\frac{(x+log _{7}2)(x+log_{7}\frac{1}{4})}{x}<0$$

     Учтем, что $$-\log _{7}2=\log_{7}\frac{1}{2}$$ и $$-\log_{7}\frac{1}{4}=\log_{7}4$$, а так же $$D(f)$$

$$x \in (\log_{7}\frac{4}{9}; \log _{7}\frac{1}{2})\cup (0; \log_{7}4)$$

 

Задание 6806

Решите неравенство $$(\frac{4x}{5}+1)^{6-13x-15x^{2}}\geq 1$$

Ответ: $$(-\frac{5}{4}; -\frac{6}{5}]\cup [0; \frac{1}{3}]$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

   ОДЗ : $$\frac{4x}{5}+1>0\Rightarrow$$ $$x>-\frac{5}{4}$$

   Решение: рассмотрим равносильную систему с учетом ОДЗ :

$$\left[\begin{matrix}\left\{\begin{matrix}(\frac{4x}{5}+1)<1\\6-13x-15x^{2}\leq 0\end{matrix}\right.\\\left\{\begin{matrix}(\frac{4x}{5}+1)>1\\6-13x-15x^{2}\geq 0\end{matrix}\right.\\\frac{4x}{5}+1=1\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}x<0\\x \in (-\infty , -\frac{6}{5}]\cup [\frac{1}{3},+\infty )\end{matrix}\right.\\\left\{\begin{matrix}x>0\\x \in [-\frac{6}{5}, \frac{1}{3}]\end{matrix}\right.\\x=0\end{matrix}\right.\Leftrightarrow$$ с учетом ОДЗ: $$x \in (-\frac{5}{4}; -\frac{6}{5}]\cup [0; \frac{1}{3}]$$

 

Задание 7413

Решите неравенство $$\frac{\sqrt{3-x}-\sqrt{x^{3}-5x^{2}+6x}}{\sqrt{3-x}+\log_{4x+1}^{2}(x^{3}-5x^{2}+6x+1)}\geq 1$$

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 7684

Решите неравенство: $$\frac{(2^{x}-8)(\lg x-1)}{(\log_{\frac{1}{2}}x+1)\sqrt{12-x}}>0$$

Ответ: (0;2),(3;10)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8238

Решите неравенство: $$\frac{4\sin x \cdot \sin 2x -\sin^{2} 2x -4+4\cos^{2} x}{\sqrt{16-2^{(x-5)^{2}}}}\geq 0$$

Ответ: $$x=\pi;2\pi$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

ОДЗ: $$16-2^{(x-5)^{2}}>0$$ $$\Leftrightarrow$$ $$2^{4}>2^{(x-5)^{2}}$$ $$\Leftrightarrow$$ $$4>(x-5)^{2}$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x-5<2&\\x-5>-2&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x<7&\\x>3&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$x\in(3;7)$$

Упростим числитель: $$4\sin x\sin2x-\sin^{2}2x+4(\cos{2}x-1)=8\sin^{2}x\cos x-4\sin^{2}x$$

$$\cos^{2}x-4\sin^{2}x=-4\sin^{2}x(\cos^{2}-2\cos x+1)=-4\sin^{2}x(\cos^{2}-1)^{2}$$

Тогда получим: $$-\frac{4\sin^{2}x(\cos x-1)^{2}}{\sqrt{16-2^{(x-5)^{2}}}}\geq0$$ $$\Leftrightarrow$$ $$\sin^{2}x(\cos x-1)^{2}\leq0$$ $$\Leftrightarrow$$ $$\begin{bmatrix}sin x=0&\\\cos x=1&\end{bmatrix}$$ $$\Leftrightarrow$$ $$x=\pi n,n\in Z$$

С учетом ОДЗ: $$\left\{\begin{matrix}x=\pi n &\\x\in(3;7)&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$x=\pi;2\pi$$

 

Задание 8269

Решите неравенство: $$\frac{(\log_{3}^{2}|x|-3\log_{3}|x|-10)((\frac{1}{2})^{x-1}-2^{x-1})}{4x^{2}-x^{3}-4x}\leq 0$$
Ответ: $$x\in[-243;-\frac{1}{9}]\cup(0;\frac{1}{9}]\cup[1;2)\cup(2;243]$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

ОДЗ: $$\left\{\begin{matrix}|x|>0&\\4x^{2}-x^{3}-4x\neq0&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x\neq0&\\x(4x-x^{2}-4)\neq0&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x\neq0&\\-x(x-2)^{2}\neq0&\end{matrix}\right.$$ $$x\in(-\infty;0)\cup(0;2)\cup(2;+\infty)$$

Решение: учтем,что $$\log_{3}^{2}|x|-3\log_{3}|x|-10=(\log_{3}|x|-5)\cdot(\log_{3}|x|+2)=(\log_{3}|x|-\log_{3}243)\cdot(\log_{3}|x|+\log_{3}9)=$$ $$=(\log_{3}|x|-\log_{3}243)\cdot(\log_{3}|x|-\log_{3}\frac{1}{9})=|\log_{b}a-\log_{b}c\Leftrightarrow(b-c)\cdot(a-c)|=$$ $$=(|x|-243)\cdot(|x|-\frac{1}{9})\cdot(3-1)^{2}=||x|-|y|\Leftrightarrow(x-y)\cdot(x+y)|=(\frac{1}{2})^{x-1}-2^{x-1}=2^{1-x}-2^{x-1}=|a^{b}-a^{c}\Leftrightarrow$$ $$\Leftrightarrow a\cdot(b-c)|=(1-x-x+1)(2-1)=(2-2x)$$

С учетом разложений и ОДЗ: $$\frac{(x-243)\cdot(x+243)\cdot(x-\frac{1}{9})\cdot(x+\frac{1}{9})\cdot(2-2x)\cdot2^{2}}{-x(x-2)^{2}}\leq0$$ $$\Leftrightarrow$$ $$\frac{(x-243)\cdot(x+243)\cdot(x-\frac{1}{9})\cdot(x+\frac{1}{9})\cdot(x-1)}{x}\leq0$$

$$x\in[-243;-\frac{1}{9}]\cup(0;\frac{1}{9}]\cup[1;2)\cup(2;243]$$

 

Задание 8894

Решите неравенство $$\sqrt{x+\frac{1}{2}}\cdot \log_{\frac{1}{2}}(\log_{2}|1-x|)\geq 0$$

Ответ: $$[-\frac{1}{2};0)\cup (2;3]$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8914

Решите неравенство $$\sqrt{x+3}\cdot \log_{\frac{1}{3}} (\log_{3}|1+x|)\leq 0$$

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9230

Решите неравенство $$4\log_{4}^{2}(\sin^{3}x)+8\log_{2}(\sin x)\geq 1$$

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9247

Решите неравенство $$20\log_{4}^{2}(\cos x)+4\log_{2}(\cos x)\leq 1$$

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9634

Решите неравенство: $$|x^{2}-3x+1|\geq \sqrt{4x^{4}-4x^{2}+1}$$

Ответ: $$[\frac{-3-\sqrt{17}}{2};0],[\frac{-3+\sqrt{17}}{2};1]$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9929

Решите неравенство: $$\frac{\log_{0,2}(x-2)}{(4^{x}-8)(|x|-5)}\geq 0$$
Ответ: [3;5)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9949

Решите неравенство: $$\frac{14^{x}}{7(\log_{7}(x-3)^{2})^{4}\cdot \log_{6}(x+2))}\leq \frac{(4\cdot 2^{x})^{x}}{4(\log_{7}(x-3)^{2})^{4}\cdot \log_{6}(x+2))}$$

Ответ: $$(-1;\log_{2}{1,75}],[1;2),(2;3),(3;4),(4;+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10054

Решите неравенство $$\frac{x^{2}}{\log_{5-x}x}\leq(5x-4)\cdot \log_{x}(5-x)$$

Ответ: $$(0;1)\cup(1;4)\cup(4;5)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10169

Решите неравенство: $$(1+\frac{1}{x-4}-\frac{x-3}{x-2})\sqrt{6x-x^2-5}\geq 0$$

Ответ: $$1;(2;3];(4;5]$$
 

Задание 10174

Решите неравенство: $$\frac{\sqrt{x-2}\cdot(81-3^{x})\cdot \log^{2}_{0,5}(6-x)}{3^{x}-720}\leq 0$$
Ответ: $$[2;4];5;(\log_{3}720;6)$$
 

Задание 10288

Решите неравенство:
$$4\cdot 3^{\log^{2}_{3}(x-2)}-9\geq 4\cdot 3^{2\log^{2}_{3}(x-2)}-11\cdot (x-2)^{\log_{2}(x-2)}$$
Ответ: $$[2\frac{1}{3};5]$$
 

Задание 10442

Решите неравенство:

$$3\cdot (x+1)^{\log_{2}(x+1)^{2}}-48\cdot 2^{\log_{2}^{2}(x+1)}\geq 2\cdot (x+1)^{\log_{2}(x+1)}-32$$

Ответ: $$(-1;-\frac{3}{4}],(3;+\infty)$$
 

Задание 10498

Решите неравенство $$\sqrt{25^{x}-2^{3-x}}<7\cdot 2^{-\frac{x}{2}}-2\cdot 5^{x}$$

Ответ: $$3\log_{50}2;2\log_{50}3$$
 

Задание 10509

Решите неравенство $$\frac{(4x-|x-6|)(\log_{\frac{1}{3}}(x+4)+1)}{2^{x^{2}}-2^{|x|}}\geq 0$$

Ответ: $$(1;\frac{6}{5}]$$
 

Задание 11377

Решите неравенство:
$$(2\cdot 0,5^{x+2}-0,5\cdot 2^{x+2})(2\cdot \log^{2}_{0,5}(x+2)-0,5\log_{2}(x+2))\leq 0$$
Ответ: $$[\sqrt[4]{2}-2;+\infty);-1$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11468

Решите неравенство $$\sqrt{1-\log_{5}(x^{2}-2x+2)}<\log_{5}(5x^{2}-10x+10)$$

Ответ: [-1;1),(1;3]
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11712

Решите неравенство: $$4\sqrt{(3x-1)^{2}}+\sqrt{\log^{2}_{2}x^{2}+16\log_{4}x}\leq 4-12x$$

Ответ: 0,25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11731

Решите неравенство: $$333^{3}+3x^{2}\cdot 333+3^{\log_{x}(x-333)}\geq x^{3}+3^{3}\cdot x\cdot 12321$$

Ответ: $$(333;334]$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11750

Решите неравенство: $$\lg(7^{2+\log_{70}x}+\frac{2}{10^{\log_{70}x}})\leq 2-\log_{70}x$$

Ответ: (0;2]
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12283

Решите неравенство $$\left(5\cdot {0,2}^{x+0,5}-0,2\cdot 5^{x+0,5}\right)\left(0,5{\log}^2_{0,2}\left(x+0,5\right)-2{\log}_5\left(x+0,5\right)\right)>0$$

Ответ: (-0,5; 0,5); (0,5; 624,5)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12353

Решите неравенство $$9\cdot 2^{{\log}_3\left(5-x\right)}+2^{1+{\log}_3x}-2^{{\log}_3\left(5x-x^2\right)}\le 18$$

Ответ: [2;5)
 

Задание 12374

Решите неравенство $$30\cdot 3^{{\log}_2\left(7-x\right)}+3^{1+{\log}_2x}-3^{{\log}_2\left(7x-x^2\right)}\ge 90$$

Ответ: (0;5]
 

Задание 12514

Решите неравенство $$\sqrt{x+\frac{1}{2}}\cdot {{\log }_{\frac{1}{2}} ({{\log }_2 \left|1-x\right|\ })\ge 0\ }$$

Ответ: $$[-\frac{1}{2}; 0); (2; 3]$$
 

Задание 12594

Решите неравенство $$4{\log}^2_4\left({{\sin }^3 x\ }\right)+8{\log}_2(\sin x)\ge 1$$

Ответ: $$(2\pi k;\frac{\pi }{6}+2\pi k],[\frac{5\pi }{6}+2\pi k; \pi +2\pi k), k \in Z$$
 

Задание 12614

Решите неравенство $$20{\log}^2_4(\cos x)\ +\ 4{\log}_2(\cos x)\le 1.$$

Ответ: $$[-\frac{\pi }{3}+2\pi k; \frac{\pi }{3}+2\pi k], k\in Z$$
 

Задание 12734

Решите неравенство $${\log}_2(4^x+{81}^x-4\cdot 9^x+3)\ge 2x$$

Ответ: $$(-\infty ; 0]; [\frac{1}{2}; +\infty )$$
 

Задание 14228

Решите неравенство $$\sqrt{x^2+x-6}<|x-2|\cdot(x+3)+30$$

Ответ: $$(\frac{-1-5\sqrt{5}}{2};-3];[2;+\infty)$$
 

Задание 14242

Решите неравенство $$|x^{2}-3x|\cdot \log_{2}(x+1)\leq 3x-x^{2}$$

Ответ: $$(-1;-0,5];[0;1];3$$
 

Задание 14256

Решите неравенство $$\frac{4^{\sqrt{x-1}}-5\cdot 2^{\sqrt{x-1}}+4}{\log^2_2(7-x)}\geq 0.$$

Ответ: $${1}\cup [5;6)\cup (6;7)$$.
 

Задание 14276

Решите неравенство $$4\cdot\log_{2}(8-2^{1+x^{2}})-\log_{2}^{2}(2^{3-x^{2}}-2)\leq 4x^{2}+3$$

Ответ: $$(-\sqrt{2};-1];[1;\sqrt{2})$$
 

Задание 14298

Решите неравенство $$\frac{6}{3-\sqrt{\log_{2}(x+12)}}\geq 2+\sqrt{\log_{2}(x+12)}$$

Ответ: $$-11;[-10;500)$$
 

Задание 14362

Решите неравенство: $$\frac{(4x-|x-6|)(\log_{\frac{1}{3}}(x+4)+1)}{2^{x^{2}}-2^|x|}\geq 0$$
Ответ: $$(1;1,2]$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 14381

Решите неравенство: $$\frac{\log_{2}^{2}(x-4)-\log_{2}(4-x)^{8}+16}{30-3x-(4-x)^{2}}\geq 0$$

Ответ: $$(4;7);20$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!