Перейти к основному содержанию

ЕГЭ Профиль

(C5) Финансовая математика

Задачи на оптимальный выбор

Задание 1218

В 1-е клас­сы по­сту­па­ет 45 че­ло­век: 20 маль­чи­ков и 25 де­во­чек. Их рас­пре­де­ли­ли по двум клас­сам: в одном долж­но по­лу­чить­ся 22 че­ло­ве­ка, а в дру­гом ― 23. После рас­пре­де­ле­ния по­счи­та­ли про­цент де­во­чек в каж­дом клас­се и по­лу­чен­ные числа сло­жи­ли. Каким долж­но быть рас­пре­де­ле­ние по клас­сам, чтобы по­лу­чен­ная сумма была наи­боль­шей?

Ответ: В одном класс - 22 девочки, в другом - 3 девочки и 20 мальчиков

Задание 1219

В рас­по­ря­же­нии на­чаль­ни­ка име­ет­ся бри­га­да ра­бо­чих в со­ста­ве 24 че­ло­век. Их нужно рас­пре­де­лить на день на два объ­ек­та. Если на пер­вом объ­ек­те ра­бо­та­ет t че­ло­век, то их су­точ­ная зар­пла­та со­став­ля­ет 4t2 у. е. Если на вто­ром объ­ек­те ра­бо­та­ет t че­ло­век, то их су­точ­ная зар­пла­та со­став­ля­ет t2 у. е. Как нужно рас­пре­де­лить на эти объ­ек­ты бри­га­ду ра­бо­чих, чтобы вы­пла­ты на их су­точ­ную зар­пла­ту ока­за­лись наи­мень­ши­ми? Сколь­ко у. е. в этом слу­чае при­дет­ся за­пла­тить ра­бо­чим?

Ответ: 5 рабочих на 1-й объект, 19 рабочих на 2-ой; 461 у.е.

Задание 1220

Два ве­ло­си­пе­ди­ста рав­но­мер­но дви­жут­ся по вза­им­но пер­пен­ди­ку­ляр­ным до­ро­гам по на­прав­ле­нию к пе­ре­крест­ку этих дорог. Один из них дви­жет­ся со ско­ро­стью 40 км/ч и на­хо­дит­ся на рас­сто­я­нии 5 км от пе­ре­крест­ка, вто­рой дви­жет­ся со ско­ро­стью 30 км/ч и на­хо­дит­ся на рас­сто­я­нии 3 км от пе­ре­крест­ка. через сколь­ко минут рас­сто­я­ние между ве­ло­си­пе­ди­ста­ми ста­нет наи­мень­шим? Ка­ко­во будет это наи­мень­шее рас­сто­я­ние.

Ответ: 6.96 мин ; 0.6 км

Задание 1221

Алек­сей вышел из дома на про­гул­ку со ско­ро­стью v км/ч. После того, как он про­шел 6 км, из дома сле­дом за ним вы­бе­жа­ла со­ба­ка Жучка, ско­рость ко­то­рой была на 9 км/ч боль­ше ско­ро­сти Алек­сея. Когда Жучка до­гна­ла хо­зя­и­на, они по­вер­ну­ли назад и вме­сте воз­вра­ти­лись домой со ско­ро­стью 4 км/ч. Най­ди­те зна­че­ние v, при ко­то­ром время про­гул­ки Алек­сея ока­жет­ся наи­мень­шим. Сколь­ко при этом со­ста­вит время его про­гул­ки?

Ответ: 6 км/ч ; $$\frac{25}{6}$$ ч.

Задание 1222

В бас­сейн про­ве­де­ны три трубы. Пер­вая труба на­ли­ва­ет 30 м3 воды в час. Вто­рая труба на­ли­ва­ет в час на 3V м3 мень­ше, чем пер­вая (0 < V < 10), а тре­тья труба на­ли­ва­ет в час на 10V м3 боль­ше пер­вой. Сна­ча­ла пер­вая и вто­рая трубы, ра­бо­тая вме­сте, на­ли­ва­ют 30% бас­сей­на, а затем все три трубы, ра­бо­тая вме­сте, на­ли­ва­ют остав­ши­е­ся 0,7 бас­сей­на. При каком зна­че­нии V бас­сейн быст­рее всего на­пол­нит­ся ука­зан­ным спо­со­бом?

Ответ: $$\frac{25}{7}$$

Задание 1223

Са­до­вод при­вез на рынок 91 кг яблок, ко­то­рые после транс­пор­ти­ров­ки раз­де­лил на три сорта. Яб­ло­ки пер­во­го сорта он про­да­вал по 40 руб., вто­ро­го сорта – по 30 руб., тре­тье­го сорта – по 20 руб. за ки­ло­грамм. Вы­руч­ка от про­да­жи всех яблок со­ста­ви­ла 2170 руб. Из­вест­но, что масса яблок 2-го сорта мень­ше массы яблок 3-го сорта на столь­ко же про­цен­тов, на сколь­ко про­цен­тов масса яблок 1-го сорта мень­ше массы яблок 2-го сорта. Сколь­ко ки­ло­грам­мов яблок вто­ро­го сорта про­дал са­до­вод?

Ответ: 21

Задание 1224

Баржа гру­зо­подъ­ем­но­стью 134 тонны пе­ре­во­зит кон­тей­не­ры типов А и В. Ко­ли­че­ство за­гру­жен­ных на баржу кон­тей­не­ров типа В не менее чем на 25% пре­вос­хо­дит ко­ли­че­ство за­гру­жен­ных кон­тей­не­ров типа А. Вес и сто­и­мость од­но­го кон­тей­не­ра типа А со­став­ля­ет 2 тонны и 5 млн. руб., кон­тей­не­ра типа В – 5 тонн и 7 млн. руб.со­от­вет­ствен­но. Опре­де­ли­те наи­боль­шую воз­мож­ную сум­мар­ную сто­и­мость (в млн. руб.) всех кон­тей­не­ров, пе­ре­во­зи­мых бар­жей при дан­ных усло­ви­ях.

Ответ: 220 млн.руб.

Задание 1225

Лео­нид яв­ля­ет­ся вла­дель­цем двух за­во­дов в раз­ных го­ро­дах. На за­во­дах про­из­во­дят­ся аб­со­лют­но оди­на­ко­вые при­бо­ры, но на за­во­де, рас­по­ло­жен­ном во вто­ром го­ро­де, ис­поль­зу­ет­ся более со­вер­шен­ное обо­ру­до­ва­ние.

В ре­зуль­та­те, если ра­бо­чие на за­во­де, рас­по­ло­жен­ном в пер­вом го­ро­де, тру­дят­ся сум­мар­но 4tчасов в не­де­лю, то за эту не­де­лю они про­из­во­дят t при­бо­ров; если ра­бо­чие на за­во­де, рас­по­ло­жен­ном во вто­ром го­ро­де, тру­дят­ся сум­мар­но t3 часов в не­де­лю, они про­из­во­дят t при­бо­ров.  

За каж­дый час ра­бо­ты (на каж­дом из за­во­дов) Лео­нид пла­тит ра­бо­че­му 1 ты­ся­чу руб­лей. Не­об­хо­ди­мо, чтобы за не­де­лю сум­мар­но про­из­во­ди­лось 20 при­бо­ров. Какую наи­мень­шую сумму при­дет­ся тра­тить вла­дель­цу за­во­дов еже­не­дель­но на  опла­ту труда ра­бо­чих?

Ответ: 3 569 000

Задание 1226

У фер­ме­ра есть два поля, каж­дое пло­ща­дью 10 гек­та­ров. На каж­дом поле можно вы­ра­щи­вать кар­то­фель и свёклу, поля можно де­лить между этими куль­ту­ра­ми в любой про­пор­ции. Уро­жай­ность кар­то­фе­ля на пер­вом поле со­став­ля­ет 400 ц/га, а на вто­ром — 300 ц/га. Уро­жай­ность свёклы на пер­вом поле со­став­ля­ет 300 ц/га, а на вто­ром — 400 ц/га.

Фер­мер может про­да­вать кар­то­фель по цене 10 000 руб. за цент­нер, а свёклу — по цене 11 000 руб. за цент­нер. Какой наи­боль­ший доход может по­лу­чить фер­мер?

Ответ: 84 млн. руб

Задание 1227

В двух об­ла­стях есть по 160 ра­бо­чих, каж­дый из ко­то­рых готов тру­дить­ся по 5 часов в сутки на до­бы­че алю­ми­ния или ни­ке­ля. В пер­вой об­ла­сти один ра­бо­чий за час до­бы­ва­ет 0,1 кг алю­ми­ния или 0,1 кг ни­ке­ля. Во вто­рой об­ла­сти для до­бы­чи x кг алю­ми­ния в день тре­бу­ет­ся x2 че­ло­ве­ко-часов труда, а для до­бы­чи у кг ни­ке­ля в день тре­бу­ет­ся у2 че­ло­ве­ко-часов труда.

Для нужд про­мыш­лен­но­сти можно ис­поль­зо­вать или алю­ми­ний, или ни­кель, причём 1 кг алю­ми­ния можно за­ме­нить 1 кг ни­ке­ля. Какую наи­боль­шую массу ме­тал­лов можно за сутки сум­мар­но до­быть в двух об­ла­стях?

Ответ: 120 кг
 

Задание 2948

В двух коробках лежат карандаши: в первой красные, во второй ‐ синие, причем, красных было меньше, чем синих. Сначала 40% карандашей из первой коробки переложили во вторую. Затем 20% карандашей, оказавшихся во второй коробке, переложили в первую, причем половину из переложенных карандашей составляли синие. После этого красных карандашей в первой коробке оказалось на 26 больше, чем во второй, а общее количество карандашей во второй коробке увеличилось по сравнению с первоначальным более, чем на 5%. Найдите общее количество синих карандашей.

Ответ: 60
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть в первой коробке было $$x$$ красных, а во второй $$y$$ синих. После первого перекладывания стало $$0,6x$$ и $$y+0,4x$$. После второго в первой коробке стало красных $$0,6x+0,1(y+0,4x)$$, во второй красных стало $$0,4x+0,1(y+0,4x)$$. Из условия получаем

$$0,6x+0,1(y+0,4x)=26+0,4x-0,1(y+0,4x)$$; $$x<y$$; $$0,8(y+0,4x)> 1,05y$$.

Из первого находим $$y+1,4x=130$$,$$ y=130-1,4x$$, откуда $$x$$ кратно 5 и не превосходит 90.

Кроме того $$y+0,4x$$ кратно 10, откуда $$x$$ кратно 10.

Из второго находим $$x<130-1,4x$$, откуда $$x\leqslant 54$$

Из последнего находим $$0,8(130-x)>1,05(130-1,4x)$$, $$0,67x>32,5, x\geqslant 49$$

Значит, $$x=50$$.

Тогда $$y=60$$ и все условия задачи выполнены.

 

Задание 3038

Баржу грузоподъемностью 180 тонн используют для перевозки контейнеров типов А и В. По условиям договора количество перевозимых контейнеров типа А должно составлять не более 75% количества перевозимых контейнеров типа В. Вес и стоимость одного контейнера типа А составляет 3 тонны и 3 млн. руб., контейнера типа В – 7 тонн и 5 млн. руб. соответственно. Найдите наибольшую возможную суммарную стоимость (в млн. руб.) всех контейнеров, которые можно перевезти при данных условиях. Укажите число контейнеров типа А и число контейнеров типа В, которые нужно перевезти для получения наибольшей возможной суммарной стоимости.

Ответ: 139 млн.; 13 - A, 20 - B
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 3333

Мебельная фабрика производит книжные шкафы и серванты. На изготовление одного книжного шкафа расходуется 4/3 м2 древесно‐стружечной плиты, 4/3 м2 сосновой доски и 2/3 человеко‐часа рабочего времени. На изготовление одного серванта расходуется 2 м2 древесно‐стружечной плиты, 1,5 м2 сосновой доски и 2 человеко‐часа рабочего времени. Прибыль от реализации одного книжного шкафа составляет 500 руб., а серванта – 1200 руб. В течении одного месяца в распоряжении фабрики имеются: 180 м2 древесно‐стружечной плиты, 165 м2 сосновых досок и 160 человеко‐часов рабочего времени. Какова максимально ожидаемая месячная прибыль?

Ответ: 99000
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 3380

В начале рабочего дня на некотором предприятии был подключен генератор А, мощность которого зависела от времени работы $$p_{A}(t)=\frac{20}{t+5}$$ кВт. Когда мощность упала в 2 раза, генератор заменили на более совершенный генератор В, мощность которого также зависела от врмеени работы $$p_{B}(t)=\frac{48}{t+8}$$ кВт. Сколько всего энергии (кДж) выработали генераторы в течение восьмичасового рабочего дня?

Ответ: 14400(12ln11-31ln2) кДж
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 3864

В двух областях есть по 20 рабочих, каждый из которых готов трудиться по 10 часов в сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,2 кг алюминия или 0,2 кг никеля. Во второй области для добычи x кг алюминия в день требуется x2 человеко‐часов труда, а для добычи y кг никеля в день требуется у2 человеко‐часов труда. Обе области поставляют добытый металл на завод, где для нужд промышленности производится сплав алюминия и никеля, в котором на 1 кг алюминия приходится 1 кг никеля. При этом области договариваются между собой вести добычу металлов так, чтобы завод мог произвести наибольшее количество сплава. Сколько килограммов сплава при таких условиях ежедневно сможет произвести завод? (Человеко‐час — единица учёта рабочего времени, соответствует часу работы одного человека, То есть 40 человеко‐часов формируют: 1 человек, работающий 40 часов; или 2 человека, работающие 20 часов; или 4 человека, работающие 10 часов; и т. д.)

Ответ: 60
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
  Алюминий Никель
  Раб. кг Раб. кг
1 $$x\cdot10$$ $$2x$$ $$(20-x)\cdot10$$ $$2(20-x)$$
2 $$y\cdot10$$ $$\sqrt{10y}$$ $$(20-y)\cdot10$$ $$\sqrt{(20-y)10}$$
Всего   $$2x+\sqrt{10y}$$   $$2(20-x)+\sqrt{(20-y)10}$$

$$f=2(2x+\sqrt{10y})$$ - функция массы сплава

$$2x+\sqrt{10y}=2(20-x)+\sqrt{(20-y)10}$$ - т.к. по 1 кг тог и другого

$$2x+2x=40+\sqrt{(20-y)10}-\sqrt{10y}$$

$$x=10+\frac{\sqrt{10(20-y)}-\sqrt{10y}}{4}$$

$$x=20+\frac{\sqrt{200-10y}-\sqrt{10y}+2\sqrt{10y}}{2}$$

$$x=20+\frac{\sqrt{200-10y}+\sqrt{10y}}{2}$$

$$\frac{\sqrt{200-10y}+\sqrt{10y}}{2}=g$$

$$g'=\frac{-10}{2\sqrt{200-10y}}+\frac{10}{2\sqrt{10y}}$$

$$20\sqrt{10y}=20\sqrt{200-10y}$$

$$10y=200-10y$$

$$20y=200$$

$$y=10$$

$$f=20(20+\frac{\sqrt{200-100}+\sqrt{100}}{2})=$$

$$=2(20+\frac{10+10}{2})=2\cdot30=60$$

 

 

Задание 4191

Предприятие производит холодильники и является прибыльным. Известно, что при изготовлении $$n$$ холодильников в месяц расходы на выпуск одного холодильника составляют не менее $$\frac{48000}{n}+240-|80-\frac{48000}{n}|$$ тыс. руб., а цена реализации каждого холодильника при этом не превосходит $$480-\frac{n}{5}$$ тыс.руб. Определить ежемесячный объем производства, при котором может быть получена наибольшая при данных условиях ежемесячная прибыль.

Ответ: 400;800
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\frac{48000}{n}+240-|80-\frac{48000}{n}|$$ - расход; $$480-\frac{n}{5}$$ - доход;

a) Если $$80-\frac{48000}{n}\geq0$$ (1), то прибыль с одного холодильника: $$S=480-\frac{n}{5}-\frac{48000}{n}-240+80-\frac{48000}{n}=$$ $$320-\frac{96000}{n}-\frac{n}{5}=$$ $$\frac{-n^{2}+1600n-480000}{5n}$$ (2)

Общая прибыль при этом: $$S_{n}=480-\frac{n}{5}-\frac{48000}{n}-240+80-\frac{48000}{n}\cdot n=\frac{-n^{2}+1600n-480000}{5}$$

В данном случае представлена квадратичная функция, наибольшее значение которой при $$n=\frac{-1600}{-2}=800$$ $$S_{n}(800)=\frac{-640000+1280000-480000}{5}=32000$$

б) Если $$80-\frac{4800}{n}<0$$ $$\Rightarrow$$ $$n\in(0;600)$$, то прибыль с одного: $$S=480-\frac{n}{5}-\frac{48000}{n}-240-80+\frac{48000}{n}=$$ $$160-\frac{n}{5}=\frac{800-n}{5}$$

Общая прибыль: $$S_{n}=\frac{800-n}{5}\cdot n=\frac{800n-n^{2}}{5}$$

Снова квадратичная убывающая функция, наибольшее значение которой  при $$n=\frac{-800}{-2}=400$$; $$S_{n}=\frac{800\cdot400-400^{2}}{5}=32000$$

Как видим, одинаковая максимальная прибыль при 800 и 400 единицах товара

 

Задание 4775

В пчелиной семье, зимующей в помещении, в день последней весенней подкормки было 9 тысяч пчел. К концу k ‐го дня ( k = ,2,1 ,...3 ) после дня подкормки численность пчелиной семьи, зимующей в помещении, становится равной тысяч пчел. Далее, при перевозке пчел на летнюю стоянку, численность пчелиной семьи в каждый последующий день возрастает на 25% по сравнению с предыдущим днем. В конце какого дня после весенней подкормки нужно перевезти пчел на летнюю стоянку, чтобы через 38 дней после подкормки численность пчелиной семьи стала наибольшей? Известно, что у фермера нет возможности поместить пчел на летнюю стоянку сразу же после подкормки.

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 4822

Вася мечтает о собственной квартире, которая стоит 3 млн руб. Вася может купить её в кредит, при этом банк готов выдать эту сумму сразу, а погашать кредит Васе придётся 20 лет равными ежемесячными платежами, при этом ему придётся выплатить сумму, на 180% превышающую исходную. Вместо этого Вася может какое‐то время снимать квартиру (стоимость аренды—15 тыс. руб. в месяц), откладывая каждый месяц на покупку квартиры сумму, которая останется от его возможного платежа банку (по первой схеме) после уплаты арендной платы за съёмную квартиру. За сколько лет в этом случае Вася сможет накопить на квартиру, если считать, что её стоимость не изменится?

Ответ: 12,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Квартира стоит 3 (млн. рублей )=3000 (тыс. рублей), кредит берется на 20 (лет)=240 (месяцев). Задачу решим по действиям :

   1) 3000*2,8=8400 (тыс. руб.)-общая сумма выплат банку;

   2) 8400:240=35(тыс. руб.)-ежемесячный платеж банку;

   3) 35-15=20(тыс. руб.)-сумма , которую Вася сможет откладывать каждый месяц после уплаты аренды;

   4) 3000:20=150(месяцев)=12,5(лет)-потребуется Васе, чтобы накопить на квартиру .

 

Задание 4964

Ученики второго, третьего четвертого классов собирали макулатуру. Каждый  второклассник работал по 3 дня, третьеклассник – по 12 дней, четвероклассник – по 16  дней. При этом каждый второклассник собрал 30 кг макулатуры, каждый третьеклассник  – 130 кг, а каждый четвероклассник – 170 кг. Все дети вместе отработали 95 дней.  Сколько учеников каждого класса участвовало в работе, если общее количество  макулатуры оказалось максимальным?  

Ответ: 1 ученик второго класса, 5 – третьего, 2 – четвертого
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Обозначим через х количество второклассников, через y – третьеклассников, через z – четвероклассников. Тогда 3 x + 12 y + 16 z = 95 . (1)

     Количество собранной макулатуры равно 30 x + 130 y + 170 z = 10(3 x + 13 y + 17 z).

     Максимальным должно быть значение функции: F = 3 x + 13 y + 17 z = 95 + ( y + z), а значит, суммы y + z.

     Из равенства (1) будем иметь: 12( y + z) = 95 - 3 x - 4 z. (2)

     Отсюда 12( y + z) < 96 $$\Rightarrow$$ y + z < 8. Далее, если y + z = 7, из (2) получаем: 3 x + 4 z = 11. (3) Так как $$x \leq 3$$ и x - нечетное, единственное решение уравнения (3) x = 1, z = 2 (при x = 3 z = 0,5) $$\Rightarrow$$  y= 7 - 2 = 5.

 

Задание 5060

На счет, который вкладчик имел в начале первого квартала, начисляется в конце этого квартала$$r_{1}$$%, а на счет, который вкладчик имел в начале второго квартала, начисляется в конце этого квартала $$r_{2}$$%, причем $$r_{1}+r_{2}=150$$%. Вкладчик положил на счет в начале первого квартала некоторую сумму и снял в конце того же квартала половину этой суммы. При каком значении $$r_{1}$$ счет вкладчика в конце второго квартала окажется максимально возможным?

Ответ: 100
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть $$S_{0}$$ - первоначальная сумма на счет, $$r_{1}=x$$, тогда $$r_{2}=150-x$$.

     После начисления % у конце 1-го квартала на счету окажется : $$S_{0}+0,01 xS_{0}$$. После снятия половины первоначальной суммы: $$S_{0}+0,01xS_{0}-0,5S_{0}=S_{0}90,5+0,01x=S_{1}$$

     После начисления %ов конце 2-го квартала на счету окажется: $$S_{1}+0,01(150-z)S_{1}=S_{1}(1+1,5-0,01x)=$$$$S_{0}(0,5+0,01x)(2,5-0,01x)=$$$$\frac{S_{0}}{10000}(50+x)(250-x)$$

     Так как $$\frac{S_{0}}{10000}=const$$, задача сводится к тому ,чтобы найти , при каком значении переменной x функция $$S(x)=(50+x)(250-x)$$ доститгает своего наибольшего значения на отрезке [0 ;150]

     Графиком функции является параболам, ветви направлены вниз, вершина параболы $$x_{0}=\frac{250-50}{2}=100\in [0 150]\Rightarrow$$ наибольшее значение на указанном отрезке достигается в вершине (единственная точка экстремума и это точка максимума) $$\Rightarrow$$ $$t_{1}=100$$

Ответ:100

 

Задание 5244

Иван Иванович попросил у своего соседа Ивана Никифоровича взаймы на несколько дней 648 тысяч рублей, пообещав вернуть долг с процентами. Иван Никифорович заявил, что если он даст в долг на п дней S рублей, то сосед должен будет вернуть сумму, равную $$S(1+\frac{n}{300})+\frac{S}{n^{2}}$$. После недолгих раздумий Иван Иванович согласился на предложенные условия. Через сколько дней Ивану Ивановичу следует рассчитаться с долгом, чтобы выплаты оказались наименьшими? Сколько в этом случае составит переплата сверх взятой в долг суммы?

Ответ: 8; 27,405.
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$S(1+\frac{n}{300})+\frac{S}n^{2}=S(1+\frac{n}{300}+\frac{1}{n^{2}})$$

Пусть $$f(n)=1+\frac{n}{300}+\frac{1}{n^{2}}$$, найдем производную данной функции:

$${f}'(n)=\frac{1}{300}+\frac{-2}{n^{3}}=\frac{}{300}-\frac{2}{n^{3}}=0\Leftrightarrow$$$$\frac{n^{3}-600}{n^{3}}=0\Leftrightarrow$$$$n=\sqrt[3]{600}$$

Так как $$8<\sqrt[3]{600}<9$$, и при этом n - число целое, то рассмотрим значение функции в границах:

$$f(8)=1+\frac{8}{300}+\frac{1}{64}=\frac{65}{64}+\frac{2}{75}=$$$$\frac{4875+128}{4800}=\frac{5003}{4800}=1,0422$$

$$f(9)=1+\frac{9}{300}+\frac{1}{81}=\frac{82}{81}+\frac{3}{100}=$$$$\frac{8200+24}{8100}=\frac{8443}{4800}=1,0423$$

Как видим, наименьшее значение будет при n=8:

$$648(\frac{8}{300}+\frac{1}{64})=648(\frac{2}{75}+\frac{1}{64})=$$$$\frac{648(128+75)}{75*64}=\frac{648*203}{75*64}=27,405$$

Отвеь:8; 27,405.

 

Задание 6138

Фирма имеет возможность рекламировать свою продукцию, используя местные радио и телевизионную сети. Затраты на рекламу в бюджете фирмы ограничены величиной 1000$ в месяц. Каждая минута радиорекламы обходится в 5$, а каждая минута телерекламы ‐ в 100$. Фирма хотела бы использовать радиосеть, по крайней мере, в два раза чаще, чем сеть телевидения, но при этом фирма решила, что время радиорекламы не должно превышать двух часов. Опыт прошлых лет показал, что объем сбыта, который обеспечивает каждая минута телерекламы, в 25 раз больше сбыта, обеспечиваемого одной минутой радиорекламы. Определите оптимальное распределение финансовых средств, ежемесячно отпускаемых на рекламу, между радио‐ и телерекламой, если время можно покупать только поминутно.

Ответ: 100 и 900
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть x-эффективность радио 1 минуты ,тогда 25x-1 минуты теле При этом цена теле в $$\frac{100}{5}=20$$ раз выше. Получаем, что прирост эффективности к цене от радио к теле составит $$\frac{25}{20}$$ т.е. эффективность растет быстрее цены. Тогда $$t_{1}$$-время теле берем максимум $$\frac{1000}{100}=10$$ мин. , но 1 взять не можем, т.к. $$t_{2}$$-время радио должно быть в 2 раза больше. Т.к. $$t_{1}$$ и $$t_{2}\in N$$, возьмем $$t_{1}=9$$,тогда бюджет для $$t_{2:}1000-9*100=100$$. Тогда $$t_{2}=\frac{100}{5}=20$$. Все условия выполнены. Следовательно под радио отдадим 20*5=100$, а под теле 900$

 

Задание 6281

Предприниматель купил здание и собирается открыть в нем отель. В отеле могут быть стандартные номера площадью 27 квадратных метров и номера «люкс» площадью 45 квадратных метров. Общая площадь, которую можно отвести под номера, составляет 981 квадратный метр. Предприниматель может поделить эту площадь между номерами различных типов, как хочет. Обычный номер будет приносить отелю 2000 рублей в сутки, а номер «люкс» ‐ 4000 рублей в сутки. Какую наибольшую сумму денег сможет заработать на своем отеле предприниматель?

Ответ: 86000
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть x - количество стандартных, - количество люкс. Тогда общая площадь: $$27x+45y\leq 981\Leftrightarrow 3x+5y\leq 109(1)$$

     Общая стоимость: $$2000x+4000y=max$$

     Рассмотрим площадь и цену стандартного через люкс. Один стандарт занимает место $$\frac{27}{45}=\frac{3}{5}$$ люкса , то есть 6 люксовых по площади равны 10 стандартам.

     При этом стоимость 6 люксов выйдет как 12 стандартов . Очевидно , что по отношению цены за единицу площади люксовый лучше, потому их и максимизируем: с учетом неравенства (1): $$5y\leq 109-3x\Leftrightarrow$$ $$y\leq \frac{109-3x}{5}\Leftrightarrow$$ $$y\leq \frac{109}{5}\Rightarrow$$ $$y=21$$. Остаётся $$4\Rightarrow 3x\leq 4\Rightarrow x=1$$

     То есть 21 люкс и 1 стандарт. Тогда доход с них составит $$21*4000+1*2000=86000$$

 

Задание 6329

В начале 2001 года Алексей приобрел ценную бумагу за 7000 рублей. В конце каждого года цена бумаги возрастает на 2000 рублей. В начале любого года Алексей может продать бумагу и положить вырученные деньги на банковский счет. Каждый год сумма на счет будет увеличиваться на 10%. В начале какого года Алексей должен продать ценную бумагу, чтобы через пятнадцать лет после покупки этой бумаги сумма на банковском счете была наибольшей?

Ответ: 2008
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Очевидно, что необходимо снимать деньги в тот год, когда увеличение цены на 2000 рублей будет меньше, чем увеличение на 10%, согласно ставке банка. Пусть n - год, в который это произойдет.

     Следует учитывать, что начисление 2000 рублей происходит в конце года, а снять и положить можно только в начале, потому результат мы должны будем увеличить на единицу (например, в конце пятого года цена бумаги позволяет ее перекладывать, то переложим мы только в шестом году).

     Если взять n-ый год, то стоимость бумаги составит: $$7000+2000n$$. Если бы мы ее положили под 10%, то на нее начислилась бы сумма $$0,1(7000+2000n)=700+200n$$. И эта сумма должна быть больше, чем 2000, чтобы был смысл перекладывать деньги в банк:

     $$700+200n>2000\Leftrightarrow$$$$200n>1300|:200\Leftrightarrow$$$$n>6,5$$.

     Так как n - число натуральное, то получаем, что $$n=7$$. То есть в конце 7 года цена бумаги станет такой, что 10% от ее стоимости, составят больше 2000, и тогда на 8 год (2008) мы ее продаем.

 

Задание 6376

В пряничный цех поступил заказ на изготовление партии сувенирных пряников трех видов: с клубничной начинкой, с вишневой и с шоколадной. Цена пряников с клубничной и вишневой начинкой одинакова, первых заказали на сумму 4000 руб, вторых – 60 штук. Пряники с шоколадной начинкой стоят 150 руб за штуку, их заказали столько же, сколько пряников с вишневой и клубничной начинками вместе. Какова наименьшая стоимость всего заказа? При какой цене на пряники с фруктовой начинкой она достигается?

Ответ: 100 и 25000
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

    Пусть x-цена пряников с клубникой и вишневой начинкой. Пусть y-количество пряников с клубникой, тогда цена одного: $$x=\frac{4000}{y}(1)$$. Общее количество с клубникой и вишней $$(y+60)$$. Общая их цена : $$(y+60)*x$$

    Общая цена с шоколадом : $$(y+60)*150$$. Итого: $$S=(y+60)*x+(y+60)*150$$

    С учетом (1): $$y=\frac{4000}{x}$$

$$S=(\frac{4000}{x}+60)x+(\frac{4000}{x}+60)*150\rightarrow min$$

$$S=4000+60x+\frac{600000}{x}+9000=$$$$60x+\frac{600000}{x}+13000$$

$${S}'=60-\frac{600000}{x^{2}}=0$$

$$x^{2}=\frac{600000}{60}=10000$$

$$x=\pm 100$$

    То есть $$x_{min}=100$$

$$S=4000+60*100+\frac{600000}{100}+9000=25000$$

 

Задание 6423

На каждом из двух комбинатов работает по 1800 человек. На первом комбинате один рабочий изготавливает за смену 1 деталь А или 2 детали В. На втором комбинате для изготовления t деталей ( и А, и В) требуется t2 человеко‐смен. Оба эти комбината поставляют детали на комбинат, из которых собирают изделие, для изготовления которого нужна или 1 деталь А, или 1 деталь В. При этом комбинаты договариваются между собой изготавливать детали так, чтобы можно было собрать наибольшее количество изделий. Сколько изделий при таких условиях может собрать комбинат за смену?

Ответ: 3660
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Так как для изготовления изделия нежна или 1 деталь А, или 1 деталь B( то есть они взаимозаменяемы) , тогда на первом комбинате всех рабочих эффективнее отправить на детали В . Их будет произведено $$1800*2=3600$$

     На втором комбинате у рабочих пойдут на А , тогда 1800-y на B. При этом деталей A произведут $$\sqrt{y}$$ , деталей B: $$\sqrt{1800-y}$$

     Из условия очевидно , что количество изделий соответствует общему количеству деталей: $$S=3600+\sqrt{y}+\sqrt{1800-y}$$. Найдем максимальное значение:

$${S}'=\frac{1}{2\sqrt{y}}+\frac{1}{2\sqrt{1800-y}}*(-1)=0$$

$$2\sqrt{y}=2\sqrt{1800-y}$$

$$y=1800-y\Rightarrow y=900$$ - точка максимума

     Тогда максимальное количество изделий составит: $$S_{max}=S(900)=3600+\sqrt{900}+\sqrt{1800-900}=3660$$

 

Задание 6471

Первичная информация разделяется по серверам №1 и №2 и обрабатывается на них. С сервера №1 при объеме $$t^{2}$$ Гб входящей в него информации выходит $$20t$$ Гб, а с сервера №2 при объеме $$t^{2}$$ Гб входящей в него информации выходит $$21t$$ Гб обработанной информации $$(25\leq t \leq 55)$$. Каков наибольший общий объем выходящей информации при общем объеме входящей информации в 3364 Гб?

Ответ: 1682
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть $$x^{2}$$ - вход на первый сервер, тогда выход с него 20x, пусть $$y^{2}$$ - на второй, $$21y$$ - выход с него . Тогда :

$$\left\{\begin{matrix}V=20x+21y\rightarrow max\\x^{2}+y^{2}=3364(2)\end{matrix}\right.$$

     С учетом, что x и y больше нуля, то из(2): $$y=\sqrt{3364-x^{2}}$$.Тогда

$$V(x)=20x+21\sqrt{3364-x^{2}}$$

$$V'(x)=20+\frac{21}{2\sqrt{3364-x^{2}}}*(-2x)=0$$

$$\frac{21x}{\sqrt{3364-x^{2}}}=20\Leftrightarrow$$ $$\frac{441x^{2}}{3364-x^{2}}=400\Leftrightarrow$$$$400*3364-400x^{2}=441x^{2}\Leftrightarrow$$ $$841x^{2}=400*3364\Leftrightarrow$$$$x^{2}=400*4\Rightarrow x=40$$

$$V(40)=20*40+21\sqrt{3364-1600}=1682$$

 

Задание 6525

Производительность первого цеха завода не более 730 произведённых телевизоров в сутки. Производительность второго цеха завода до реконструкции составляла 75% от производительности первого цеха. После реконструкции второй цех увеличил производительность на 20% и стал выпускать более 640 телевизоров в сутки. Найдите, сколько телевизоров в сутки выпускает второй цех после реконструкции, если оба цеха выпускают в сутки целое число телевизоров.

Ответ: 648
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть x - число телевизоров в сутки 1-го цеха $$x\leq 730$$ . Тогда 0,75x - второй цех до реконструкции. После реконструкции : $$0,75*1,2=0,9 x$$. При этом $$0,9x>640$$

     Получим: $$\left\{\begin{matrix}x\leq 730\\0,9x>640\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x\leq 730\\x>711,(1)\end{matrix}\right.$$

     При этом $$0,9x \in N$$ и $$0,75x \in N$$ (т.к. выпускается целое число телевизоров ). С учетом, что $$x \in [712; 730]$$ получаем, что $$0,9 x \in N$$ при x=729 или x=720. Но $$0,75x \in N$$ только при $$x =720\Rightarrow 720*09=648$$ - второй.

 

Задание 6572

Цех сборки может выпускать 50 мотоциклов и 150 скутеров в день. Отдел технического контроля в день может проверить не более 75 изделий. Мотоцикл в полтора раза дороже скутера. Сколько мотоциклов и сколько скутеров нужно выпускать в сутки, чтобы общая стоимость продукции была наибольшей и все изделия были проверены отделом технического контроля

Ответ: 25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Т.к. мотоцикл и скутер являются изделием и стоимость мотоцикла больше, то количесвто мотоциклов возьмем максимальное , т.е. 50, тогда скутеров будет 75-50=25

 

Задание 6619

В офисном здании 8 этажей, на каждом из которых, кроме первого, находится кабинет начальника отдела. Управляющая жилищная компания объявила что в день профилактического ремонта лифта он сделает всего один подъем сразу всех начальников на один, указанный ими этаж. После подъема начальники будут вынуждены идти в свои кабинеты по лестнице. В качестве компенсации за причиненные неудобства за каждый необходимый подъем на очередной этаж по лестнице каждому начальнику будет начислено 200 рублей. За каждый аналогичный спуск – 100 рублей. Этаж необходимо выбрать так, чтобы общая сумма компенсаций была минимальной. Укажите в рублях эту сумму

Ответ: 6 этаж, 1600 рублей
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1 Вариант. Составим таблицу

Как видим, наименьшая сумма 1600, при выходе на 6 этаже.

2 вариант.

     Пусть n -этаж выхода, тогда количество подъемов максимальное 8-n, спусков- n-2. При этом каждый последующий этаж прибавляет в сравнении с предыдущим 1 подъем (спуск). Т.е. получим арифметическую прогрессию .

     В обоих случаях, разность которой d=1 и необходимо найти сумму (8-n) членов для подъемов и (n-2) членов для спусков (первый член в обоих случаях равен 1) :

     Сумма за подъемы: $$S_{1}=\frac{2*1+1*(8-n-1)}{2}(8-n)*200=(9-n)(8-n)*100$$

     Сумма за спуски : $$S_{2}=\frac{2*1+1(n-2-1)}{2}(n-2)*100=(n-1)(n-2)*50$$

     Итоговая сумма: $$S=S_{1}+S_{2}=100(9-n)(8-n)+50(n-1)(n-2)\rightarrow min$$

     Тогда $$g(n)=2(9-n)(8-n)+(n-1)(n-2)\rightarrow$$ $$min$$

$$g(n)=144-34n+2n^{2}+n^{2}-3n+2=3n^{2}-37n+146$$

$${g}'n=6n-37=0\Rightarrow n=\frac{37}{6}$$

      С учетом $$n \in N$$ получаем n=6 или n=7

$$g(6)=3*6^{2}-37*6+146=32$$

$$g(7)=3*7^{2}-37*7-146=34$$

     Следовательно, 6 этаж.

 

Задание 6667

Кондитерский цех на одном и том же оборудовании производит печенье двух видов. Используя всё оборудование, за день можно произвести 60 центнеров печенья первого вида или 85 центнеров печенья второго вида. Себестоимость печенья первого вида равна 10000 рублей, отпускная цена – 15000 рублей, для печенья второго вида себестоимость равна 12000, а отпускная цена – 18000 рублей. Найдите, какую наибольшую прибыль в рублях может получить цех за день при условии, что будет использоваться все оборудование, будет продано все произведенное печенье и по договору с заказчиком должно производиться в день не менее 6 центнеров печенья каждого вида.

Ответ: 489000
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть x-доля первого(из 60 ц ), y-доля второго(из 85) . Тогда : x+y=1. Учитывая это, и то, что минимум 6 центнеров каждого вида нужно выпустить:

$$\left\{\begin{matrix}60x\geq 6\\85y\geq 6\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x\geq \frac{1}{10}\\y\geq \frac{6}{85}\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x \in [\frac{1}{10};\frac{79}{85}]\\y \in [\frac{6}{85}; \frac{9}{10}]\end{matrix}\right.$$

     Прибыль с первых : $$(15000-10000)*60x=3*10^{5}x$$

     Прибыль со вторых: $$(18000-12000)*85y=51*10^{4}y$$.

     Тогда общая прибыль: $$S(x,y)=10^{4}(30x+51y)\rightarrow max(1)$$

$$x+y=1\Rightarrow y=1-x$$. Подставим в (1): $$S(x)=10^{4}(30x+51-51x)=10^{4}(51-21x)$$

Чем меньше x, тем больше $$S(x)\Rightarrow x=\frac{1}{10}$$; $$S(\frac{1}{10})=10^{4}(51-\frac{21}{10})=489000$$

 

Задание 6808

Из пункта А, расположенного на берегу реки, вниз по течению отправились две моторные лодки. Скорость течения реки 2 км/ч, собственная скорость «быстрой» лодки на 3 км/ч больше скорости «медленной» лодки. Через некоторое время они повернули обратно, и «быстрая» лодка пришла в пункт А раньше, чем «медленная» на время не меньшее $$\frac{4}{5}$$ времени, которое лодки шли от начала движения до поворота. Найдите наибольшее целое значение скорости «быстрой» лодки (в км/ч), если собственные скорости лодок больше скорости течения.

Ответ: 7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

   Пусть x - собственная скорость быстрой , тогда x-3 - медленной. Пусть y(ч) –время движения до поворота , тогда: $$S_{1}=y(x+2)$$ - расстояние быстрой, $$S_{2}=y(x-1)$$ - медленной. Тогда:$$ t_{1}=\frac{y(x+2)}{x-2}$$ - время быстрой обратно, $$t_{2}=\frac{y(x-1)}{x-5}$$ - время медленной

   $$\frac{y(x-1)}{x-5}-\frac{y(x+2)}{x-2}\geq \frac{4}{5}y\Leftrightarrow$$ $$\frac{x-1}{x-5}-\frac{x+2}{x-2}\geq \frac{4}{5}\Leftrightarrow$$ $$\frac{12}{(x-2)(x-5)}\geq \frac{4}{5}\Leftrightarrow$$$$\frac{12}{(x-2)(x-5)}\geq \frac{12}{15}\Leftrightarrow$$$$(x-2)(x-5)\leq 15\Leftrightarrow$$$$\left\{\begin{matrix}x\leq\frac{7+\sqrt{69}}{2}\\x\geq \frac{7-\sqrt{69}}{2}\end{matrix}\right.$$

   Необходимо $$x _{max} \in N$$ $$\Rightarrow$$ $$x=7$$ ($$7<\frac{7+\sqrt{69}}{2}$$)

 

Задание 6828

Школьник купил тетради трех типов: в клетку, в линейку и в треугольник. Цена тетрадей в клетку и в линейку одинакова и выражается целым числом рублей, тетради в треугольник продаются по 50 рублей за штуку. Тетрадей в клетку было куплено 12 штук, в линейку – на 150 рублей, а в треугольник – столько же, сколько тетрадей в линейку. Какова наименьшая сумма, которую школьник мог заплатить за тетради?

Ответ: 750
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

   Пусть x руб - цена за шт клетки и линейки , тогда сумма за клетку 12x руб. , количество в линейку $$\frac{150}{x}$$ шт., как и количество в треугольник, тогда сумма за треугольник: $$\frac{50*150}{x}$$ руб. и общая сумма:

$$S(x)=12x+150+\frac{7500}{x}$$. 

   Найдем наименьшее значение данной суммы: 

$${S}'(x)=12-\frac{7500}{x^{2}}=\frac{12x^{2}-7500}{x^{2}}=0$$. Тогда: $$x^{2}=625\Rightarrow$$ $$x=\pm 25$$ , $$x=25$$ - точка минимума, следовательно, $$S_{min}=S(25)$$

   Найдем данное значение: $$S(25)=12*25+150+\frac{7500}{25}=750$$

 

Задание 6975

Первая и вторая бригады, работая вместе, могут выполнить задание не более, чем за 9 дней. Вторая и третья бригады, работая вместе, могут выполнить то же задание не менее, чем за 18 дней. Первая и третья бригады, работая вместе, могут выполнить то же задание ровно за 12 дней. Известно, что третья бригада всегда работает с максимально возможной для нее производительностью труда. За сколько дней может выполнить задание одна вторая бригада?

Ответ: 24
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

        Пусть x-производительность 1-ой бригады (частей задания в день) ; y- 2–ой и z - 3-ей бригад. Все задание примем за 1, тогда:

        $$\left\{\begin{matrix}\frac{1}{x+y}\leq 9\\\frac{1}{y+z}\geq 18\\\frac{1}{x+z}=12\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x+y\geq \frac{1}{9}\\y+z\leq \frac{1}{18}\\x+z=12\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x=\frac{1}{12}-x\\x+y\geq \frac{1}{9}\\y+\frac{1}{12}-x\leq \frac{1}{18}\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}z=\frac{1}{12}-x\\y\geq \frac{1}{9}-x\\y\leq x-\frac{1}{36}\end{matrix}\right.$$

        Получим, что $$\frac{1}{9}-x\leq y\leq x-\frac{1}{36}\Leftrightarrow$$ $$\frac{1}{9}-x\leq x-\frac{1}{36}\Leftrightarrow$$ $$2x\geq \frac{1}{9}+\frac{1}{36}=\frac{5}{36}\Rightarrow$$ $$x\geq \frac{5}{72}$$

        При этом $$z \rightarrow max$$, при $$x \rightarrow min$$, тогда $$x=\frac{5}{72}\Rightarrow$$ $$z=\frac{1}{12}-\frac{5}{72}=\frac{1}{72}\Rightarrow$$ $$y+\frac{1}{72}\leq \frac{1}{18}\Rightarrow$$ $$y\frac{1}{24}\Rightarrow$$ вторая бригада может выполнить за 24 дня

 

Задание 7022

Бригада рабочих выполняет задание за 42 дня. Если бы в бригаде было на 4 человека больше и каждый рабочий бригады работал бы на 1 час в день дольше, то это же задание было бы выполнено не более чем за 30 дней. При увеличении бригады еще на 6 человек и рабочего дня еще на 1 час все задание было бы закончено не ранее чем через 21 день. Определите наименьшую при данных условиях численность бригады, а также продолжительность рабочего дня.

Ответ: 20 человек и 6 часов
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть x часов в день работает один рабочий в день, y человек – рабочих в бригаде. Тогда бригада дает $$xy$$ человеко-часов в день. Задание выполняется за 42 дня, т.е. требует $$42xy$$ человеко-часов (ч\ч). Увеличим количество людей на 4 и часы на 1. Получим $$(y+4)(x+1)$$ ч\ч в день и $$\frac{42 xy}{(y+4)(x+1)}\leq 30$$. Аналогично $$\frac{42 xy}{(y+10)(x+2)}\geq 21$$

    Имеем систему: $$\left\{\begin{matrix}42xy\leq 30(y+4)(x+1)\\42xy\geq 21(y+10)(x+2)\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}7xy\leq 5(y+4)(x+1)\\2xy\geq (y+10)(x+2)\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}7xy\leq 5xy+5y+20x+20\\2xy\geq xy+2y+10x+20\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}2xy-5y-20x-20\leq 0\\xy-2y-10x-20\geq 0\end{matrix}\right. \Leftrightarrow$$ $$\left\{\begin{matrix}2xy-5y-20x-20\leq 0\\2xy-4y-20x-40\geq 0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}2xy-5y-20x-20\leq 0(1)\\-2xy+4y+20x+40\leq 0(2)\end{matrix}\right.$$

     Сложим 1 и 2 : $$-y+20\leq 0\Rightarrow$$ $$y\geq 20$$. Т.е минимум 20 человек . подставим y=20 в (1) : $$40x-100-20x-20\leq 0\Leftrightarrow$$ $$x\leq 6 \Rightarrow$$ максимум 6 часов

 

Задание 7042

Два одинаковых поля требуется вспахать тремя тракторами. При работе в одиночку первый трактор вспашет одно поле втрое быстрее, чем второй, а третьему на ту же работу потребуется времени на два часа больше, чем первому. Работая вместе, все три трактора могут вспахать одно поле за семь часов двенадцать минут. Найти наименьшее время, за которое можно вспахать оба поля при условии, что все тракторы начинают работу одновременно, а для переезда с одного поля другое трактору требуется сорок минут.

Ответ: 14,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть объем всего поля равен 1. x - производительность 1-го трактора (часть объема в час) , y, z - второго и третьего, t - время первого в часах . Раз первый вспахает втрое быстрее , то $$y=\frac{x}{3}$$. Получим ( раз втроем вспахивают за 7 ч 12 мин.):

     $$\frac{1}{x+y+z}=7\frac{12}{60}\Leftrightarrow$$ $$\frac{1}{x+\frac{x}{3}+z}=\frac{36}{5}\Leftrightarrow$$ $$5=\frac{4x}{3}*36+36z\Leftrightarrow$$ $$z=\frac{5-48x}{36}$$

     Так как третий на 2 часа больше, то : $$\left\{\begin{matrix}\frac{1}{x}=t\\\frac{1}{z}=t+2\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\frac{1}{x}=t\\\frac{36}{5-48x}=\frac{1}{x}+2\end{matrix}\right.$$

     $$\frac{36}{5-48x}=\frac{1+2x}{x}\Leftrightarrow$$ $$36x=5+10x-48x-96x^{2}\Leftrightarrow$$ $$96x^{2}+74x-5=0\Leftrightarrow$$ $$\left\{\begin{matrix}x_{1}=\frac{1}{16}\\x_{2}<0\end{matrix}\right.$$

     Пусть три трактора работают x часов на каких-то полях, тогда они выполняют $$\frac{5}{36}x$$ объема. Затем один или несколько переезжают (чтобы ускорить другое поле и закончить оба одновременно), тогда производительность оставшихся S и выполнят они $$S*\frac{2}{3}$$ объема . Потом все трое дорабатывают вместе y часов: $$\frac{5}{36}x+\frac{2}{3}S+\frac{5}{36}y=2\Leftrightarrow$$ $$\frac{5}{36}(x+y)=2-\frac{2}{3}S$$

     Очевидно, что $$x+y\rightarrow min$$, при $$S\rightarrow max$$: $$S_{max}=\frac{1}{16}+\frac{1}{18}=\frac{17}{144}$$. Тогда : $$x+y=(2-\frac{2}{3}*\frac{17}{144})*\frac{36}{5}=$$$$\frac{415}{216}*\frac{36}{5}=\frac{83}{6}$$

     Тогда общее время: $$\frac{83}{6}+\frac{2}{3}=14,5$$

 

Задание 7063

Предприниматель Ашот хочет открыть в своём городе несколько кафе. Он подсчитал, что жители города тратят 50 млн. рублей в год на питание в кафе, причём эта сумма делится поровну между всеми кафе, работающими в городе. Известно, что функционирование одного кафе обходится в 2 млн. рублей в год. Какую наибольшую прибыль (в млн. рублей в год) может получить Ашот, если в городе уже работает 9 кафе, открытых другими предпринимателями?

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть Ашот откроет x шт . кафе , тогда всего их в городе станет 9+x нет, и прибыль с одного будет составлять: $$\frac{50}{9+x}-2$$ . Тогда общая прибыль его составит : $$f(x)=x(\frac{50}{9+x}-2)$$

     Найдем максимальное значение данной функции: $${f}'(x)={(\frac{50x}{9+x}-2x)}'=$$$$\frac{50(9+x)-50x}{(9+x)^{2}}-2=0\Leftrightarrow$$$$\frac{450+50x-50x-2(9+x)^{2}}{(9+x)^{2}}=0\Leftrightarrow$$ $$225-(9+x)^{2}=0\Leftrightarrow$$$$(9+x)^{2}=225\Leftrightarrow$$ $$\left[\begin{matrix}9+x =15\\9+x=-15\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}x=6\\x=-24\end{matrix}\right.$$

     Тогда: $$f_{max}=f(6)=6*(\frac{50}{9+6}-2)=$$$$6(\frac{10}{3}-2)=6*\frac{4}{3}=8$$

 

Задание 7110

На счет, который вкладчик имел в начале первого квартала, начисляется в конце этого квартала r1 процентов, а на тот счет, который вкладчик имел в конце второго квартала, начисляется в конце этого квартала r2 процентов, причем r1+r2=150 . Вкладчик положил на счет в начале первого квартала некоторую сумму и снял в конце того же квартала половину этой суммы. При каком значении r1 счет вкладчика в конце второго квартала окажется максимально возможным?

Ответ: 100
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть S-первоначальная сумма вклада, тогда после первого начисления на счете $$S(1+\frac{r_{1}}{100})$$, а после снятия половины первоначального вклада: $$S(1+\frac{r_{1}}{100})-\frac{S}{2}$$. Учтем, что $$r_{2}=150-r_{1}$$.

     После второго начисления на счету : $$(S(1+\frac{r_{1}}{100})-\frac{S}{2})(1+\frac{150-r_{1}}{100})=S(r_{1})$$

     Необходимо найти точку максимума: $$S^{'}(r_{1})=(S(\frac{1}{2}+\frac{r_{1}}{100})(\frac{250-r_{1}}{100}))^{'}=$$$$(S(\frac{50+r_{1}}{200})(\frac{250-r_{1}}{100}))^{'}$$

    При этом максимум $$S(r_{1})$$ совпадает с максимумом $$K(r_{1})=(50+r_{1})(250-r_{1})$$

     $$K^{'}(r_{1})=(250-r_{1})-(50+r_{1})=0\Leftrightarrow$$ $$200-2r_{1}=0\Leftrightarrow$$ $$r_{1}=100$$

 

Задание 7203

В два различных сосуда налиты растворы соли, причем в 1‐й сосуд налито 5 кг, а во второй ‐ 20 кг. При испарении воды процентное содержание соли в 1‐м сосуде увеличилось в p раз, а во втором – в раз. О числах qp и q известно, что 9=pq. Какое наибольшее количество воды могло при этом испариться из обоих сосудов вместе?

Ответ: $$\frac{55}{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть начальная концентрация в первом сосуде a% , тогда масса соли в нем: $$\frac{5a}{100}=\frac{a}{20}$$ кг. Во втором – b% , масса соли в нем : $$\frac{2ab}{100}=\frac{b}{5}$$ кг. Новая концентрация в первом сосуде p% .Докажем , что тогда масса раствора $$\frac{5}{p}$$. Пусть новая масса m кг. , тогда имеем:

m-100 %
$$\frac{a}{20}$$ - pa%

     Отсюда $$m=\frac{\frac{a}{20}*100}{pa}=\frac{5}{p}$$. То есть, если концентрация увеличилась в р раз, то масса раствора в р раз уменьшилась. Т.к. pq=9, то $$q=\frac{9}{p}$$. Тогда масса второго раствора: $$2-\frac{9}{p}=\frac{20p}{9}$$.

     Тогда из первого выпарилось: $$5-\frac{5}{p}=\frac{5p-5}{p}$$ кг. Из второго: $$20-\frac{20p}{9}=\frac{180-20p}{9}$$ кг. Составим функцию испарившейся массы: $$f(p)=\frac{5p-5}{p}+\frac{180-20p}{9}$$ и найдем ее максимум :

$$f^{'}(p)=\frac{5p-5p+5}{p^{2}}-\frac{20}{9}=0\Leftrightarrow$$ $$\frac{5}{p^{2}}=\frac{20}{9}\Rightarrow$$ $$p=\pm \frac{3}{2}$$. При этом p=1,5-точка максимума, следовательно, наибольшая масса: $$f(1,5)=\frac{5*1,5-5}{1,5}+\frac{180-20*1,5}{9}=\frac{55}{3}$$ кг.

 

Задание 7224

На покупку тетрадей в клетку и в линейку можно потратить не более 140 руб. Тетрадь в клетку стоит 3 руб, тетрадь в линейку – 2 руб. При закупке число тетрадей в клетку не должно отличаться от числа тетрадей в линейку более, чем на 9. Необходимо закупить максимально возможное суммарное количество тетрадей, при этом тетрадей в линейку нужно закупить как можно меньше. Сколько тетрадей в клетку и сколько тетрадей в линейку можно закупить при указанных условиях?

Ответ: 26 в клетку и 31 линейку
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть куплено x тетрадей в клетку и y – в линейку , тогда: $$3x+2y\leq 140$$. Раз в линейку как можно меньше, то и считается количество не более, чем на 9, то $$\left | x-y \right |\leq 9$$. При этом $$y\rightarrow min$$ и $$x+y\rightarrow max$$

     Получим систему: $$\left\{\begin{matrix}3x+2y\leq 140\\\left | x-y \right |\leq 9\\x+y\rightarrow max\\y\rightarrow min\end{matrix}\right.$$$$\Leftrightarrow$$ $$\left\{\begin{matrix}y\leq 70-\frac{3x}{2}\\\left | x-y \right |\leq 9\\x+y\rightarrow max\\y\rightarrow min\end{matrix}\right.$$

Так как $$x,y \in N$$ и $$x+y\rightarrow max$$ , то $$\frac{3x}{2} \in N$$ и x – число четное .

     Рассмотрим графическое решение:

     Видим, что целые значения (26;31) ; (28;28) и (30;25) , в сумме дают 57;56 и 55 соответственно $$\Rightarrow$$ т .к. $$x+y\rightarrow max$$, то купим 26 в клетку и 31 линейку.

 

Задание 7326

Малое предприятие выпускает изделия двух типов. Для изготовления изделия первого типа требуется 9 часов работы станка А и 11 часов работы станка Б. Для изготовления изделия второго типа требуется 13 часов работы станка А и 3 часа работы станка Б (станки могут работать в любой последовательности). По техническим причинам станок А может работать не более 130 часов в месяц, а станок Б—не более 88 часов в месяц. Каждое изделие первого типа приносит предприятию 22 000 д. е. прибыли, а каждое изделие второго типа—26 000 д. е. прибыли. Найдите наибольшую возможную ежемесячную прибыль предприятия и определите, сколько изделий первого типа и сколько изделий второго типа следует выпускать для получения этой прибыли.

Ответ: 270000, 4 и 7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть выпускается xизделий 1-го типа и y изделий второго типа ($$x , y \in Z$$ и $$x, y >0$$). Составим таблицу:

     Получим систему : $$\left\{\begin{matrix}9x+13y\leq 30\\11x+3y\leq 88\\1000(22x+26y)\rightarrow max\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}y\leq \frac{130-9x}{13}(1)\\y\leq \frac{88-11y}{3}(2)\\2000 (11x+13y)\rightarrow max\end{matrix}\right.$$

     Построим график (решение ) для (1) и (2)

     Получим заштрихованную плоскость . При этом необходимо рассматривать точки ближе к прямым (1) и (2) и с целыми координатами. Так же учтем, что изделие 2 выгоднее: (1;10; (1;9); (2;8); (4;7); (5;6); (6;5);(7;3) .

     Видим , что $$x+y\rightarrow max$$ при (4;7) ; (5;6) и (6;5) .Т.к. второе выгоднее то берем с большей ординатой $$\Rightarrow (4;7)$$ . То есть 4 изделия 1,7 изделие 2 и прибыль : $$2000(11*4+13*7)=270000$$.

 

Задание 7415

Предприятие непрерывного цикла занимается испытанием готовых изделий двух типов. Ежемесячно предприятие получает для испытаний не более 300 изделий первого типа и не более 600 изделий второго типа. Качество каждого изделия проверяется на двух стендах А и Б (стенды могут использоваться для испытания каждого изделия в любой последовательности). Для проверки одного изделия первого типа требуется 36 минут испытаний на стенде А и 30 минут испытаний на стенде Б; для проверки одного изделия второго типа требуется 30 минут испытаний на стенде А и 9 минут испытаний на стенде Б. По техническим причинам стенд А может работать не более 360 часов в месяц, а стенд Б—не более 180 часов в месяц. Проверка одного изделия первого типа приносит предприятию 135 д. е. прибыли, а проверка одного изделия второго типа— 75 д.е. прибыли. Найдите наибольшую возможную ежемесячную прибыль предприятия и определите, сколько изделий первого типа и сколько изделий второго типа следует ежемесячно проверять для получения этой прибыли.

Ответ: 64125, 225, 450
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Составим таблицу:

  количество единиц стенд А (часов) Стенд В (часов) выручка
изделие 1 x 0.6x 0.5x 135x
изделие 2 y 0.5y 0.15y 78y
суммарное количество x+y 0.6x+0.5y 0.5x+0.15y 135x+78y

     Получим систему:

$$\left\{\begin{matrix}0.6x+0.5y\leq 360\\0.5x+0.15y\leq 180\\135x+75y=S\\x\leq 300\\y\leq 600\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}6x+5y\leq 3600(1)\\10x+3y\leq 3600(2)\\9x+5y=\frac{S}{15}=a(3)\\x\leq 300\\y\leq 600\end{matrix}\right.$$

     Из (3): $$y=\frac{a-9x}{5}$$. Подставим в (1) и (2):

$$\left\{\begin{matrix}6x+4-9x\leq 3600\\10x+\frac{a-9x}{5}*3\leq 3600\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}a\leq 3600+3x\\a\leq 6000-7\frac{2}{3}x\end{matrix}\right.$$

     Вычтем из второго неравенства первое: $$0\leq 2400-10\frac{2}{3}x\Leftrightarrow$$$$x\leq 225$$. Подставим в (1): $$6*225+5y\leq 3600\Leftrightarrow$$$$y\leq 450$$. Очевидно, что S будет максимальным в том случае, если будут максимальны х и у, то есть х=225 и у=450. Тогда $$S=135*225+75*450=64125$$

Задание 7425

Строительство нового завода стоит 220 млн. рублей. Затраты на производство x тыс единиц продукции на таком заводе равны $$0,5x^{2}+x+7$$ млн рублей в год. Если продукцию завода продать по цене p тыс.рублей за единицу, то прибыль фирмы (в млн рублей) за один год составит $$px-(0,5x^{2}+x+7)$$ . Когда завод будет построен, каждый год фирма будет выпускать продукцию в таком количестве, чтобы прибыль была наибольшей. В первый год после постройки завода цена продукции p = 9 тыс.руб. за единицу, каждый следующий год цена продукции увеличивается на 1 тыс.руб. за единицу. За сколько лет окупится строительство завода?

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 7444

В распоряжении прораба имеется бригада рабочих в составе 26 человек. Их нужно распределить на строительство двух частных домов, находящихся в разных городах. Если на строительстве первого дома работает t человек, то их суточная зарплата составляет 3t2 д. е. Если на строительстве второго дома работает t человек, то их суточная зарплата составляет 4t2 д. е. Дополнительные суточные накладные расходы (транспорт, питание и т. п.) обходятся в 4 д. е. в расчёте на одного рабочего при строительстве первого дома и в 3 д. е. при строительстве второго дома. Как нужно распределить на эти объекты рабочих бригады, чтобы все выплаты на их суточное содержание (т. е. суточная зарплата и суточные накладные расходы) оказались наименьшими? Сколько д. е. в сумме при таком распределении составят все суточные затраты (на зарплату и накладные расходы)?

Ответ: 15 ч., 11 ч., 1252 д.е.
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 7564

Фермер, занимающийся производством ягод, посадил кусты крыжовника и смородины. Количество кустов крыжовника превышает количество кустов смородины менее чем на 4. Если число кустов смородины увеличить на 42, то оно превысит число кустов крыжовника, но не более чем в 3 раза. Если число кустов смородины увеличить впятеро и прибавить удвоенное число кустов крыжовника, то результат не превысит 126. Найдите, сколько кустов крыжовника и сколько кустов смородины посадил фермер.

Ответ: Крыжовник - 20; Смородина - 17
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 7734

В январе 2005 года ставка по депозитам в банке «Фантазия» составила годовых, тогда как в январе 2006 года – y% годовых, причем известно, что x+y=30 . В январе 2005 года вкладчик открыл депозитный счёт в банке «Фантазия», положив на него некоторую сумму. В январе 2006 года, по прошествии года со дня открытия счёта, вкладчик снял со счёта пятую часть этой суммы. Укажите значение x , при котором сумма на счёте вкладчика в январе 2007 года станет максимально возможной.

Ответ: 25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть первоначальный вклад составил $$5S$$, тогда через год (после начисления процентов) величина вклада составит $$5S(1+\frac{x}{100})$$ . После снятия со счёта пятой части первоначальной суммы величина вклада составит $$5S(1+\frac{x}{100})-S$$. Ещё через год (после начисления процентов) величина вклада составит $$(5S(1+\frac{x}{100})-S)(1+\frac{30-x}{100})=\frac{S(80+x)(130-x)}{2000}$$ Наибольшее значение этого выражения достигается в той же точке, что и наибольшее значение квадратичной функции $$f(x)=(80+x)(130-x)$$ на интервале $$(0;30)$$. Графиком этой функции является парабола с ветвями, направленными вниз, вершина параболы равна среднему арифметическому абсцисс точек пересечения параболы с осью абсцисс: $$x_{0}=\frac{-80+130}{2}=25$$. Значит, наибольшее значение $$f(x)$$ на интервале $$(0;30)$$ достигается в точке $$x_0=25$$.

 

Задание 8346

В линейке 80286 процессоров 4 представителя, различающиеся тактовой частотой в диапазоне от 6 до 12,5 МГц включительно. Для первых трёх из них процент увеличения частоты следующего процессора по отношению к частоте предыдущего, равен проценту увеличения производительности по отношению к производительности предыдущего. Для четвёртого процент прироста частоты такой же, как процент прироста частоты третьего по отношению ко второму, однако процент прироста производительности в 3,2 раза больше. Максимальная производительность больше минимальной в 3 раза. Какова производительность подарка, если производительность первого процессора в линейке составляет 0,9 млн операций в секунду?

Ответ: 1,2 млн/сек
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть $$x_{1},x_{2},x_{3},x_{4}$$ - частоты 1-4 процессоров из линейки, $$y_{1},y_{2},y_{3},y_{4}$$ - производительность. ПРи этом $$x_{1}=6$$ МГц; $$x_{4}=12,5$$ МГц. Пусть $$k$$ - процент, деленный на 100 (доля) увеличения со на, $$m$$ - со 2го на 3ий и с 3го на 4ый таковой частоты. Заполним таблицу:

Номер модели Тактовая частота Производительность
1 $$6$$ $$y_{1}$$
2 $$6(k+1)$$ $$y_{2}=y_{1}(k+1)$$
3 $$6(k+1)(m+1)$$ $$y_{3}=y_{2}(m+1)$$
4 $$6(k+1)(m+1)^{2}=12,5$$ $$y_{4}=y_{3}(3,2m+1)$$

По условию, при увеличении на четверть частоты нового, мы получим частоту третьего. Очевидно, что куплен был или первый, или второй. Пусть куплен первый. Тогда: 

$$6\cdot\frac{5}{4}=6(k+1)(m+1)$$ $$\Rightarrow$$ $$(k+1)(m+1)=\frac{5}{4}$$

Но $$(k+1)(m+1)^{2}\frac{12,5}{6}=\frac{25}{12}$$ $$\Rightarrow$$ $$m+1=\frac{25}{12}\cdot\frac{4}{5}=\frac{5}{3}$$ $$\Rightarrow$$ $$k+1=\frac{5}{4}\cdot\frac{3}{5}=\frac{3}{4}$$, но тогда частота второго меньше, чем первого $$\Rightarrow$$ куплен второй. Тогда: $$m+1=\frac{5}{4}$$ $$\Rightarrow$$ $$k+1=\frac{25}{12}\cdot\frac{16}{25}=\frac{4}{3}$$ $$\Rightarrow$$ $$m=\frac{1}{4}$$; $$k=\frac{1}{3}$$

Найдем производительность подарка: $$0,9\cdot\frac{4}{3}=1,2$$ млн операций в секунду.

 

Задание 9784

Для перевозки 500 маленьких и 26 больших блоков был выделен автомобиль грузоподъемностью 9,75 т. По техническим условиям он может перевозить не более 38 маленьких блоков. Согласно габаритам блоков, перевозка одного большого блока приравнивается к перевозке 18 маленьких. Большой блок весит 3,5 т, а маленький 0,25 т. Какое минимальное количество перевозок потребуется для перемещения всех блоков?

Ответ: 26
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9931

Завод закупает станки двух типов, на приобретение которых выделено 34 млн. рублей. Станок первого типа занимает площадь 7 м2 (с учетом проходов), производит за смену 5000 единиц продукции и стоит 4 млн. рублей. Станок второго типа занимает площадь 4 м2 (с учетом проходов), производит за смену 3000 единиц продукции и стоит 3 млн. рублей. Станки должны быть размещены на площади, не превышающей 50 м2. Сколько станков каждого типа нужно приобрести, чтобы производить за смену наибольшее количество продукции?

Ответ: первого типа - 6 и второго - 2 или первого типа - 3, а второго - 7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9951

В контейнер упакованы комплектующие изделия трех типов. Стоимость и вес изделия составляют 400 тыс.руб. и 12 кг для первого типа, 500 тыс.руб. и 16 кг для второго типа, 600 тыс.руб. и 15 кг для третьего типа. Общий вес комплектующих равен 326 кг. Определить минимальную и максимальную возможную суммарную стоимость находящихся в контейнере комплектующих изделий.

Ответ: 10,5 млн. руб., 12,6 млн. руб.
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10076

Группа отдыхающих в течение 2 ч 40 минут каталась на моторной лодке по реке с постоянной (относительно воды) скоростью попеременно то по течению, то против: в каждую сторону – не меньше, чем по 1 часу. В итоге лодка прошла путь в 40 км относительно берега и, отчалив от пристани А, причалила к пристани В на расстоянии 10 км от А. Найдите наибольшую возможную в этих условиях скорость течения реки.

Ответ: 8 км/час
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10099

Для заполнения бассейна используют 2 насоса. Известно, что если включить первый на 1 ч, а затем только второй на 4 ч, бассейн будет заполнен не меньше чем на четверть и не более чем на 40% . Если включить первый на 3 ч, затем только второй на 2 ч, бассейн будет наполнен не меньше чем на 30% и не больше чем наполовину. На сколько процентов максимально может наполнить бассейн один первый насос за 1 час?

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10176

Первый велосипедист въезжает в парк раньше второго и проезжает 5 км. После этого в парк въезжает второй и едет со скоростью на 4 км/ч больше, чем первый. Через некоторое время второй велосипедист догоняет первого. В тот же момент они поворачивают обратно и со скоростью 16 км/ч одновременно выезжают из парка, заканчивая поездку. При какой скорости первого велосипедиста время его поездки по парку будет наименьшим?

Ответ: 8 км/ч
 

Задание 10196

Химический комбинат получил заказ на изготовление этилового спирта, соляной кислоты и дистиллированной воды. Для готовой продукции потребовалась 21 железнодорожная цистерна. При перекачивании были использованы три специализированных насоса: сначала первый насос наполнил четыре цистерны этиловым спиртом, затем второй насос наполнил шестнадцать цистерн соляной кислотой и в завершение третий наос наполнил одну цистерну дистиллированной водой. Найдите минимально возможное время, затраченное на перекачивание всех продукции, если известно, что суммарная производительность всех насосов равна семи цистернам в сутки

Ответ: 7 дней
 

Задание 10264

Правительство решило закрыть нерентабельные шахты и построить новые фабрики и заводы. В результате закрытия одной шахты увольняется 180 человек, при этом на консервацию шахты и выплату пособий увольняемым тратится 52 млн. рублей. Строительство одного нового завода с персоналом 170 человек стоит 43 млн. рублей, а одной фабрики с персоналом 110 человек – 20 млн. рублей. Чему равно максимально возможное увеличение суммарного числа новых рабочих мест, если известно, что сумма всех затрат правительства составила ровно 714 млн. рублей?

Ответ: 2530
 

Задание 10394

Фабрика, производящая пищевые полуфабрикаты, выпускает блинчики со следующими начинками: ягодная, творожная и мясная. В данной ниже таблице приведены себестоимость и отпускная цена, а также производственные возможности фабрики по каждому виду продукта при полной загрузке всех мощностей только данным видом продукта.

Вид начинки Себестоимость за 1 тонну Отпускная цена за 1 тонну Производственные возможности
ягоды 70 тыс.руб. 100 тыс. руб. 90 тонн в мес.
творог 100 тыс. руб. 135 тыс.руб. 75 тонн в мес.
мясо 145 тыс. руб. 145 тыс.руб. 60 тонн в мес.

Для выполнения условий ассортиментности, которые предъявляются торговыми сетями, продукции каждого вида должно быть выпущено не менее 15 тонн. Предполагая, что вся продукция фабрики находит спрос (реализуется без остатка), найдите максимально возможную прибыль, которую может получить фабрика от производства блинчиков за 1 месяц.

Ответ: 2010 тыч. рублей
 

Задание 10444

Фирма по производству мебели выпускает две модели спальных гарнитуров – А и В. Их производство ограничено наличием сырья (качественных досок) и временем машинной обработки. Для изготовления гарнитура модели А требуется 24 м2 досок и 5 часов машинного времени, а для модели В – 40 м2 досок и 11 часов машинного времени. Фирма может получить от поставщика до 600 м2 досок в неделю. Возможное время работы машин, имеющихся в распоряжении фирмы, составляет 140 часов в неделю. Изготовление гарнитура модели А приносит фирме 5000 рублей дохода, а модели В – 9000 рублей дохода. Сколько гарнитуров каждой модели следует выпускать фирме в неделю, чтобы прибыль фирмы была как можно больше?

Ответ: A-20 шт., Б-3 шт.
 

Задание 11089

В распоряжении прораба имеется бригада рабочих в составе 35 человек. Их нужно распределить на строительство двух частных домов, находящихся в разных городах. Если на строительстве первого дома работает $$t$$ человек, то их суточная зарплата составляет $$7t^2$$ д.е. Если на строительстве второго дома работает $$t$$ человек, то их суточная зарплата составляет $$3t^2$$ д.е. Какое минимальное количество денежных единиц придётся выплатить рабочим за сутки?

Ответ: 2575
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть Пусть на 1-ом объекте $$x$$ рабочих, тогда из з/п $$7x^2$$, на втором $$35-x$$ рабочих, их з/п $$3{\left(35-x\right)}^2.$$ Получим функцию з/п: $$f\left(x\right)=7x^2+3{\left(35-x\right)}^2\to min.$$
$$f'\left(x\right)=14x+6\left(35-x\right)\left(-1\right)=0\to 14x+6x=6\cdot 35\to x=\frac{210}{20}=10,5.$$
Тогда: $$f\left(10\right)=7\cdot {10}^2+3{\left(35-10\right)}^2=700+1875=2575;$$
$$f\left(11\right)=7\cdot {11}^2+3{\left(35-11\right)}^2=847+1728=2575.$$
Минимальная з/п: 2575 д.е.
 

Задание 11128

В двух областях есть по 20 рабочих, каждый из которых готов трудиться по 10 часов в сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,2 кг алюминия или 0,2 кг никеля. Во второй области для добычи х кг алюминия в день требуется $$х^2$$ человеко-часов труда, а для добычи у кг никеля в день требуется $$у^2$$ человеко-часов труда.

Обе области поставляют добытый металл на завод, где для нужд промышленности производится сплав алюминия и никеля, в котором на 1 кг алюминия приходится 1 кг никеля. При этом области договариваются между собой вести добычу металлов так, чтобы завод мог произвести наибольшее количество сплава. Сколько килограммов сплава при таких условиях ежедневно сможет произвести завод?

Ответ: 60
Скрыть

Чтобы произвести максимальный объем сплава, необходимо добыть максимальное количество алюминия и никеля в обеих областях, в равных пропорциях, чтобы не было переизбытка материала. Очевидно, что в первой области 20 рабочих следует разделить на две равные группы по 10 человек, которые буду добывать $$0,2\cdot 10\cdot 10=20$$ кг алюминия и $$0,2\cdot 10\cdot 10=20$$ кг никеля в сутки.

Во второй области следует также поровну распределить рабочих по 10 человек, которые добудут $$\sqrt{10\cdot 10}=10$$ кг алюминия и $$\sqrt{10\cdot 10}=10$$ кг никеля. 

В итоге, поставляя на завод в сумме по 30 кг алюминия и 30 кг никеля, можно будет выплавлять по 60 кг сплава ежедневно.

 

Задание 11147

У фермера есть два поля, каждое площадью 10 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 500 ц/га, а на втором - 300 ц/га. Урожайность свёклы на первом поле составляет 300 ц/га, а на втором - 500 ц/га.

Фермер может продать картофель по цене 5000 руб. за центнер, а свёклу - по цене 8000 руб. за центнер. Какой наибольший доход может получить фермер?

Ответ: 65 млн. руб.
Скрыть

Вычислим доход фермера с первого поля, если он засеет на нем картофель. Урожайность картофеля на нем 500 ц/га, цена картофеля 5000 за центнер, размер поля 10 гектар, получаем размер дохода $$5000\cdot 500\cdot 10=25000000$$ руб.

Теперь сравним доход, если на первом поле будет засеяна свекла, получим $$8000\cdot 300\cdot 10=24000000$$ руб.

Отсюда видно, что на первом поле выгоднее сажать картофель. Аналогично сравним доход, приносимый вторым полем:

- для картофеля: $$5000\cdot 300\cdot 10=15000000$$ руб;

- для свёклы: $$8000\cdot 500\cdot 10=40000000$$ руб.

Следовательно, на втором поле выгоднее сажать свёклу. Таким образом, максимально возможный доход фермер может получить в сумме $$25+40=65$$ млн. руб.

 

Задание 11752

В офисном строении 8 этажей, на каждом из которых, кроме первого, находится кабинет начальника отдела. Управляющая жилищная компания объявила, что в день профилактического ремонта лифта он сделает всего один подъем сразу всех начальников отделов на один, указанный ими этаж. После подъема начальники будут вынуждены идти в свои кабинеты по лестнице. В качестве компенсации за причиненные неудобства за каждый необходимый подъем на очередной этаж по лестнице каждому начальнику будет начислено 200 рублей. За каждый аналогичный спуск – 100 рублей. Этаж необходимо выбрать так, чтобы общая сумма компенсаций была минимальной. Определите в рублях эту сумму.

Ответ: 1600 рублей
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11771

Первичная информация разделяется по серверам 1 и 2 и обрабатывается на них. С сервера 1 при объёме t2 Гбайт входящей в него информации выходит 30t Гбайт, а с сервера 2 при объёме t2 Гбайт входящей в него информации выходит 36t Гбайт обработанной информации при условии, что $$15\leq t\leq 65$$. Каков наибольший общий объём выходящей информации при общем объёме входящей информации в 3904 Гбайт?

Ответ: 2928
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11856

Необходимо произвести отделку здания, имеющего форму прямоугольного параллелепипеда, объемом 432 м3. Отделка стены здания, примыкающей к внутреннему строению, обходится в 1000 руб. за квадратный метр. Отделка трех фасадных стен обходится в 2000 руб. за квадратный метр. А заливка крыши, форма которой является квадратом, обходится в 7000 руб. за квадратный метр. Найдите размеры здания, отделочные работы которого при данных условиях являются наименьшими по стоимости.

Ответ: $$6;6;12$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12376

Бригаду из 30 рабочих нужно распределить по двум объектам. Если на первом объекте работает р человек, то каждый из них получает в сутки 200р руб. Если на втором объекте работает р человек, то каждый из них получает в сутки $$(50p\ +\ 300)$$ руб. Как нужно распределить рабочих по объектам, чтобы их суммарная суточная зарплата оказалась наименьшей? Сколько рублей в этом случае придётся заплатить за сутки всем рабочим?

Ответ: 1-й объект - 7 человек; 2-й - 23 человека; 43150 рублей
 

Задание 12736

Предприниматель купил здание и собирается открыть в нём отель. В отеле могут быть стандартные номера площадью 30 квадратных метров и номера «люкс» площадью 40 квадратных метров. Общая площадь, которую можно отвести под номера, составляет 940 квадратных метров. Предприниматель может поделить эту площадь между номерами различных типов как хочет. Обычный номер будет приносить отелю 4000 рублей в сутки, а номер «люкс» - 5000 рублей в сутки. Какую наибольшую сумму денег сможет заработать в сутки на своём отеле предприниматель?

Ответ: 125000
 

Задание 13799

Производство х тыс. единиц продукции обходится в $$q=3x^{2}+6x+13$$ млн рублей в год. При цене р тыс. рублей за единицу годовая прибыль от продажи этой продукции (в млн рублей) составляет рх-q. При каком наименьшем значении р через пять лет суммарная прибыль может составить не менее 70 млн рублей при некотором значении х?

Ответ: 24
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13903

Производство х тыс. единиц продукции обходится в $$q=2x^{2}+5x+10$$ млн рублей в год. При цене р тыс. рублей за единицу годовая прибыль от продажи этой продукции (в млн рублей) составляет рх-q. При каком наименьшем значении р через 12 лет суммарная прибыль может составить не менее 744 млн рублей при некотором значении х?

Ответ: 29
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 14223

Али‐Баба пришел в пещеру, где есть золото и алмазы. У Али‐Бабы с собой оказался мешок. Известно, что полный мешок золота весит 200 кг, полный мешок алмазов – 40 кг, а пустой мешок ничего не весит. Килограмм золота стоит 20 динаров, а килограмм алмазов – 60 динаров. Какую наибольшую сумму денег может выручить Али‐Баба за сокровища, если он может унести с собой не более 100 кг?

Ответ: 3000 динаров
 

Задание 14230

Имеются три не сообщающихся между собой резервуара. Известно, что объем первого равен 60 куб.м., а объем второго меньше объема третьего. Первый резервуар может быть наполнен первым шлангом за 3 ч, вторым шлангом – за 4 ч, третьим шлангом – за 5 ч. К каждому из резервуаров подключают какой‐либо один из этих шлангов, после чего шланги одновременно включают. Как только какой‐нибудь резервуар наполнится, соответствующий шланг отключается. При самом быстром способе подключения на заполнение всех трех резервуаров уходит 6 ч. Если бы резервуары сообщались, то на их заполнение ушло бы 4 ч. Найдите объем второго и третьего резервуаров.

Ответ: 8 куб.м; 120 куб.м
 

Задание 14237

На покупку тетрадей в клетку и в линейку можно затратить не более 140 рублей. Тетрадь в клетку стоит 3 руб., в линейку – 2 руб. Число купленных тетрадей в клетку не должно отличаться от числа тетрадей в линейку более, чем на 9. Необходимо купить максимально возможное суммарное количество тетрадей, при этом тетрадей в линейку нужно купить как можно меньше. Сколько тетрадей в клетку и сколько в линейку можно купить при указанных условиях?

Ответ: 26 и 31
 

Задание 14244

Два насоса перекачивают нефть из двух резервуаров в танкер. Сначала I‐й насос перекачал всю нефть из первого резервуара, затем нефть из второго резервуара была перекачана вместе I‐м и II‐м насосами. После того, как была перекачана 1/3 всей нефти, оказалось, что время, необходимое для завершения работы, в 21/13 раза меньше времени, за которое мог бы перекачать всю нефть один I‐й насос. Кроме того, известно, что если бы из второго резервуара нефть перекачивал только II‐й насос, то ему для этого потребовалось бы вдвое больше времени, нежели I‐ому насосу для перекачки всей нефти из обоих резервуаров. Определите, во сколько раз производительность I‐го насоса больше производительности II‐го.

Ответ: 6
 

Задание 14295

Фонд «Божий Дар» владеет ценными бумагами, которые стоят t2 млн. рублей в конце года t (t=1; 2; 3…). В конце любого года фонд может продать ценные бумаги и положить деньги в банк «Пятёрочка» под 20% годовых. В конце какого года фонд должен продать ценные бумаги, чтобы через 15 лет сумма на его счету была наибольшей? Сколько рублей составит эта сумма?

Ответ: 11 лет ; 250 905 600 руб.
 

Задание 14304

Фёдор является владельцем двух заводов в разных городах. На заводах производятся абсолютно одинаковые приборы, но на заводе, расположенном в первом городе, используется более совершенное оборудование. В результате, если рабочие на заводе, расположенном в первом городе, трудятся суммарно $$3t^2$$ часов в неделю, то за эту неделю они производят $$t$$ приборов; если рабочие на заводе, расположенном во втором городе, трудятся суммарно $$4t^2$$ часов в неделю, они производят $$t$$ приборов. За каждый час работы (на каждом из заводов) Фёдор платит рабочему 1 тысячу руб. Необходимо, чтобы за неделю суммарно производилось 30 приборов. Какую наименьшую сумму придется тратить владельцу заводов еженедельно на оплату труда рабочих?

Ответ: 1543000 рублей.
 

Задание 14338

Спонсор выделил школе 50 тысяч рублей на покупку мячей. Известно, что футбольный мяч стоит 700 рублей, баскетбольный – 600 рублей, волейбольный – 500 рублей. Необходимо приобрести мячи всех трёх видов, причём их количества не должны отличаться более, чем на 10 штук. Какое наибольшее количество мячей сможет приобрести школа, не превысив на их покупку выделенной суммы?

Ответ: 85
 

Задание 14364

Эпицентр циклона, движущийся прямолинейно, во время первого измерения находился в 24 км к северу и 5 км к западу от метеостанции, а во время второго измерения находился в 20 км к северу и $$3\frac{1}{2}$$ к западу от метеостанции. Определите наименьшее расстояние, на которое эпицентр циклона приблизится к метеостанции.

Ответ: $$\frac{32}{\sqrt{73}}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!