ЕГЭ Профиль
Задание 907
Дано уравнение $$\sqrt{1-\sin ^{2}x}=\sin x$$.
a) Решите уравнение.
б) Найдите корни этого уравнения, принадлежащие отрезку $$\left [\frac{5\pi}{2};4\pi \right ]$$
$$ \sqrt{1-\sin ^{2}x}=\sin x \Leftrightarrow \left\{\begin{matrix}\sqrt{1-\sin ^{2}x}\geq 0\\ \sin x\geq 0\\\ 1-\sin ^{2}x=\sin ^{2} x\end{matrix}\right.$$ $$\Leftrightarrow \left\{\begin{matrix} 1-\sin ^{2}x\geq 0\\ \sin x\geq 0\\\ 1-\sin ^{2}x=\sin ^{2} x\end{matrix}\right.$$ $$\Leftrightarrow \left\{\begin{matrix}\sin ^2 x\leq 1\\ \sin x\geq 0\\\ 1=2\sin ^{2} x\end{matrix}\right.$$ $$\Leftrightarrow \left\{\begin{matrix}\sin ^{2}x\leq 1\\ \sin x\geq 0\\\ \sin x = \pm \frac{\sqrt{2}}{2}\end{matrix}\right.$$ $$\Leftrightarrow \sin x = \frac{\sqrt{2}}{2}$$ $$\Leftrightarrow \left\{\begin{matrix}\ x=\frac{\pi}{4}+2\pi n , n\in Z\\ x=\frac{3\pi}{4}+2\pi n n\in Z\end{matrix}\right.$$
Задание 1145
а) Решите уравнение $$1+\log_{2} (9x^{2}+5)=log_{\sqrt{2}} \sqrt{8x^{4}+14}$$
б) Найдите все корни этого уравнения, принадлежащие отрезку $$ \left [ -1;\frac{8}{9} \right ]$$
Задание 1146
а) Решите уравнение $$ -\sqrt{2}\sin (-\frac{5\pi}{2}+x) * \sin x = \cos x$$
б) Найдите все корни этого уравнения, принадлежащие отрезку $$\left [ \frac{9\pi }{2};6\pi \right ]$$
a) $$-\sqrt{2}*\sin(-\frac{5\pi }{2}+x)*\sin x=\cos x$$
Воспользуемся формулой привидения:
$$\sin (-\frac{5\pi }{2}+x)=-\cos x$$
$$-\sqrt{2}(-\cos x))*\sin x -\cos x =0$$
$$\sqrt{2}*\cos x *\sin x -\cos x=0$$
$$\cos x (\sqrt{2}*\sin x -1 )=0$$
$$\left\{\begin{matrix}\cos x=0\\\sqrt{2}*\sin x-1=0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x=\frac{\pi }{2}+\pi \kappa ,\kappa \in Z\\\sin x=\frac{\sqrt{2}}{2}\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x=\frac{\pi }{2}+\pi \kappa , \kappa \in Z\\x=(-1) ^{n}*\frac{\pi }{4}+\pi n, n\in Z\end{matrix}\right.$$
b) Видим , что на промежутках есть корень $$\frac{3\pi }{4}+2\pi n, n\in Z.$$ Найдем его:
$$5\pi -\frac{\pi }{4}=\frac{19 \pi }{4}$$
Так же есть корни $$\frac{ \pi }{2}+\pi n , n \in Z$$. Найдем их: $$\frac{9\pi }{2}; 5\pi +\frac{\pi }{2}=5,5\pi$$
Задание 2356
Дано уравнение: $$4^{\sin x\cdot \cos x}=2^{\cos 2x}$$
Задание 2498
Дано уравнение: $$\frac{2}{\cos (\pi -x)}-\tan ^{2}x=1$$
a) $$\frac{2}{\cos(\pi-x)}-\tan^{2}x=1$$ $$\left\{\begin{matrix}\cos(\pi -x)\neq0\\x\neq\frac{\pi}{2}+\pi k(k\in Z)\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}-\cos x\neq0\\x\neq\frac{\pi}{2}+\pi k(k\in Z)\end{matrix}\right.$$ $$\frac{2}{-\cos x}=1+\tan^{2}x=\frac{1}{\cos^{2}x}$$ $$\frac{1}{\cos x}=y^{2}$$ $$-2y=y^{2}$$ $$\Leftrightarrow$$ $$y^{2}+2y=0$$ $$y(y+2)=0$$ $$\left\{\begin{matrix}y=0\\y=-2\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}\frac{1}{\cos x}=0\\\frac{1}{\cos x}=-2\end{matrix}\right.$$ $$\Leftrightarrow\cos x=-\frac{1}{2}$$ $$\Leftrightarrow$$ $$x=\pm \frac{2\pi}{3}+2\pi k(k\in Z)$$
б)
$$-3\pi +\frac{\pi}{3}=-\frac{8\pi}{3}$$
Задание 2866
а) Решите уравнение $$\sin (2x+\frac{\pi}{2})=\cos(x+\frac{\pi}{2})+\sin(x+\frac{\pi}{2})$$
б) Укажите корни этого уравнения, принадлежащие отрезку [$$-\frac{3\pi}{2}; 0$$]
$$\sin (2x+\frac{\pi}{2})=\cos(x+\frac{\pi}{2})+\sin(x+\frac{\pi}{2})$$ [$$-\frac{3\pi}{2}; 0$$] $$\cos 2x=-\sin x+\cos x$$ $$\cos ^{2}x-\sin^{2} x+\sin x-\cos x=0$$ $$(\cos x-\sin x)(\cos x+\sin x)-(\cos x-\sin x)=0$$ $$(\cos x-\sin x)(\cos x+\sin x-1)=0$$ $$\left\{\begin{matrix}\cos x=\sin x\\\cos x+\sin x-1=0\end{matrix}\right.$$ $$\cos x=1-2\sin ^{2}\frac{x}{2}$$ $$\left\{\begin{matrix}1=\tan x\\1-2\sin^{2}\frac{x}{2}+2\sin\frac{x}{2}\cos \frac{x}{2}-1=0\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x=\frac{\pi}{4}+\pi n (n\in Z)\\2\sin\frac{x}{2}(\cos\frac{x}{2}-\sin\frac{x}{2})=0\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x=\frac{\pi}{4}+\pi n(n\in Z)\\\sin\frac{x}{2}=0\\\cos\frac{x}{2}-\sin\frac{x}{2}=0\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x=\frac{\pi}{4}+\pi n(n\in Z)\\\frac{x}{2}=\pi n\\\tan\frac{x}{2}=1\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x=\frac{\pi}{4}+\pi n(n\in Z)\\x=2\pi n(n\in Z)\\\frac{x}{2}=\frac{\pi}{4}+\pi n\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x=\frac{\pi}{4}+\pi n(n\in Z)\\x=2\pi n(n\in Z)\\x=\frac{\pi}{2}+2\pi n(n\in Z)\end{matrix}\right.$$