Перейти к основному содержанию

ЕГЭ Профиль

Производная и первообразная

Применение производной к исследованию функций

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 901

На графике производной функции у = f ' / (x) отмечены семь точек: х1,…, х7. Найдите все отмеченные точки, в которых функция f (x) возрастает. В ответе укажите количество этих точек.

Ответ: 4
Скрыть
Так как дан график производной, то мы будем искать точки над осью OX (функция возрастает, производная положительна)

 

Задание 937

На графике производной функции у = f' / (x) отмечены семь точек: х1,…, х7. Найдите все отмеченные точки, в которых угловой коэффициент касательной к графику функции f (x) положительный. В ответе укажите количество этих точек.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Угловой коэффициент касательной к графику это и есть значение производной, следовательно, мы ищем, где производная положительная. Так как дан нам график производной, то мы просто найдем количество точек, которые располагаются над осью ОХ: x1,x3,x4,xвсего 4

 

Задание 1013

Производная непрерывной функции f (x) равна нулю в каждой точке отрезка [‐5; 4]. Известно, что f (– 5) = – 5. Найдите f (4)

Ответ: -5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Раз производная равна нулю на всем промежутке и функция непрерывна, то функция не возрастает и не убывает, то есть сохраняет свое значение. Значит  f(– 5) =f(4)= – 5

 

Задание 1175

Функция у = f (x) определена на отрезке [‐4; 4]. На рисунке приведен график её производной. Найдите промежутки убывания функции. В ответе укажите сумму всех целых x, входящих в эти промежутки.

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Функция убывает, когда производная отрицательная. То есть мы смотрим, где график производной лежит под осью оХ, и выбираем оттуда целые значения Х (в задании надо сумму целых чисел). Важно выбрать значения, где производная равна 0, так как считается, что если функция определена в точках максимума или минимума, то эти точки входят в промежутки возрастания и убывания. Получаем точки -2; -1; 0 ; 1 ; 2 ;3

-2-1+0+1+2+3=3

 

Задание 2350

На рисунке изображен график $$y={f}'(x)$$ – производной функции f (x), определенной на интервале (‐6; 5). Найдите точку экстремума функции f (x), принадлежащую отрезку [-5; 4]

Ответ: -2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
Точка экстремума там, где производная равна 0. Т. к. нам дан график производной, то она равна 0 там, где пересекает ось Ох, т. е. в точке -2.
 

Задание 2365

На рисунке изображен график функции у = f (х), определенной на интервале (−5; 5). Определите количество целых точек этого интервала, в которых производная функции f (х) положительна.

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 2784

На рисунке изображён график $$y={f}'x$$ – производной функции f (x). На оси абсцисс отмечены семь точек: x1, x2, x3, x4, x5, x6, x7 . Сколько из этих точек лежит на промежутках возрастания функции f (x)?

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Промежутки возрастания функции там, где график производной над осью Ox: x1; x2 $$\Rightarrow$$ 2 точки.

 

Задание 2860

На рисунке изображён график y=f′(x) — производной функции f(x), определенной на интервале (-8;4). В какой точке отрезка [-7;-3] функция f(x) принимает наименьшее значение?

Ответ: -7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

На всем отрезке [-7; -3] f'(x) $$\Rightarrow$$ функция возрастает минимальное значение в начале отрезка $$\Rightarrow$$ -7

 

Задание 2938

На рисунке изображен график y=f′(x) - производной функции f(x), определенной на интервале (-12;5). Найдите количество точек минимума функции f(x), принадлежащих отрезку [-10;4].

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$-7; 2$$ $$\Rightarrow$$ 2 точки

 

Задание 2985

На рисунке изображен график функции y=f(x), определенной на интервале (−6;8). Определите количество целых точек, в которых производная функции положительна.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Производная положительная в том случае, когда функция возрастает. Целые абсциссы на графики, где функция возрастает отмечены жирными точками. Их 4

 

Задание 3111

Функция у = f (x) определена на отрезке [-2; 4]. На рисунке приведен график ее производной. Укажите абсциссу точки графика функции у = f (x), в которой она принимает наименьшее значение.

Ответ: -2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Производная $$>0$$ $$\Rightarrow$$ f всегда возрастает $$\Rightarrow$$ в начале промежутка

 

Задание 3283

На рисунке изображен график производной функции y=f′(x), определенной на интервале (−3;9). Найдите промежутки возрастания функции. В ответе укажите сумму целых точек, входящих в эти промежутки.

Ответ: 19
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Раз изображен график производной, то мы должны смотреть промежутки, где этот график находится над осью Ох (так как функция возрастает тогда, когда значение производной положительно). На этих промежутках абсциссы (координаты Х) целые: -2 ; -1 ; 4 ; 5 ; 6 ; 7 (-2) + (-1) + 4 + 5 + 6 + 7 = -3 + 22 = 19

 

Задание 3370

На рисунке изображен график $$y=f'(x)$$ – производной непрерывной функции $$f(x)$$ , определенной на интервале (-4; 7). Найдите количество точек минимума функции $$f(x)$$ , принадлежащих отрезку [-3; 6].

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Первая точка, когда график пересекает ось Ох в точке -2 (значение производной было отрицательным, стало положительным), вторая в точке 2, так как функция по условию непрерывна, а значение производной до этого было отрицательным, значит в этой точке хоть производная и не найдена, но значение функции минимальное на отрезке) и третья в точке 5.

 

Задание 3418

На рисунке изображён график y=f′(x) производной функции f(x), определённой на интервале (- 8; 4). В какой точке отрезка [- 2; 3] функция f(x) принимает наименьшее значение?

Ответ: -2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

На отрезке [- 2; 3] везде $$f'(x)>0$$ $$\Rightarrow$$ $$f(x)$$ везде возрастает $$\Rightarrow$$ $$f_{min}$$ в начале отрезка, т.е. в т. -2

Задание 3616

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции $$f(x)$$, опре­де­лен­ной на ин­тер­ва­ле $$(-6;6)$$. Най­ди­те про­ме­жут­ки воз­рас­та­ния функ­ции $$f(x)$$. В от­ве­те ука­жи­те сумму целых точек, вхо­дя­щих в эти про­ме­жут­ки.

Ответ: 14

Задание 3617

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y = f(x), опре­де­лен­ной на ин­тер­ва­ле (−5; 7). Най­ди­те сумму точек экс­тре­му­ма функ­ции y = f(x).

Ответ: 7,2| 7,1| 7,3

Задание 3618

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y = f(x), опре­де­лен­ной на ин­тер­ва­ле (−6; 8). Опре­де­ли­те ко­ли­че­ство целых точек, в ко­то­рых про­из­вод­ная функ­ции по­ло­жи­тель­на.

Ответ: 4

Задание 3619

На ри­сун­ке изоб­ра­жен гра­фик функ­ции $$y=f(x)$$, опре­де­лен­ной на ин­тер­ва­ле (−5; 5). Опре­де­ли­те ко­ли­че­ство целых точек, в ко­то­рых про­из­вод­ная функ­ции $$f(x)$$ от­ри­ца­тель­на.

Ответ: 7

Задание 3620

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y = f(x), опре­де­лен­ной на ин­тер­ва­ле (−5; 5). Най­ди­те ко­ли­че­ство точек, в ко­то­рых ка­са­тель­ная к гра­фи­ку функ­ции па­рал­лель­на пря­мой y = 6 или сов­па­да­ет с ней

Ответ: 4

Задание 3621

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y = f(x), опре­де­лен­ной на ин­тер­ва­ле (−2; 12). Най­ди­те сумму точек экс­тре­му­ма функ­ции f(x).

Ответ: 44

Задание 3622

На ри­сун­ке изоб­ражён гра­фик y=f'(x) — про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (-8; 3). В какой точке от­рез­ка [-3; 2 ] функ­ция f(x) при­ни­ма­ет наи­боль­шее зна­че­ние?

Ответ: -3

Задание 3623

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−8; 4). В какой точке от­рез­ка [−7; −3] f(x) при­ни­ма­ет наи­мень­шее зна­че­ние?

Ответ: -7

Задание 3624

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−7; 14). Най­ди­те ко­ли­че­ство точек мак­си­му­ма функ­ции f(x) на от­рез­ке [−6; 9].

Ответ: 1

Задание 3625

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−18; 6). Най­ди­те ко­ли­че­ство точек ми­ни­му­ма функ­ции f(x) на от­рез­ке [−13;1].

Ответ: 1

Задание 3626

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−11; 11). Най­ди­те ко­ли­че­ство точек экс­тре­му­ма функ­ции f(x) на от­рез­ке [−10; 10].

Ответ: 5

Задание 3627

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−7; 4). Най­ди­те про­ме­жут­ки воз­рас­та­ния функ­ции f(x). В от­ве­те ука­жи­те сумму целых точек, вхо­дя­щих в эти про­ме­жут­ки.

Ответ: -3

Задание 3628

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−5; 7). Най­ди­те про­ме­жут­ки убы­ва­ния функ­ции f(x). В от­ве­те ука­жи­те сумму целых точек, вхо­дя­щих в эти про­ме­жут­ки.

Ответ: 18

Задание 3629

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−11; 3). Най­ди­те про­ме­жут­ки воз­рас­та­ния функ­ции f(x). В от­ве­те ука­жи­те длину наи­боль­ше­го из них.

Ответ: 6

Задание 3630

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−2; 12). Най­ди­те про­ме­жут­ки убы­ва­ния функ­ции f(x). В от­ве­те ука­жи­те длину наи­боль­ше­го из них.

Ответ: 6

Задание 3631

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−10; 2). Най­ди­те ко­ли­че­ство точек, в ко­то­рых ка­са­тель­ная к гра­фи­ку функ­ции f(x) па­рал­лель­на пря­мой y = −2x − 11 или сов­па­да­ет с ней.

Ответ: 5

Задание 3632

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−4; 8). Най­ди­те точку экс­тре­му­ма функ­ции f(x) на от­рез­ке [−2; 6].

Ответ: 4

Задание 3633

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y=f(x) , опре­де­лен­ной на ин­тер­ва­ле (−3; 9) . Най­ди­те ко­ли­че­ство точек, в ко­то­рых про­из­вод­ная функ­ции f(x) равна 0.

Ответ: 5

Задание 3634

На ри­сун­ке изоб­ражён гра­фик $$y=f'(x)$$- про­из­вод­ной функ­ции f(x).На оси абс­цисс от­ме­че­ны во­семь точек: x1, x2, x3, ..., x8. Сколь­ко из этих точек лежит на про­ме­жут­ках воз­рас­та­ния функ­ции f(x) ?

Ответ: 3

Задание 3635

На ри­сун­ке изоб­ражён гра­фик $$y=f'(x)$$ про­из­вод­ной функ­ции $$f(x)$$ и во­семь точек на оси абс­цисс: $$x_{1}$$, $$x_{2}$$, $$x_{3}$$, ..., $$x_{8}$$. В сколь­ких из этих точек функ­ция $$f(x)$$ убы­ва­ет?

Ответ: 5

Задание 3636

На ри­сун­ке изоб­ра­жен гра­фик функ­ции $$f(x)$$ и от­ме­че­ны точки −2, −1, 1, 4. В какой из этих точек зна­че­ние про­из­вод­ной наи­мень­шее? В от­ве­те ука­жи­те эту точку.

Ответ: 4

Задание 3637

На ри­сун­ке изоб­ражён гра­фик функ­ции у = f'(x) — про­из­вод­ной функ­ции f(x) опре­делённой на ин­тер­ва­ле (1; 10). Най­ди­те точку ми­ни­му­ма функ­ции f(x).

Ответ: 9

Задание 3638

Функ­ция y = f (x) опре­де­ле­на и не­пре­рыв­на на от­рез­ке [−5; 5]. На ри­сун­ке изоб­ражён гра­фик её про­из­вод­ной. Най­ди­те точку x0, в ко­то­рой функ­ция при­ни­ма­ет наи­мень­шее зна­че­ние, если  f (−5) ≥ f (5).

Ответ: 3

Задание 3639

Функ­ция $$f(x)$$ опре­де­ле­на на про­ме­жут­ке $$(-6;4)$$. На ри­сун­ке изоб­ра­жен гра­фик ее про­из­вод­ной. Най­ди­те абс­цис­су точки, в ко­то­рой функ­ция $$y=f(x)$$ при­ни­ма­ет наи­боль­шее зна­че­ние.

Ответ: -2

Задание 3640

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y = f(x), опре­де­лен­ной на ин­тер­ва­ле (−6; 5). Най­ди­те ко­ли­че­ство точек, в ко­то­рых ка­са­тель­ная к гра­фи­ку функ­ции па­рал­лель­на пря­мой y = −6.

Ответ: 7

Задание 3641

Ма­те­ри­аль­ная точка дви­жет­ся от на­чаль­но­го до ко­неч­но­го по­ло­же­ния. На ри­сун­ке изоб­ражён гра­фик её дви­же­ния. На оси абс­цисс от­кла­ды­ва­ет­ся время в се­кун­дах, на оси ор­ди­нат — рас­сто­я­ние от на­чаль­но­го по­ло­же­ния точки (в мет­рах). Най­ди­те сред­нюю ско­рость дви­же­ния точки. Ответ дайте в мет­рах в се­кун­ду.

Ответ: 1,6
 

Задание 4566

Дан график производной функции $$y=f'(x)$$ и отмечены семь точек: $$x_{1},...,...,x_{7}$$. В скольких из этих точек функция $$y=f(x)$$ возрастает?

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Функция возрастает там, где производная положительна (график над осью Ох): $$x_{1},x_{2},x_{3},x_{4},x_{6}$$ - 5 точек

 

Задание 4907

На рисунке изображен график  производной функции $$y=f'(x)$$,  определенной на интервале (−3; 9). В  какой точке отрезка [−2; 3] $$f(x)$$  принимает наибольшее значение?  

Ответ: -2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

В данном задании необходимо помнит следующее: производная отрицательна, значит функция убывает. В нашем случае график произвольной находится под осью Ох на всем отрезке [-2;3] (то, что он "скачет" никак не убывание функции не влияет: она просто убывает где-то быстрее, где-то медленнее). Раз функция на всем отрезке убывает, то ее наибольшее значение будет в начале отрезка.

 

Задание 4954

На рисунке изображен график  производной функции f (x), определенной  на интервале (−2; 11). Найдите точку  экстремума функции f (x), принадлежащую  отрезку [1; 6].

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Точка экстремума функции там, где производная равна нулю. Так как нам дан график производной, то мы просто ищем пересечение графика с осью Ох. Эта точка с абсциссой 3

 

Задание 5002

На графике производной функции $$y=f'(x)$$ отмечены семь точек: х1,…, х7. Найдите все отмеченные точки, в которых функция f (x) убывает. В ответе укажите количество этих точек.

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 5097

На рисунке изображен график функции $$y=f(x)$$, определенной на интервале$$(-1;13)$$. Определите количество целых чисел $$x_{1}$$, для которых $$f'(x_{1})$$ отрицательно.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

{f}'x<0 тогда, когда f(x) убывает : (0;15)-одно целое (5;9)- три целых (12;13)-ноль целых Всего 4 целых

 

Задание 5234

На рисунке изображен график $$y=f'(x)$$ – производной функции у = f (x), определенной на интервале (−16; 4). Найдите количество точек экстремума функции у = f (x), принадлежащих отрезку [−14; 2].

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Экстремумы функции расположены там, где производная функции равна 0, то есть там, где график производной пересекает ось Ох. На заданном отрезке таких точек 4 (с абсциссами: -13 ; -11 ; -9 ; -7)

 

Задание 6128

На рисунке изображен график функции y=f(x) и отмечены точки ‐7, ‐3, 1, 5. В какой из этих точек значение производной этой функции наибольшее? В ответе укажите эту точку

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Если f(x) возрастает , то f'(x)> 0 , если f(x) убывает, то f'(x)< 0 . В точках -3; 1; 5 f'(x)> 0. При этом касательная в точке 5 имеет большой угол $$\Rightarrow f'_{max}=f'(5).$$

 

Задание 6223

На рисунке изображен график производной $$y=f'(x)$$ функции $$y=f(x)$$ , определенной на интервале (-4;8) . В какой точке отрезка [-3;1] функция $$y=f(x)$$ принимает наименьшее значение?

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

На данном промежутке график функции находится под осью Ох. Т.к. дан график производной , то это значит, что она отрицательная и функция убывает на всем данном промежутке. Тогда наименьшее значение будет в конце промежутка, то есть в точке 1

 

Задание 6271

На рисунке изображен график производной функции f(x), определенной на интервале (‐4;20). Найдите количество точек экстремума функции f(x) , принадлежащих отрезку [0;18]

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Точки экстремума –точки максимума и минимума, то есть когда производная равна 0 (на рисунке отмечены черными точками ). Их на данном промежутке 5.

 

Задание 6461

На рисунке изображен график производной функции $$f(x)$$ , определенной на интервале (‐5;4). Найдите точку минимума функции $$f(x)$$ на этом интервале.

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Точка минимума , когда {f}' переходит с «-» на «+» (был график под Ox, стал над Ox): $$x=3$$

 

Задание 6609

Функция $$y=f(x)$$ определена на всей числовой прямой и является периодической с периодом 4. На рисунке изображен график этой функции при $$-1\leq x \leq 3$$ . Найдите значение выражения $$f(-3)*f(1)*f(11)$$

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

С учетом периодичности функции: $$f(-3)=f(-3+4)=f(1)=-2$$; $$f(1)=-2$$; $$f(11)=f(11-4*2)=f(3)=1$$

Тогда: $$f(-3)*f(1)*f(11)=-2*(-2)*1=4$$

 

Задание 6692

На рисунке изображен график $$y=f'(x)$$ — производной функции $$f(x)$$, определенной на интервале (‐3;14). Найдите промежутки убывания функции $$f(x)$$. В ответе укажите длину наибольшего из них.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Функция убывает там, где $${f}’ (x)<0$$. Убывает на промежутке: (-4;-3) - длина 1; (2;6) - длина 4; (11;13) - длина 2

 

Задание 6798

На рисунке изображен график производной функции f(x), определенной на интервале (−8; 5). В какой точке отрезка [0;4] f(x) принимает наименьшее значение?

Ответ: 0
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

т.к. дан график производной и на $$(-\infty ;-3)$$ - $${f}'<0$$, а на $$(-3; +\infty )$$ - $${f}'>0$$ $$\Rightarrow$$ $$x=-3$$ - точка минимума. Но на отрезке $$[0; 4]$$ -  $$f'>0$$$$\Rightarrow$$ $$f_{min}=f(0)$$ (функция врзрастает на всем промежутке, следовательно, меньшее значение функции в начале промежутка)

 

Задание 6869

Функция y=f(x) определена на отрезке [‐2; 4]. На рисунке дан график её производной. Найдите абсциссу точки графика функции y=f(x) , в которой она принимает наименьшее значение.

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

При x=1 имеем , что $${f}'(x)=0$$, при этом на промежутке [-2; 1): $${f}'(x)<0$$, а на (1;4]: $${f}'>0$$$$\Rightarrow$$ $$x=1$$ - точка минимума и $$f_{min}=f(1)$$

 

Задание 7193

Функция $$f(x)$$ определена на отрезке [‐4; 5]. На рисунке приведен график ее производной $$f'(x)$$. По графику определите количество критических точек функции $$y=f(x)$$.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Необходимо определить точки , где производная равна 0 или не существует : $$-3;-1; \approx 0,4 ; 2$$ - 4 штуки (т.к. дан график производной, то смотрим , где он пересекает ось Ox или значение по х, где $$f^{'}(x)$$ не существует – пустая точка)

 

Задание 7214

Функция у = f (x) определена на отрезке [‐3; 5]. На рисунке дан график её производной. Найдите количество точек минимума функции у = f (x).

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Точка минимума на графике производной это точка, где производная равна нулю и график производной убывает $$\Rightarrow$$ есть на (-3; -2) и на $$(2; 3)\Rightarrow$$ 2 точки

 

Задание 7887

На рисунке изображен график $$y=f'(x)$$ ‐ производной функции $$f(x)$$, определенной на интервале $$(-10;10)$$. Найдите количество точек максимума функции $$f(x)$$ , принадлежащих отрезку $$[-9;8]$$

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8280

На рисунке изображен график функции $$y=f'(x)$$ , где $$f'(x)$$ ‐ производная функции $$y=f(x)$$. В какой из точек ‐3; ‐2; ‐1; 0; 1 значение функции наибольшее? В ответе укажите эту точку.

Ответ: -3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8299

На рисунке изображен график функции $$y=f(x)$$. На оси абсцисс отмечены точки ‐2, ‐1, 1, 4. Какое из значений выражений

  1. $$f'(-2)-f'(-1)-f'(-4)$$
  2. $$f'(-1)\cdot f'(-4)+f'(1)$$
  3. $$f'(-1)-f'(1)-f'(-2)$$
  4. $$f'(-1)\cdot f'(4)+f'(-2)$$

является наименьшим? В ответе укажите номер этого выражения.

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8318

На рисунке изображен график функции $$y=f'(x)$$ , где $$f'(x)$$ ‐ производная функции $$y=f(x)$$, и отмечены 7 точек: A, B, C, D, E, F, G. Сколько из этих точек принадлежат промежуткам возрастания функции?

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8336

Когда Хакер Zero занят делом, температура его процессора растёт. Справа представлен график производной от функции температуры процессора за сутки, длящиеся от ‐12 до 12 по оси абсцисс. Определите, сколько часов за эти сутки хакер был занят делом?

Ответ: 11
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8674

На рисунке изображен график функции $$y=f'(x)$$, где $$f'(x)$$ ‐ производная функции $$y=f(x)$$, определенной на интервале (‐19;2) Найдите наибольшую из точек экстремума функции $$y=f(x)$$.

Ответ: -6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8691

На рисунке изображён график $$y=f'(x)$$ производной функции $$f(x)$$, определённой на интервале (-4;7). В какой точке отрезка [-2; 2] функция $$f(x)$$ принимает наименьшее значение?

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8711

На рисунке изображён график $$y=f'(x)$$ производной функции $$f(x)$$, определённой на интервале (-3;8). В какой точке отрезка [-2; 3] функция $$f(x)$$ принимает наименьшее значение?

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8734

На рисунке изображён график $$y=f'(x)$$ — производной функции $$f(x)$$, определённой на интервале (-1;13). Найдите количество точек, в которых касательная к графику функции $$f(x)$$ параллельна прямой $$y=x+18$$ или совпадает с ней.

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8753

На рисунке изображён график $$y=f'(x)$$ производной функции $$f(x)$$, определённой на интервале (-2;11). Найдите количество точек, в которых касательная к графику функции $$f(x)$$ параллельна прямой $$y=-2x-5$$ или совпадает с ней.

Ответ: 6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8865

На рисунке изображен график неравномерного прямолинейного движения тела и касательная к этому графику в точке с абсциссой $$t_{0}$$. По оси абсцисс откладывается время в секундах, по оси ординат – расстояние в метрах. Найдите мгновенную скорость этого тела в момент времени $$t_{0}$$. Ответ дайте в м/с.

Ответ: 0,625
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9239

На рисунке изображён график функции $$y=f(x)$$. На оси абсцисс отмечено восемь точек: x1, x2, ... , x8. Найдите количество точек, в которых производная функции $$f(x)$$ положительна.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 9336

На рисунке изображен график функции $$y=f'(x)$$ , где $$f'(x)$$ ‐ производная функции $$y=f(x)$$, определенной на интервале (‐2;9). В какой из точек 4, 5, 6, 7 значение функции $$y=f(x)$$ будет наибольшим? В ответе укажите эту точку.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9376

На рисунке изображён график $$y=f'(x)$$ - производной функции $$f(x)$$, определённой на интервале (-19; 3). Найдите количество точек экстремума функции $$f(x)$$, принадлежащих отрезку [-17;-4].

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9481

На рисунке изображён график $$y=f'(x)$$ - производной функции f(х). На оси абсцисс отмечено девять точек: х1 х2, ..., х9. Найдите количество точек, лежащих на промежутках возрастания функции f(х).

Ответ: 6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9501

На рисунке изображен график функции $$y=f'(x)$$ , где $$f'(x)$$ ‐ производная функции $$y=f(x)$$, определенной на интервале (‐18;4). Найдите точки максимума функции $$y=f(x)$$. В ответ запишите их сумму.

Ответ: -12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9654

На рисунке изображён график $$y=f'(x)$$ - производной функции f(х), определённой на интервале (-4;8). Найдите точку экстремума функции f(х), принадлежащую отрезку [1;6].

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9774

На рисунке изображен график $$y=f'(x)$$ - производной функции $$f(x)$$, определенной на интервале (‐5;19). Найдите количество точек максимума функции $$f(x)$$, принадлежащих отрезку [‐3;15].

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9869

На рисунке изображён график производной функции y = f'(x), определённой на интервале (–4; 5). Найдите сумму абсцисс точек экстремума функции f(x).

Ответ: 0
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9941

На рисунке изображен график функции f(x) и касательная к этому графику, проведенная в точке x0. Уравнение касательной дано на рисунке. Найдите значение производной функции y=2f(x)-1 в точке x0

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10045

На рисунке изображён график $$y=f'(x)$$ производной функции f(x). На графике отмечены семь точек. Сколько из этих точек принадлежит промежуткам убывания функции f(x)?

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10161

Функция $$y=f(x)$$ определена на промежутке (‐2;7). На рисунке изображен график ее производной. Найдите абсциссу точки, в которой функция принимает наибольшее значение.

Ответ: 3
 

Задание 10207

Найдите значение функции $$y=\frac{3f(x)-2f(-x)}{2g(x)-3g(-x)}$$ в точке x0, если известно, что функция $$y=f(x)$$ четная, функция $$y=g(x)$$ нечетная, $$f(x_0)=5$$, $$g(x_0)=1$$

Ответ: 1
 

Задание 10490

На рисунке изображен график четной функции $$y=g(x)$$ на отрезке [-4;0]. Функция определена на всей числовой оси. Вычислите $$g(4)+2g(1)-\frac{g(0)}{g(2)}$$

Ответ: -1,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10569

Функция $$y=f\left(x\right)$$ определена на промежутке $$\left(-2;7\right)$$. На рисунке изображен график ее производной. Найдите точку $$x_0$$, в которой функция $$f\left(x\right)$$ принимает наибольшее значение.

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть На графике производной $$f'\left(3\right)=0$$, при этом при $$x<3:f'(x)>0$$, при $$x>3:f'\left(x\right)<0\to x=3$$ - точка максимума и в ней на данном промежутке наибольшее значение функции.
 

Задание 10589

На рисунке изображен график функции $$y=f(x)$$, определенной на интервале $$(-6;8)$$. Определите количество целых точек, в которых производная функции положительна.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть $$f'\left(x\right)>0$$ на промежутках возрастания $$f(x)$$ т.е. $$x\in \ \left[-3;0\right]\cup \left[\approx 4,5;7\right]$$ без учета точек максимума и минимума, т.е. -3;0 и 7. Тогда целые $$x:\ -2;-1;5;6\to $$ 4 целых точки
 

Задание 10685

Прямая $$y=7x+28$$ является касательной к графику функции $$y=ax^2-21x+3a$$. Найдите значение коэффициента $$a$$, если известно, что абсцисса точки касания положительна.

Ответ: 14
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Т. к. касательная, то $$(7x+28)'=(ax^2-21x+3a)'$$ и $$7x+28=ax^2-21x+3a$$.

Получим: $$\left\{ \begin{array}{c} 7=2ax-21 \\ ax^2-28x+3a-28=0 \\ x>0 \end{array} \right.\to $$$$\left\{ \begin{array}{c} a=\frac{14}{x} \\ 14x-28x+\frac{42}{x}-28=0 \\ x>0 \end{array} \right.$$; $$\frac{42}{x}-14x-28=0\to$$$$ -14x^2-28x+42=0\to$$$$ x^2+2x-3=0\to$$

$$\to \left[ \begin{array}{c} x_1=-3<0 \\ x_2=1\to a=\frac{14}{1}=14 \end{array} \right.$$

 

Задание 10834

На рисунке изображён график $$у\ =\ f'(x)$$ - производной функции $$f(x)$$. На оси абсцисс отмечены девять точек: $$x_1,\ x_2,\dots ,x_9$$. Сколько из этих точек лежит на промежутках возрастания функции $$f(x)$$?

Ответ: 4
Скрыть При возрастании функции значение производной положительно. Следовательно, чтобы определить точки, в которых производная возрастает, нужно выбрать те из них, которые находятся выше оси OX. Анализ рисунка показывает, что это точки $$x_1,x_2,x_5,x_6$$, т.е. 4 точки.
 

Задание 10929

На рисунке изображён график функции $$у = f(x)$$, определённой на интервале (-5; 9). Найдите количество решений уравнения $$f'(x) = 0$$ на отрезке [-2; 8].

Ответ: 7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть $$f'(x)\ =\ 0$$ там, где точки перегиба (отмечены на рисунке) $$\to $$ 8 точек, но на интервале [-2; 8] их 7 штук.
 

Задание 11334

На рисунке изображен график $$y=f'(x)$$ ‐ производной функции $$f(x)$$, определенной на интервале $$(-6;7)$$. В какой точке отрезка $$[-4;2]$$ функция $$f(x)$$ принимает наименьшее значение?

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11704

Для четной функции f(x) и нечетной функции g(x) для всех действительных значений аргумента выполнено равенство $$f(x)+g(x)=x^{2}+3x-2$$. Найдите значения выражения $$f'(2)-4g'(3)$$

Ответ: -8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11723

На рисунке показан график функции $$f(x)$$. Найдите на отрезке [‐15; 17] наименьшую длину промежутка, на котором совпадают знаки функции $$g(x)=f(x)+333$$ и её производной.

Ответ: 6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11742

На рисунке изображен график функции $$y=f(x)$$, определенной и дифференцируемой на интервале $$(-10;2)$$. Найдите наименьшую из длин промежутков, в каждой точке каждого из которых производная этой функции неположительна.

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11761

На рисунке изображен график функции $$y=f'(x)$$ , где $$f'(x)$$ ‐ производная функции $$y=f(x)$$ , определенной на интервале $$(-1;12)$$ .

Значение какой из сумм:

  1. $$f(8)+f(10)$$
  2. $$f(5)+f(7)$$
  3. $$f(6)+f(8)$$
  4. $$f(7)+f(9)$$

будет наименьшим? В ответе укажите номер этой суммы.

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12305

На рисунке изображён график $$y\ =\ f(x)$$ - производной функции f(x). На оси абсцисс отмечены 10 точек: $$x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_{10}.$$ Сколько из этих точек лежит на промежутках убывания функции f(x)?

Ответ: 6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12325

На рисунке изображён график $$y\ =\ f(x)$$ - производной функции $$f(x)$$, определённой на интервале $$(-8;\ 3).$$ В какой точке отрезка$$\ [-5;\ 0]$$ функция $$f(x)$$ принимает наибольшее значение?

Ответ: -3
 

Задание 12345

На рисунке изображён график функции $$y\ =\ f(x)$$, определённой на интервале (-9; 2). Определите количество целых точек, в которых производная функции отрицательна.

Ответ: 4
 

Задание 12386

На рисунке изображён график $$y\ =\ f'(x)$$ - производной функции $$f(x)$$, определённой на интервале (-4; 7). В какой точке отрезка [-2; 2] функция $$f(x)$$ принимает наименьшее значение?

Ответ: 2
 

Задание 12406

На рисунке изображён график $$y=\ f'(x)$$ - производной функции $$f(x)$$, определённой на интервале (-3; 8). В какой точке отрезка [-2; 3] функция $$f(x)$$ принимает наименьшее значение?

Ответ: 3
 

Задание 12606

На рисунке изображён график функции $$y=\ f(x).$$ На оси абсцисс отмечено восемь точек: $$x_1,\ x_2,\ ...\ x_8.$$ Найдите количество точек, в которых производная функции $$f(x)$$ положительна.

Ответ: 7
 

Задание 12666

На рисунке изображён график $$y=\ f'(x)$$ - производной функции $$f\left(x\right),$$ определённой на интервале (-4; 8). Найдите точку экстремума функции $$f\left(x\right),$$ принадлежащую отрезку [1; 6].

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12868

На рисунке изображён график $$y\ =\ f'(x)$$- производной функции $$f(x)$$, определённой на интервале (-19; 3). Найдите количество точек экстремума функции $$f(x)$$, принадлежащих отрезку [-17; -4].

 

Ответ: 4
 

Задание 12887

На рисунке изображён график $$y=f'(x)$$ - производной функции $$f(x)$$. На оси абсцисс отмечено девять точек: $$x_1,x_2,\dots ,x_9.$$ Найдите количество точек, лежащих на промежутках возрастания функции $$f(x)$$.

Ответ: 6
 

Задание 13685

На рисунке изображён график y=f’(x) — производной функции f(x), определённой на интервале (-9; 6). Найдите промежутки убывания функции f(х). В ответе укажите длину наибольшего из них.

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13768

На рисунке изображён график у=f'(x) — производной функции f(x), определённой на интервале (-1; 17). Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!