Перейти к основному содержанию

ЕГЭ Профиль

(C6) Задача с параметром

Уравнения с параметром

 

Задание 10172

Найдите все значения параметра a , при каждом из которых уравнение $$a+\sqrt{6x-x^2-8}=3+\sqrt{1+2ax-a^2-x^2}$$ имеет единственное решение

Ответ: $$[2;3);(3;4]$$
 

Задание 10395

Найти все значения параметра a, при которых уравнение $$\frac{(x^{2}-4x+a)^{3}}{2}=(a-4x)(3x^{4}+(a-4x)^{2})$$ имеет единственное решение на промежутке $$(-2-\sqrt{2};0]$$

Ответ: $$-4;[-2;0]$$
 

Задание 10501

Найдите все значения параметра a, при каждом из которых уравнение
$$(1+a^{2})x^{6}+3a^{2}x^{4}+2(1-6a)x^{3}+3a^{2}x^{2}+a^{2}+1=0$$
имеет единственное решение.
Ответ: -1,5;0;0,5;1
 

Задание 10532

Найдите все значения а, при каждом из которых уравнение $$\sqrt{2-5x}\cdot \ln(36x^{2}-a^{2})=\sqrt{2-5x}\cdot \ln(6x+a)$$ имеет ровно один корень.

Ответ: $$(\frac{-12}{5};-\frac{1}{2}]\cup[\frac{7}{5};\frac{12}{5})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10600

Найдите все значения параметра $$a$$, при каждом из которых уравнение

$$a\sqrt{1-\frac{1}{x^2}}+\left|1-\frac{\left|x\right|}{2}\right|=1$$

имеет ровно два различных корня.

Ответ: $$(-\infty;1),(\frac{2}{\sqrt{3}};+\infty)$$
 

Задание 10736

Найти все значения $$a$$ при каждом из которых уравнение $$\left(7x-6\right){\ln \left(x+a\right)\ }=(7x-6){\ln \left(4x-a\right)\ }$$ имеет единственный корень на отрезке $$[0;1]$$.

Ответ: одно решение при $$-\frac{6}{7}<a\le 0;a=\frac{9}{7};\frac{3}{2}<a<\frac{24}{7}$$
Скрыть

ОДЗ $$\left\{ \begin{array}{c} x+a>0 \\ 4x-a>0 \end{array} \to \left\{ \begin{array}{c} a>-x \\ a<4x \end{array} \right.\right.$$

$$\left(7x-6\right)\left({\ln \left(x+a\right)\ }-{\ln \left(4x-a\right)\ }\right)=0$$

$$1: 7x-6=0\to x=\frac{6}{7}$$

$$2: {\ln \left(x+a\right)\ }-{\ln \left(4x-a\right)\ }=0\to x+a=4x-a\to x=\frac{2a}{3}$$

3 случая:

1) корни совпадают $$\frac{6}{7}=\frac{2a}{3};a=\frac{9}{7};$$

2) $$x=\frac{2a}{3}\in [0;1]$$ и с учетом ОДЗ $$\to $$ $$0<a\le 1,5$$

3) $$x=\frac{6}{7}$$ удовлетворяет ОДЗ, если $$-\frac{6}{7}<a<\frac{24}{7}$$

 

Задание 10756

Найдите все значения параметра $$a$$, при каждом из которых уравнение $$\left(9x-4\right){\ln \left(x+a\right)\ }=(9x-4){\ln \left(2x-a\right)\ }$$ имеет ровно один корень на отрезке $$\left[0;1\right]$$.
Ответ: $$(-\infty;3)$$
Скрыть

Найдем ограничения на переменную и на параметр $$\left\{ \begin{array}{c}x+a>0 \\ 2x-a>0\end{array}\to \left\{ \begin{array}{c}a>-x \\ a<2x \end{array}\right.\right.\to -x<a<2x$$; 
$$\left(9x-4\right){\ln \left(x+a\right)\ }-\left(9x-4\right){\ln \left(2x-a\right)\ }=0; \left(9x-4\right)\left({\ln \left(x+a\right)\ }-{\ln \left(2x-a\right)\ }\right)=0;$$

Произведение двух множителей равно нулю тогда и только тогда, когда один из множителей равен нулю, а другой при этом не теряет смысла. Перейдем к совокупности. $$\left[ \begin{array}{c}9x-4=0 \\ {\ln \left(\frac{x+a}{2x-a}\right)=0\ } \end{array}\right.\to \left[ \begin{array}{c}9x-4=0 \\ \frac{x+a}{2x-a}=1 \end{array}\right.$$.

С учетом ограничения, получим $$\left\{ \begin{array}{c}\left[ \begin{array}{c}9x-4=0 \\ a=\frac{1}{2}x\end{array}\right. \\ -x<a<2x \end{array}\right.\to \left\{ \begin{array}{c}\left[ \begin{array}{c}x=\frac{4}{9} \\ a=\frac{1}{2}x \end{array}\right. \\ -x<a<2x \end{array}\right.$$ 

Решим систему координатно-параметрическим методом: 

Для вычисления параметра необходимо знать координаты точек. 

1) В точке $$N\ \left(\frac{4}{9};-\frac{4}{9}\right)\to \left\{ \begin{array}{c}a=-x \\ x=\frac{4}{9} \end{array}\right.\to a=-\frac{4}{9}$$ - нет решений.

2) На промежутке от N до B $$\to a\in (-\frac{4}{9};0)$$ - одно решение. 

3) В точке $$B\ \left(1;0\right)\to \left\{ \begin{array}{c}a=0 \\ x=1 \end{array}\right.\to a=0$$ - одно решение.

4) На промежутке от B до A $$\to a\in (0;\frac{2}{9})$$ - два решения.

5) В точке $$A\left(\frac{4}{9};\frac{2}{9}\right)\to \left\{ \begin{array}{c}a=\frac{1}{2}x \\ x=\frac{4}{9} \end{array}\right.\to a=\frac{2}{9}$$ - одно решение.

6) На промежутке от A до M $$\to a\in (\frac{2}{9};\frac{1}{2})$$ - два решения. 

7) В точке $$M\left(1;\frac{1}{2}\right)\to \left\{ \begin{array}{c}a=\frac{1}{2}x \\ x=1 \end{array}\right.\to a=\frac{1}{2}$$ - два решения. 

8) На промежутке от M до L $$\to a\in (\frac{1}{2};\frac{8}{9})$$ - одно решение. 

9) В точке $$L\ \left(\frac{4}{9};\frac{8}{9}\right)\to \left\{ \begin{array}{c}a=2x \\ x=\frac{4}{9} \end{array}\right.\to a=\frac{8}{9}$$ - нет решений.

 

Задание 10902

Найдите все значения а, при каждом из которых уравнение $$\left|\frac{7}{x}-4\right|=ax-3$$ на промежутке $$(0;+\infty )$$ имеет более двух корней.

Ответ: $$\frac{12}{7}<a<\frac{7}{4}$$
Скрыть

Рассмотрим функции $$f\left(x\right)=ax-3,\ g\left(x\right)=\left|\frac{7}{x}-4\right|$$. Исследуем уравнение $$f\left(x\right)=g(x)$$ на промежутке $$(0;+\infty )$$. 

При $$a\le 0$$ все значения функции $$f(x)$$ на промежутке $$(0;+\infty )$$ отрицательны, а все значения функции $$g(x)$$ - неотрицательны, поэтому при $$a\le 0$$ уравнение $$f\left(x\right)=g(x)$$ не имеет решений на промежутке $$(0;+\infty )$$.

При $$a>0$$ функция $$f(x)$$ возрастает. Функция $$g(x)$$ бывает на промежутке $$(0;\frac{7}{4}]$$, поэтому уравнение $$f\left(x\right)=g(x)$$ имеет не более одного решения на промежутке $$(0;\frac{7}{4}]$$, причём решение будет существовать тогда и только тогда, когда $$f(\frac{7}{4})\ge g(\frac{7}{4})$$, откуда получаем $$a\cdot \frac{7}{4}-3\ge 0$$, то есть $$a\ge \frac{12}{7}$$.

На промежутке$$\ (\frac{7}{4};+\infty )$$ уравнение $$f\left(x\right)=g(x)$$ принимает вид $$ax-3=4-\frac{7}{x}$$. Это уравнение сводится к уравнению $$ax^2-7x+7=0$$. Будем считать, что $$a>0$$, поскольку случай $$a\le 0$$ был рассмотрен ранее. Дискриминант квадратного уравнения $$D=49-28a$$, поэтому при $$a>\frac{7}{4}$$ это уравнение не имеет корней; при $$a=\frac{7}{4}$$ уравнение имеет единственный корень, равный 2; при $$0<a<\frac{7}{4}$$ уравнение имеет два корня.

Если уравнение имеет два корня $$x_1,\ x_2$$, то есть $$0<a<\frac{7}{4}$$, то больший корень $$x_2=\frac{7+\sqrt{D}}{2a}>\frac{7}{2a}>2>\frac{7}{4}$$, поэтому он принадлежит промежутку $$(\frac{7}{4};+\infty )$$. Меньший корень $$x_1$$ принадлежит промежутку $$(\frac{7}{4};+\infty )$$ тогда и только тогда, когда $$a\left(x_1-\frac{7}{4}\right)\left(x_2-\frac{7}{4}\right)=a{\left(\frac{7}{4}\right)}^2-7\cdot \frac{7}{4}+7=\frac{7\left(7a-12\right)}{16}>0$$ то есть $$a>\frac{12}{7}$$.

Таким образом, уравнение $$\left|\frac{7}{x}-4\right|=ax-3$$имеет следующее количество корней на промежутке $$(0;+\infty )$$:

- нет корней при $$a\le 0$$;

- один корень при $$0<a<\frac{12}{7},\ a>\frac{7}{4}$$;

- два корня при $$a=\frac{12}{7},\ a=\frac{7}{4}$$;

- три корня при $$\frac{12}{7}<a<\frac{7}{4}$$;

 

Задание 11024

Найдите все значения параметра $$a$$, при каждом из которых уравнение $$f\left(x\right)=\left|a+2\right|\sqrt[3]{x}$$ имеет четыре решения, где $$f$$ - четная периодическая функция с периодом $$T=\frac{16}{3}$$, определенная на всей числовой прямой, причем $$f\left(x\right)=ax^2,$$ если $$0\le x\le \frac{8}{3}.$$

Ответ: $$-\frac{18}{41}; \frac{18}{23}$$
Скрыть

$$1. a>0;$$ $$ax^2=\left|a+2\right|\sqrt[3]{x}\to \frac{64a}{9}=\left|a+2\right|\sqrt[3]{8}\to a=\frac{18}{23};$$

$$2. a<0;$$ $$\frac{64a}{9}=\left|a+2\right|\sqrt[3]{-8}\to \left|a+2\right|=-\frac{32a}{9}>0\to \left[ \begin{array}{c} a+2=-\frac{32a}{9} \\ a+2=\frac{32a}{9} \end{array} \right.\to \left[ \begin{array}{c} a=-\frac{18}{41} \\ a=\frac{18}{23} \end{array} \right.$$

$$a=\frac{18}{23}$$ - посторонний корень.

 

Задание 11109

Найдите наименьшее натуральное значение $$a$$, при котором расстояние между наибольшим и наименьшим корнями уравнения $$\left(x-a+4\right)\left(x^2-ax+4a-17\right)=0$$ не меньше 9.
Ответ:
Скрыть

Имеем: $$x_A=\frac{a-\sqrt{a^2-16a+68}}{2};x_B=\frac{a+\sqrt{a^2-16a+68}}{2};x_C=a-4.$$

При всех значениях параметра $$a$$ дискриминант квадратного уравнения положителен.

Покажем, что при всех значениях $$a$$ выполняется неравенство $$x_B\ge x_C:$$ $$\frac{a+\sqrt{a^2-16a+68}}{2}=\frac{a+\sqrt{{\left(a-8\right)}^2+4}}{2}\ge \frac{a+\sqrt{{\left(a-8\right)}^2}}{2}=$$ $$=\frac{a+\left|a-8\right|}{2}\ge \frac{a+\left(a-8\right)}{2}=(a-4)$$ Покажем, что при всех значениях $$a$$ выполняется неравенство $$x_A\le x_C:$$ $$\frac{a-\sqrt{a^2-16a+68}}{2}=\frac{a+\sqrt{{\left(a-8\right)}^2+4}}{2}\le \frac{a-\sqrt{{\left(a-8\right)}^2}}{2}=$$ $$=\frac{a-\left|a-8\right|}{2}\le \frac{a+\left(a-8\right)}{2}=(a-4)$$ Следовательно, при всех значениях параметра $$a$$ выполняется неравенство $$x_A\le x_C\le x_B.$$

По условию, $$x_B-x_A\ge 9\leftrightarrow \sqrt{a^2-16a+68}\ge 9\leftrightarrow a^2-16a+68\ge 81\leftrightarrow $$ $$\leftrightarrow a^2-16a-13\ge 0.$$

Поскольку $$a$$ - натуральное число, $$a\ge 8+\sqrt{77}.$$ Минимальное натуральное значение $$a$$ равно 17. $$\left[ \begin{array}{c} x-a+4=0 \\ x^2-ax+4a-17=0 \end{array} \right.\leftrightarrow \left[ \begin{array}{c} a=x+4 \\ a=x+4-\frac{1}{x-4} \end{array} \right.$$

В параметрической плоскости $$Oxa$$ получим две кривые и одну наклонную линии. При $$a=17$$ расстояние между $$x_B,\ x_A$$ превысит число 9.

 

Задание 11380

Найдите все значения а, при каждом из которых среди корней уравнения $$3x^{2}-24x+64=a|x-3|$$ будет ровно три положительных.

Ответ: $$6+2\sqrt{57};(21\frac{1}{3};+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11772

Найдите наименьшее целое значение параметра а, при котором уравнение $$|\frac{7-|x|}{|x|-2}|=a$$ имеет ровно четыре корня.

Ответ: 4
 

Задание 12286

Найдите все значения а, при каждом из которых среди корней уравнения

$$x^2-10x+35=a\left |x-6\right |$$

будет ровно два положительных.

Ответ: $$(2\sqrt{11}-2; 5\frac{5}{6}); 2+2\sqrt{11}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12397

Найдите все значения $$a$$, при каждом из которых уравнение $$\frac{\left|3x\right|-2x-2-a}{x^2-2x-a}=0$$ имеет ровно два различных корня.

Ответ: $$-2<a<-1; -1<a<0; 0<a<3; 3<a<8; a>8$$
 

Задание 12417

Найдите все значения a, при каждом из которых уравнение

$$\frac{\left|x-6\right|+a-6}{x^2-10x+a^2}=0$$

имеет ровно два различных корня.

Ответ: $$a<0; 0<a<3; 3<a<4; 4<a<5; 5<a<6$$
Скрыть

Преобразуем исходное уравнение:

$$\frac{|x-6|+a-6}{x^2-10x+a^2}=0\Leftrightarrow\left\{\begin{matrix} |x-6|=6-a,\\ x^2-10x+a^2\neq0 \end{matrix}\right.\Leftrightarrow\left\{\begin{matrix} \left[\begin{matrix} x=a,\\ x=12-a, \end{matrix}\right.\\ a\leq6,\\ x^2-10x+a^2\neq0. \end{matrix}\right.$$

Чтобы уравнение имело два различных корня, числа a и 12 − a должны быть различны, поэтому $$a\neq12-a,$$ откуда $$a\neq6.$$ Таким образом, $$a<6$$ и ни одно из чисел a и 12 − a не должно являться корнем уравнения $$x^2-10x+a^2=0.$$ Подставляя эти числа в уравнение $$x^2-10x+a^2,$$ найдем, при каких a они являются корнями:

1) из $$a^2-10a+a^2=0,$$ получаем: a=0 или a=5;

2) из $$(12-a)^2-10(12-a)+a^2=0,$$ получаем:

$$2a^2-14a+24=0\Leftrightarrow a^2-7a+12=0\Leftrightarrow\left[\begin{matrix} a=3,\\ a=4. \end{matrix}\right.$$

Тем самым одновременно: $$a<6,a\neq0,a\neq3,a\neq4,a\neq5.$$