ОГЭ
Задание 11783
Рабочие прокладывают тоннель длиной 500 метров, ежедневно увеличивая норму прокладки на одно и то же число метров. Известно, что за первый день рабочие проложили 3 метра тоннеля. Определите, сколько метров тоннеля проложили рабочие в последний день, если вся работа была выполнена за 10 дней.
Задание 11638
Бригада маляров красит забор длиной 150 метров, ежедневно увеличивая норму покраски на одно и то же число метров. Известно, что за первый и последний день в сумме бригада покрасила 75 метров забора. Определите, сколько дней бригада маляров красила весь забор.
Задание 11618
Вика решила начать делать зарядку каждое утро. В первый день она сделала 30 приседаний, а в каждый последующий день она делала на одно и то же количество приседаний больше, чем в предыдущий день. За 15 дней она сделала всего 975 приседаний. Сколько приседаний сделала Вика на пятый день?
Задание 11595
Рабочие прокладывают тоннель длиной 87 метров, ежедневно увеличивая норму прокладки на одно и то же число метров. Известно, что за первый день рабочие проложили 7 метров тоннеля. Определите, сколько метров тоннеля проложили рабочие в последний день, если вся работа была выполнена за 6 дней.
Задание 11573
Врач прописал больному капли по следующей схеме: в первый день 10 капель, а в каждый следующий день — на 10 капель больше, чем в предыдущий, до тех пор, пока дневная доза не достигнет 60 капель. Такую дневную дозу (60 капель) больной ежедневно принимает пять дней, а затем уменьшает приём на 10 капель в день до последнего дня, когда больной принимает последние десять капель. Сколько пузырьков лекарства нужно купить на весь курс, если в каждом пузырьке 5 мл лекарства, то есть 130 капель?
Задание 11551
Врач прописал больному капли по следующей схеме: в первый день 5 капель, а в каждый следующий день — на 5 капель больше, чем в предыдущий, до тех пор, пока дневная доза не достигнет 40 капель. Такую дневную дозу (40 капель) больной ежедневно принимает пять дней, а затем уменьшает приём на 5 капель в день до последнего дня, когда больной принимает последние десять капель. Сколько пузырьков лекарства нужно купить на весь курс, если в каждом пузырьке 10 мл лекарства, то есть 200 капель?
Задание 11530
Алик, Миша и Вася покупали блокноты и шестирублёвые карандаши. Алик купил 2 блокнота и 4 карандаша, Миша — блокнот и 6 карандашей, Вася — блокнот и 3 карандаша. Оказалось, что суммы, которые уплатили Алик, Миша и Вася, образуют геометрическую прогрессию. Сколько рублей стоит блокнот? Цена блокнота в рублях – рациональное число.
Задание 11507
Хозяин договорился с рабочими, что они копают колодец на следующих условиях: за первый метр он заплатит им 3500 рублей, а за каждый следующий метр — на 1600 рублей больше, чем за предыдущий. Сколько рублей хозяин должен будет заплатить рабочим, если они выкопают колодец глубиной 9 метров?
Задание 11292
В 11:00 часы сломались и за каждый следующий час отставали на одно и то же количество минут по сравнению с предыдущим часом. В 21:00 того же дня часы отставали на двадцать минут. На сколько минут отставали часы спустя 24 часа после того, как они сломались?
Задание 11250
Два приятеля положили в банк по 10 000 рублей каждый, причем первый положил деньги на вклад с ежеквартальным начислением 10%, а второй — с ежегодным начислением 45%. Через год приятели получили деньги вместе с причитающимися им процентами. На сколько рублей больше получил первый приятель по сравнению со вторым приятелем?
Задание 11162
Задание 10974
В течение 20 банковских дней акции компании дорожали ежедневно на одну и ту же сумму. Сколько стоила акция компании в последний день этого периода, если в 9-й день акция стоила 888 рублей, а в 13-й день — 940 рублей?
Задание 10454
Последовательность (an) задана условиями: a1 = 5, an+1=an-3. Найдите a10.
Дана арифметическая прогрессия, найдем ее разность:
$$d=a_{n+1}-a_{n}=a_{n}-3-a_{n}=-3$$
Найдем 10 член прогрессии:
$$a_{10}=a_{1}+d(n-1)=5-3\cdot (10-1)=-22$$
Задание 8843
В последовательности чисел первое число равно 2, а каждое следующее больше предыдущего в три раза. Найдите пятое число последовательности.
Задание 8816
В последовательности чисел первое число равно 3, а каждое следующее больше предыдущего в два раза. Найдите пятое число последовательности.
Так как каждое следующее больше предыдущего в два раза, то дана геометрическая прогрессия, первый член которой равен 3, знаменатель геометрической прогрессии равен 2.
Необходимо найти пятый член прогрессии, воспользуемся формулой: $$b_{n}=b_{1}\cdot q^{n-1}\Rightarrow$$$$b_{6}=3\cdot 2^{5-1}=48$$
Задание 6634
Дана арифметическая прогрессия (an), для которой a6 = - 30, a16= 150. Найдите разность прогрессии.
Воспользуемся формулой : $$d=\frac{a_{m}-a_{n}}{m-n}$$
Нахождение разности в арифметической прогрессии: $$d=\frac{150-(-30)}{16-6}=\frac{180}{10}=18$$
Задание 1785
Арифметическая прогрессия $$a_{n}$$ задана формулой n-го члена $$a_{n+1}=a_{n}+2$$ и известно, что $$a_{1}=3$$. Найдите пятый член этой прогрессии.
Найдем разность арифметической прогрессии: $$d=a_{n+1}-a_{n}=a_{n}+2-a_{n}=2$$. Найдем пятый член прогрессии, воспользовавшись формулой n-го члена арифметической прогрессии: $$a_{5}=3+2(5-1)=11$$
Задание 1784
Найдите сумму всех отрицательных членов арифметической прогрессии: −8,6; −8,4; ...
Найдем разность арифметической прогрессии: $$d=-8,4-(-8,6)=0,2$$. То есть n-ый член прогрессии можно задать формулой: $$a_{n}=-8,6+0,2(n-1)$$.
Найдем номер первого неотрицательного члена: $$-8,6+0,2(n-1)<0\Leftrightarrow$$$$-8,8+0,2n<0\Leftrightarrow$$$$0,2n<8,8|:0,2\Leftrightarrow$$$$n<44$$.
В силу строгости неравенства, получаем, что первые 43 член прогрессии являются отрицательными. Найдем сумму первых 43ёх членов прогрессии: $$S_{43}=\frac{2*(-8,6)+0,2(43-1)}{2}*43=-189,2$$
Задание 1783
Арифметическая прогрессия задана условиями: $$a_{1}=6$$, $$a_{n+1}=a_{n}+6$$ . Какое из данных чисел является членом этой прогрессии?
1) 80 |
2) 56 |
3) 48 |
4) 32 |
Найдем разность арифметической прогрессии: $$d=a_{n+1}-a_{n}=a_{n}+6-a_{n}=6$$. Следовательно, прогрессию можно задать формулой: $$a_{n}=6+6(n-1)$$. Для того, чтобы число являлось членом данной арифметической прогрессии, при подстановке числа вместо $$a_{n}$$ должно решаться уравнение $$a_{n}=6+6(n-1)$$ в натуральных $$n$$:
$$80=6+6(n-1)\Leftrightarrow$$$$80=6+6n-6\Leftrightarrow$$$$80=6n|:6\Leftrightarrow$$$$n=\frac{80}{6}$$ - число ненатуральное, следовательно, 80 не является членом данной прогрессии
$$56=6+6(n-1)\Leftrightarrow$$$$56=6+6n-6\Leftrightarrow$$$$56=6n|:6\Leftrightarrow$$$$n=\frac{56}{6}$$ - число ненатуральное, следовательно, 56 не является членом данной прогрессии
$$48=6+6(n-1)\Leftrightarrow$$$$48=6+6n-6\Leftrightarrow$$$$48=6n|:6\Leftrightarrow$$$$n=8$$ - число натуральное, следовательно, 48 не является членом данной прогрессии
$$32=6+6(n-1)\Leftrightarrow$$$$32=6+6n-6\Leftrightarrow$$$$32=6n|:6\Leftrightarrow$$$$n=\frac{32}{6}$$ - число ненатуральное, следовательно, 32 не является членом данной прогрессии
Задание 1782
Дана арифметическая прогрессия: 33; 25; 17; … Найдите первый отрицательный член этой прогрессии.
1) -7 |
2) -8 |
3) -9 |
4) -1 |
Найдем разность арифметической прогрессии: $$d=25-33=-8$$. Найдем следующие члены прогрессии:
$$a_{4}=17-8=9;$$$$a_{5}=9-8=1;$$$$a_{6}=1-8=-7$$
Задание 1781
В первом ряду кинозала 30 мест, а в каждом следующем на 2 места больше, чем в предыдущем. Сколько мест в ряду с номером n?
1) 28+2n |
2) 30+2n |
3) 32+2n |
4) 2n |
Первый член прогрессии в данном случае: $$a_{1}=30$$, так как прибавляется каждый раз 2 места, то разность арифметической прогрессии в данном случае: $$d=2$$, тогда n-ый член последовательности можно задать, как : $$a_{n}=30+2(n-1)=28+2n$$, что соответствует 1 варианту ответа.
Задание 1780
Арифметические прогрессии $$(x_{n})$$, $$(y_{n})$$ и $$(z_{n})$$ заданы формулами n-го члена: $$x_{n}=2n+4$$, $$y_{n}=4n$$, $$z_{n}=4n+2$$.
Укажите те из них, у которых разность d равна 4.
1) $$(x_{n})$$ и $$(y_{n})$$ |
2) $$(y_{n})$$ и $$(z_{n})$$ |
3) $$(x_{n})$$, $$(y_{n})$$ и $$(z_{n})$$ |
4) $$(x_{n})$$ |
Найдем разность арифметической прогрессии для каждой из данных:
$$x_{n+1}=2(n+1)+4=2n+6$$, тогда $$d=x_{n+1}-x_{n}=2n+6-(2n+4)=2$$
$$y_{n+1}=4(n+1)=4n+4$$, тогда $$d=y_{n+1}-y_{n}=4n+4-4n=4$$
$$z_{n+1}=4(n+1)+2=4n+6$$, тогда $$d=z_{n+1}-z_{n}=4n+6-(4n+2)=4$$
Как видим, подошли вторая и третья, следовательно, правильный ответ под номером 2.
Задание 1779
Выписаны первые несколько членов арифметической прогрессии: 3; 6; 9; 12;… Какое из следующих чисел есть среди членов этой прогрессии?
1) 83 |
2) 95 |
3) 100 |
4) 102 |
Задание 1778
Дана арифметическая прогрессия $$(a_{n})$$: -6; -3; 0; ... Найдите сумму первых десяти её членов.
Найдем разность арифметической прогрессии: $$d=-3-(-6)=3$$, найдем сумму первых десяти ее членов: $$S_{10}=\frac{2*(-6)+3(10-1)}{2}*10=75$$
Задание 1777
Дана арифметическая прогрессия $$(a_{n})$$: -7; -5; -3; ... Найдите $$a_{16}$$.
Найдем разность арифметической прогрессии: $$d=-5-(-7)=2$$, найдем 16-ый член данной прогрессии: $$a_{16}=-7+2(16-1)=23$$
Задание 1775
Сколько натуральных чисел n удовлетворяет неравенству $$\frac{40}{n+1}>2$$?
Решим данное неравенство: $$\frac{40}{n+1}>2\Leftrightarrow$$$$\frac{40-2(n+1)}{n+1}>0\Leftrightarrow$$$$\frac{38-2n}{n+1}>0$$. Начертим координатную прямую и отметим значения Х, когда числитель и знаменатель равны нулю (неравенство строгое, потому обе точки будут пустые) и знаки значений ,которые принимает выражение : $$\frac{38-2n}{n+1}$$ на полученных промежутках:
Нам необходим промежуток тот, где получается положительные значения, то есть $$(-1;19)$$. Так же необходимо учитывать, что $$n\in N$$, так как это порядковый номер. Тогда натуральных чисел на полученном промежутке 18.
Задание 1774
Последовательность задана формулой $$a_{n}=\frac{34}{n+1}$$. Сколько членов в этой последовательности больше 6?
Необходимо найти все значения $$n\in N$$, при которых $$a_{n}>6$$: решим неравенство $$\frac{34}{n+1}>6\Leftrightarrow$$$$\frac{34-6(n+1)}{n+1}>0\Leftrightarrow$$$$\frac{28-6n}{n+1}>0$$. Начертим координатную прямую и отметим значения Х, когда числитель и знаменатель равны нулю (неравенство строгое, потому обе точки будут пустые) и знаки значений ,которые принимает выражение : $$\frac{28-6n}{n+1}$$ на полученных промежутках:
Нам необходим промежуток тот, где получается положительные значения, то есть $$(-1;\frac{28}{6})$$. Так же необходимо учитывать, что $$n\in N$$, так как это порядковый номер. Тогда натуральных чисел на полученном промежутке 4 (1;2;3;4).
Задание 1773
Последовательность задана условиями $$b_{1}=4$$, $$b_{n+1}=-\frac{1}{b_{n}}$$. Найдите $$b_{7}$$.
Задание 1772
Последовательность задана условиями $$c_{1}=-3$$, $$c_{n+1}=c_{n}-1$$. Найдите $$c_{7}$$.
В данном случае дана арифметическая прогрессия, найдем ее разность: $$d=c_{n+1}-c_{n}=c_{n}-1-c_{n}=-1$$. Найдем 7ой член прогрессии, воспользовавшись формулой n-го члена арифметической прогрессии: $$c_{7}=-3+(-1)(7-1)=-9$$
Задание 1771
Задание 1770
Чтобы числовая последовательность была геометрической прогрессией необходимо выполнение условия для всех членов последовательности: $$q=\frac{b_{n+1}}{b_{n}}$$
Задание 1769
Последовательности заданы несколькими первыми членами. Одна из них — арифметическая прогрессия. Укажите ее.
Для того, чтобы числовая последовательность была арифметической прогрессией, необходимо выполнение условия $$d=a_{n+1}-a_{n}$$ для всех членов последовательности:
1) 1; 2; 3; 5; ... $$d_{1}=2-1=1 ; d_{2}=3-2=1 ; d_{3}=5-3=2$$, как видим $$d_{3}\neq d_{2}$$, следовательно, это не арифметическая прогрессия
2) 1; 2; 4; 8; ... $$d_{1}=2-1=1 ; d_{2}=4-2=2$$, как видим $$d_{2}\neq d_{1}$$, следовательно, это не арифметическая прогрессия
3) 1; 3; 5; 7; ... $$d_{1}=3-1=2 ; d_{2}=5-3=2 ; d_{3}=7-5=2$$, как видим $$d_{3}=d_{2}=d_{1}$$, следовательно, это арифметическая прогрессия
4) 1; $$\frac{1}{2}; \frac{2}{3}; \frac{3}{4}$$; ... $$d_{1}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6} ; d_{2}=\frac{3}{4}-\frac{2}{3}=\frac{1}{12} $$, как видим $$d_{2}\neq d_{1}$$, следовательно, это не арифметическая прогрессия
Задание 1767
Какое из указанных чисел не является членом последовательности $$a_{n}=\frac{(-1)^{n}}{n}$$?
1) $$\frac{1}{2}$$ |
2) $$-\frac{1}{3}$$ |
3) $$\frac{1}{16}$$ |
4) $$\frac{1}{17}$$ |
Найдем второй, третий, шестнадцатый и семнадцатый члена последовательности:
$$a_{2}=\frac{(-1)^{2}}{2}=\frac{1}{2}$$
$$a_{3}=\frac{(-1)^{3}}{3}=-\frac{1}{3}$$
$$a_{16}=\frac{(-1)^{16}}{16}=\frac{1}{16}$$
$$a_{17}=\frac{(-1)^{17}}{17}=-\frac{1}{17}\neq \frac{1}{17}$$, следовательно, четвертый вариант ответа не является членом последовательности.
Задание 1766
Последовательность задана формулой $$c_{n}=n+\frac{(-1)^{n}}{n}$$. Какое из следующих чисел не является членом этой последовательности?
1) $$2\frac{1}{2}$$ |
2) $$4\frac{1}{4}$$ |
3) $$5\frac{1}{5}$$ |
4) $$6\frac{1}{6}$$ |
Найдем второй, четвертый, пятый и шестой члены последовательности:
$$c_{2}=2+\frac{(-1)^{2}}{2}=2+\frac{1}{2}=2\frac{1}{2}$$
$$c_{4}=4+\frac{(-1)^{4}}{4}=4+\frac{1}{4}=4\frac{1}{4}$$
$$c_{5}=5+\frac{(-1)^{5}}{5}=5-\frac{1}{5}=4\frac{4}{5}\neq 5\frac{1}{5}$$, следовательно, третий вариант не является членом последовательности
$$c_{6}=6+\frac{(-1)^{6}}{6}=6+\frac{1}{6}=6\frac{1}{6}$$
Задание 1765
Последовательность задана формулой $$c_{n}=n^{2}-1$$. Какое из указанных чисел является членом этой последовательности?
1) 1 |
2) 2 |
3) 3 |
4) 4 |
Данная последовательность возрастающая (в силу монотонности функции $$f_{x}=x^{2}-1$$, при $$x-in N$$. Найдем первые три члена последовательности:
$$c_{1}=1^{2}-1=0$$
$$c_{2}=2^{2}-1=3$$, как видим, третий вариант ответа является членом последовательности
$$c_{3}=3^{2}-1=8$$. Далее нет смысла рассматривать
Задание 1764
Дана геометрическая прогрессия (bn), знаменатель которой равен 2, а b1 = 16. Найдите b4.
По формуле n-го члена геометрической прогрессии : $$b_{4}=b_{1}*q^{4-1}=16*2^{3}=128$$
Задание 1763
Геометрическая прогрессия задана условием b1 = −7, bn + 1 = 3bn. Найдите сумму первых 5 её членов.
1 вариант решения: знаменатель геометрической прогрессии можно найти по формуле: $$\frac{b_{n+1}}{b_{n}}=\frac{3b_{n}}{b_{n}}=3$$. Сумму n-первых членов геометрической прогрессии можно найти по формуле: $$S_{n}=\frac{b_{1}*(1-q^{n})}{1-q}$$. Тогда $$S_{5}=\frac{-7*(1-3^{5})}{1-3}=-847$$
2 вариант решения: найдем первые пять членов геометрической прогрессии: $$b_{2}=3*b_{1}=3*(-7)=-21$$ ; $$b_{3}=3*b_{2}=3*(-21)=-63$$ ; $$b_{4}=3*b_{3}=3*(-63)=-189$$ ; $$b_{5}=3*b_{4}=3*(-189)=-567$$. Сложим их: $$-7+(-21)+(-63)+(-189)+(-567)=-847$$
Задание 1762
Дана геометрическая прогрессия (bn), для которой b5 = −14, b8 = 112. Найдите знаменатель прогрессии.
Знаменатель геометрической прогрессии можно найти по формуле : $$q=\sqrt[m-n]{\frac{b_{m}}{b_{n}}}=\sqrt[8-5]{\frac{112}{-14}}=\sqrt[3]{8}=-2$$
Задание 1761
Выписано несколько последовательных членов геометрической прогрессии: … ; 150 ; x ; 6 ; 1,2 ; … Найдите член прогрессии, обозначенный буквой x.
1 вариант: найдем знаменатель геометрической прогрессии: $$q=\frac{1,2}{6}=0,5$$. Найдем $$x=150*0,5=30$$
2 вариант: $$b_{n}=\sqrt{b_{n-1}*b_{n+1}}$$, тогда $$x=\sqrt{150*6}=30$$
Задание 1760
Выписаны первые несколько членов геометрической прогрессии: 17, 68, 272, ... Найдите её четвёртый член.
Найдем знаменатель геометрической прогрессии: $$q=\frac{b_{n+1}}{b_{n}}=\frac{272}{68}=4$$, найдем четвертый член: $$b_{4}=b_{3}*q=272*4=1088$$
Задание 1759
Геометрическая прогрессия задана условием $$b_{n}=160*3^{n}$$. Найдите сумму первых её 4 членов.
Найдем знаменатель геометрической прогрессии: $$q=\frac{b_{n+1}}{b_{n}}=\frac{160*3^{n+1}}{160*3^{n}}=3$$. Найдем первый член: $$b_{1}=160*3^{1}=480$$. Найдем сумму первый четырех ее членов: $$S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}=\frac{480*(3^{4}-1)}{3-1}=19200$$
Задание 1758
В геометрической прогрессии сумма первого и второго членов равна 75, а сумма второго и третьего членов равна 150. Найдите первые три члена этой прогрессии.
В ответе перечислите через точку с запятой первый, второй и третий члены прогрессии.
Второй член можно записать как : $$b_{2}=b_{1}*q$$. Третий можно записать как: $$b_{3}=b_{1}*q^{2}$$, тогда: $$\left\{\begin{matrix}b_{1}+b_{1}*q=75\\ b_{1}*q+b_{1}*q^{2}=150\end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix}b_{1}(1+q)=75\\ b_{1}*q(1+q)=150\end{matrix}\right.\Leftrightarrow$$$$\frac{b_{1}*q(1+q)}{b_{1}(1+q)} =\frac{150}{75}=2$$. Тогда $$b_{1}=\frac{75}{q+1}=\frac{75}{2+1}=25$$, $$b_{2}=b_{1}*q=25*2=50 ; b_{3}=b_{2}*q=50*2=100$$
Задание 1757
Дана геометрическая прогрессия (bn), знаменатель которой равен 2, а $$b_{1}=-\frac{3}{4}$$. Найдите сумму первых шести её членов.
Сумма n-ых первых членов геометрической прогрессии можно найти по формуле: $$S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}$$, тогда $$S_{6}=\frac{-\frac{3}{4}(2^{6}-1)}{2-1}=-47,25$$
Задание 1756
Геометрическая прогрессия $$(b_{n})$$ задана формулой n- го члена $$b_{n}=2*(-3)^{n-1}$$. Укажите четвертый член этой прогрессии.
Подставим $$n=4$$ в данную по условию формулу: $$b_{4}=2*(-3)^{4-1}=-54$$
Задание 1755
В геометрической прогрессии $$(b_{n})$$ известно, что $$b_{1}=2$$, $$q=-2$$. Найти пятый член этой прогрессии.
Воспользуемся формулой нахождения n-го члена геометрической прогрессии: $$b_{n}=b_{1}*q^{n-1}$$, тогда $$b_{5}=2*(-2)^{5-1}=32$$
Задание 951
Выписано несколько последовательных членов арифметической прогрессии: …; -9; x; -13; -15; … Найдите член прогрессии, обозначенный буквой x.
Пусть a1=-9, a3=-13. Нам надо найти a2. Для начала найдем разность арифметической прогрессии по формуле $$\frac{a_{m}-a_{n}}{m-n}$$:
$$\frac{a_{m}-a_{n}}{m-n}=\frac{-13-(-9)}{3-1}=\frac{-4}{2}=-2$$
Значит второй член будет равен: -9 - 2 = - 11