Перейти к основному содержанию

ОГЭ

ОГЭ / Арифметические и геометрические прогрессии

Задание 1755

В гео­мет­ри­че­ской про­грес­сии $$(b_{n})$$ из­вест­но, что $$b_{1}=2$$, $$q=-2$$. Найти пятый член этой про­грес­сии.

Ответ: 32
Скрыть

Воспользуемся формулой нахождения n-го члена геометрической прогрессии: $$b_{n}=b_{1}*q^{n-1}$$, тогда $$b_{5}=2*(-2)^{5-1}=32$$

Задание 1756

Гео­мет­ри­че­ская про­грес­сия $$(b_{n})$$ за­да­на фор­му­лой n- го члена $$b_{n}=2*(-3)^{n-1}$$. Ука­жи­те чет­вер­тый член этой про­грес­сии.

Ответ: -54
Скрыть

Подставим $$n=4$$ в данную по условию формулу: $$b_{4}=2*(-3)^{4-1}=-54$$

Задание 1757

Дана гео­мет­ри­че­ская про­грес­сия (bn), зна­ме­на­тель ко­то­рой равен 2, а $$b_{1}=-\frac{3}{4}$$. Най­ди­те сумму пер­вых шести её чле­нов.

Ответ: -47,25
Скрыть

Сумма n-ых первых членов геометрической прогрессии можно найти по формуле: $$S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}$$, тогда $$S_{6}=\frac{-\frac{3}{4}(2^{6}-1)}{2-1}=-47,25$$

Задание 1758

В гео­мет­ри­че­ской про­грес­сии сумма пер­во­го и вто­ро­го чле­нов равна 75, а сумма вто­ро­го и тре­тье­го чле­нов равна 150. Най­ди­те пер­вые три члена этой про­грес­сии.

В от­ве­те пе­ре­чис­ли­те через точку с за­пя­той пер­вый, вто­рой и тре­тий члены про­грес­сии.

Ответ: 25; 50; 100
Скрыть

Второй член можно записать как : $$b_{2}=b_{1}*q$$. Третий можно записать как: $$b_{3}=b_{1}*q^{2}$$, тогда: $$\left\{\begin{matrix}b_{1}+b_{1}*q=75\\ b_{1}*q+b_{1}*q^{2}=150\end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix}b_{1}(1+q)=75\\ b_{1}*q(1+q)=150\end{matrix}\right.\Leftrightarrow$$$$\frac{b_{1}*q(1+q)}{b_{1}(1+q)} =\frac{150}{75}=2$$. Тогда $$b_{1}=\frac{75}{q+1}=\frac{75}{2+1}=25$$, $$b_{2}=b_{1}*q=25*2=50 ; b_{3}=b_{2}*q=50*2=100$$

Задание 1759

Гео­мет­ри­че­ская про­грес­сия за­да­на усло­ви­ем $$b_{n}=160*3^{n}$$. Най­ди­те сумму пер­вых её 4 чле­нов.

Ответ: 19200
Скрыть

Найдем знаменатель геометрической прогрессии: $$q=\frac{b_{n+1}}{b_{n}}=\frac{160*3^{n+1}}{160*3^{n}}=3$$. Найдем первый член: $$b_{1}=160*3^{1}=480$$. Найдем сумму первый четырех ее членов: $$S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}=\frac{480*(3^{4}-1)}{3-1}=19200$$

Задание 1760

Вы­пи­са­ны пер­вые не­сколь­ко чле­нов гео­мет­ри­че­ской про­грес­сии: 17, 68, 272, ... Най­ди­те её четвёртый член.

Ответ: 1088
Скрыть

Найдем знаменатель геометрической прогрессии: $$q=\frac{b_{n+1}}{b_{n}}=\frac{272}{68}=4$$, найдем четвертый член: $$b_{4}=b_{3}*q=272*4=1088$$

Задание 1761

Вы­пи­са­но не­сколь­ко по­сле­до­ва­тель­ных чле­нов гео­мет­ри­че­ской про­грес­сии: … ; 150 ; x ; 6 ; 1,2 ; … Най­ди­те член про­грес­сии, обо­зна­чен­ный бук­вой x.

Ответ: 30
Скрыть

1 вариант: найдем знаменатель геометрической прогрессии: $$q=\frac{1,2}{6}=0,5$$. Найдем $$x=150*0,5=30$$
2 вариант: $$b_{n}=\sqrt{b_{n-1}*b_{n+1}}$$, тогда $$x=\sqrt{150*6}=30$$

Задание 1762

Дана гео­мет­ри­че­ская про­грес­сия (bn), для ко­то­рой b5 = −14, b8 = 112. Най­ди­те зна­ме­на­тель про­грес­сии.

Ответ: -2
Скрыть

Знаменатель геометрической прогрессии можно найти по формуле : $$q=\sqrt[m-n]{\frac{b_{m}}{b_{n}}}=\sqrt[8-5]{\frac{112}{-14}}=\sqrt[3]{8}=-2$$

Задание 1763

Гео­мет­ри­че­ская про­грес­сия за­да­на усло­ви­ем b1 = −7, bn + 1 = 3bn. Най­ди­те сумму пер­вых 5 её чле­нов.

Ответ: -847
Скрыть

1 вариант решения: знаменатель геометрической прогрессии можно найти по формуле: $$\frac{b_{n+1}}{b_{n}}=\frac{3b_{n}}{b_{n}}=3$$. Сумму n-первых членов геометрической прогрессии можно найти по формуле: $$S_{n}=\frac{b_{1}*(1-q^{n})}{1-q}$$. Тогда $$S_{5}=\frac{-7*(1-3^{5})}{1-3}=-847$$
2 вариант решения: найдем первые пять членов геометрической прогрессии: $$b_{2}=3*b_{1}=3*(-7)=-21$$ ; $$b_{3}=3*b_{2}=3*(-21)=-63$$ ; $$b_{4}=3*b_{3}=3*(-63)=-189$$ ; $$b_{5}=3*b_{4}=3*(-189)=-567$$. Сложим их: $$-7+(-21)+(-63)+(-189)+(-567)=-847$$

Задание 1764

Дана гео­мет­ри­че­ская про­грес­сия (bn), зна­ме­на­тель ко­то­рой равен 2, а b1 = 16. Най­ди­те b4.

Ответ: 128
Скрыть

По формуле n-го члена геометрической прогрессии : $$b_{4}=b_{1}*q^{4-1}=16*2^{3}=128$$

Задание 1765

По­сле­до­ва­тель­ность за­да­на фор­му­лой $$c_{n}=n^{2}-1$$. Какое из ука­зан­ных чисел яв­ля­ет­ся чле­ном этой по­сле­до­ва­тель­но­сти?

1) 1
2) 2
3) 3
4) 4

 

Ответ: 3
Скрыть

Данная последовательность возрастающая (в силу монотонности функции $$f_{x}=x^{2}-1$$, при $$x-in N$$. Найдем первые три члена последовательности:
$$c_{1}=1^{2}-1=0$$
$$c_{2}=2^{2}-1=3$$, как видим, третий вариант ответа является членом последовательности
$$c_{3}=3^{2}-1=8$$. Далее нет смысла рассматривать

Задание 1766

По­сле­до­ва­тель­ность за­да­на фор­му­лой $$c_{n}=n+\frac{(-1)^{n}}{n}$$. Какое из сле­ду­ю­щих чисел не яв­ля­ет­ся чле­ном этой по­сле­до­ва­тель­но­сти?

1) $$2\frac{1}{2}$$
2) $$4\frac{1}{4}$$
3) $$5\frac{1}{5}$$
4) $$6\frac{1}{6}$$

 

Ответ: 3
Скрыть

Найдем второй, четвертый, пятый и шестой члены последовательности:
$$c_{2}=2+\frac{(-1)^{2}}{2}=2+\frac{1}{2}=2\frac{1}{2}$$
$$c_{4}=4+\frac{(-1)^{4}}{4}=4+\frac{1}{4}=4\frac{1}{4}$$
$$c_{5}=5+\frac{(-1)^{5}}{5}=5-\frac{1}{5}=4\frac{4}{5}\neq 5\frac{1}{5}$$, следовательно, третий вариант не является членом последовательности
$$c_{6}=6+\frac{(-1)^{6}}{6}=6+\frac{1}{6}=6\frac{1}{6}$$

Задание 1767

Какое из ука­зан­ных чисел не яв­ля­ет­ся чле­ном по­сле­до­ва­тель­но­сти $$a_{n}=\frac{(-1)^{n}}{n}$$?

1) $$\frac{1}{2}$$
2) $$-\frac{1}{3}$$
3) $$\frac{1}{16}$$
4) $$\frac{1}{17}$$

 

Ответ: 4
Скрыть

Найдем второй, третий, шестнадцатый и семнадцатый члена последовательности:
$$a_{2}=\frac{(-1)^{2}}{2}=\frac{1}{2}$$
$$a_{3}=\frac{(-1)^{3}}{3}=-\frac{1}{3}$$
$$a_{16}=\frac{(-1)^{16}}{16}=\frac{1}{16}$$
$$a_{17}=\frac{(-1)^{17}}{17}=-\frac{1}{17}\neq \frac{1}{17}$$, следовательно, четвертый вариант ответа не является членом последовательности.

Задание 1769

По­сле­до­ва­тель­но­сти за­да­ны не­сколь­ки­ми пер­вы­ми чле­на­ми. Одна из них — ариф­ме­ти­че­ская про­грес­сия. Ука­жи­те ее.

1) 1; 2; 3; 5; ...
2) 1; 2; 4; 8; ...
3) 1; 3; 5; 7; ...
4) 1; $$\frac{1}{2}; \frac{2}{3}; \frac{3}{4}$$; ...

 

Ответ: 3
Скрыть

Для того, чтобы числовая последовательность была арифметической прогрессией, необходимо выполнение условия $$d=a_{n+1}-a_{n}$$ для всех членов последовательности:
1) 1; 2; 3; 5; ... $$d_{1}=2-1=1 ; d_{2}=3-2=1 ; d_{3}=5-3=2$$, как видим $$d_{3}\neq d_{2}$$, следовательно, это не арифметическая прогрессия
2) 1; 2; 4; 8; ... $$d_{1}=2-1=1 ; d_{2}=4-2=2$$, как видим $$d_{2}\neq d_{1}$$, следовательно, это не арифметическая прогрессия
3) 1; 3; 5; 7; ... $$d_{1}=3-1=2 ; d_{2}=5-3=2 ; d_{3}=7-5=2$$, как видим $$d_{3}=d_{2}=d_{1}$$, следовательно, это арифметическая прогрессия
4) 1; $$\frac{1}{2}; \frac{2}{3}; \frac{3}{4}$$; ... $$d_{1}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6} ; d_{2}=\frac{3}{4}-\frac{2}{3}=\frac{1}{12} $$, как видим $$d_{2}\neq d_{1}$$, следовательно, это не арифметическая прогрессия

Задание 1770

Одна из дан­ных по­сле­до­ва­тель­но­стей яв­ля­ет­ся гео­мет­ри­че­ской про­грес­си­ей. Ука­жи­те эту по­сле­до­ва­тель­ность.
1) 10; 6; 2; -2; ...
2) 5; $$\frac{5}{2}; \frac{5}{4}; \frac{5}{8}$$; ...
3) 1; 2; 3; 5; ...
4) $$\frac{1}{2}; \frac{1}{3}; \frac{1}{4}; \frac{1}{5}$$; ...
Ответ: 2
Скрыть

Чтобы числовая последовательность была геометрической прогрессией необходимо выполнение условия для всех членов последовательности: $$q=\frac{b_{n+1}}{b_{n}}$$

1) 10; 6; 2; -2; ...; $$q_{1}=\frac{6}{10} ; q_{2}=\frac{2}{6}$$, как видим $$q_{1}\neq q_{2}$$ - не является геометрической прогрессией.
2) 5; $$\frac{5}{2}; \frac{5}{4}; \frac{5}{8}$$; ... $$q_{1}=\frac{\frac{5}{4}}{\frac{5}{2}}=\frac{1}{2}$$ ; $$q_{2}=\frac{\frac{5}{8}}{\frac{5}{4}}=\frac{1}{2}$$, как видим $$q_{1}=q_{2}$$ - является геометрической прогрессией.
3) 1; 2; 3; 5; ...$$q_{1}=\frac{2}{1} ; q_{2}=\frac{3}{2}$$, как видим $$q_{1}\neq a_{2}$$ - не является геометрической прогрессией.
4) $$\frac{1}{2}; \frac{1}{3}; \frac{1}{4}; \frac{1}{5}$$; ... $$q_{1}=\frac{\frac{1}{3}}{\frac{1}{2}}=\frac{2}{3};$$$$q_{2}=\frac{\frac{1}{5}}{\frac{1}{3}}=\frac{3}{5}$$, как видим $$q_{1}\neq a_{2}$$ - не является геометрической прогрессией.