Перейти к основному содержанию

ОГЭ

(C6) Геометрическая задача повышенной сложности

Комбинация многоугольников и окружностей

Задание 3362

Окружность с центром на стороне AC равнобедренного треугольника ABC (AB=BC) касается сторон AB и BC, а сторону AC делит на три равные части. Найти радиус окружности, если площадь треугольника ABC равна $$9\sqrt{2}$$

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 4061

В прямоугольном треугольнике АВС с гипотенузой АВ, равной 10, на высоте СD как на диаметре построена окружность. Касательные к этой окружности, проходящие через точки А и В, пересекаются при продолжении в точке К. чему равны касательные к окружности, выходящие из точки К?

Ответ: $$\frac{10}{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Пусть $$HB=x\Rightarrow AH=10-x$$

по свойству касательных $$MB=HB=x$$

$$AH=AN=10-x$$; пусть $$OH=OC=r$$;

$$KN=KM=z$$

2) По свойству высоты прямоугольного треугольинка:

$$CH=\sqrt{AH\cdot HB}\Leftrightarrow(2r)^{2}=x(10-x)$$

$$\Leftrightarrow r^{2}=\frac{x(10-x)}{4}$$

3) $$S_{AKB}=p\cdot r$$, где

$$p=\frac{AK+KB+AB}{2}$$ 

$$S=\sqrt{p(p-AK)(P-KB)(p-AB)}$$

$$p=\frac{10+10-x+x+2z}{2}=10+z$$

$$S=\sqrt{(10+z)(10+z-10+x-x)(10+z-x-z)(10+z-10}=$$

$$=\sqrt{(10+z)\cdot x\cdot(10-x)\cdot z}$$

Тогда:

$$r=\frac{S}{p}=\frac{xz(10+z)(10-x)}{10+z}=\sqrt{\frac{xz(10-x)}{10+z}}$$

4) 2 из 3:

$$\sqrt{\frac{x(10-x)}{4}}=\sqrt{\frac{xz(10-x)}{10+z}}$$

$$\frac{1}{4}=\frac{z}{10+z}$$

$$10+z=4z\Leftrightarrow z=\frac{10}{3}$$

Задание 4993

В треугольнике АВС угол В равен 30°. Через точки А и В проведена окружность радиуса 2, касающаяся прямой АС в точке А. Через точки В и С проведена окружность радиуса 3, касающаяся прямой АС в точке С. Найдите длину стороны АС. 

Ответ: $$\sqrt{6}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$O_{1}$$ - ценрт оружности $$R_{1}=2$$; $$O_{2}$$ - ценрт оружности $$R_{2}=3$$; $$\angle ABC=\alpha$$; $$\angle BAC=\beta$$;

2) $$\angle BO_{2}C=2\angle BCA=2\alpha$$; $$\angle AO_{1}B=2\angle BAC=2\beta$$;

3) $$AB=2R_{1}\sin\beta=4\sin\beta$$; $$BC=2R_{2}\sin\alpha=6\sin\alpha$$; (по теореме синусов) $$\frac{AB}{\sin\alpha}=\frac{BC}{\sin\beta}$$ (из $$\bigtriangleup ABC$$) $$\Rightarrow$$ $$\frac{4\sin\beta}{\sin\alpha}=\frac{6\sin\alpha}{\sin\beta}$$ $$\Leftrightarrow$$ $$4\sin^{2}\beta=6\sin^{2}\alpha$$ $$\Leftrightarrow$$ $$\frac{\sin\beta}{\sin\alpha}=\sqrt{\frac{3}{2}}$$

4) $$\frac{AC}{\sin\angle ABC}=\frac{AB}{\sin\angle ACB}$$ $$\Rightarrow$$ $$AC=\frac{AB}{\sin\angle ACB}\cdot\sin\angle ABC=$$ $$\frac{4\sin\beta}{\sin\alpha}\cdot\sin30^{\circ}=4\cdot\frac{\sqrt{3}}{\sqrt{2}}\cdot\frac{1}{2}=\sqrt{6}$$

Задание 5322

Диагонали вписанного в окружность четырехугольника ABCD пересекаются в точке Е, причем AD·СЕ = DС·АЕ, BD = 6, $$\angle ADB = 22,5^{\circ}$$. Найдите площадь четырехугольника ABCD

Ответ: $$9\sqrt{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) AD*CE=CD*AE, тогда $$\frac{AD}{CD}=\frac{AE}{CE} \Leftrightarrow$$ DB - биссектриса в треугольнике ADC. Тогда $$\angle BDA = \angle CDB$$ , но $$\angle BDA = \angle BCA$$ и $$\angle CDB = \angle BAC$$ (как вписанные), следовательно $$\angle BCA = angle BAC$$ , тогда треугольник ABC - равнобедренный

2)Построим продолжение DС за точка C и отложим из B отрезок BF = DB так, что $$F \in DC$$. Тогда треугольник DBF - равнобедренный. Так как AB = BC, DB = BF и из равнобедренности DBF $$\angle BDF = \angle BFD$$, но и $$\angle BDA = \angle CDB$$, тогда $$\angle BDA=\angle BFD$$. $$\angle BAD + \angle DCB = 180$$ по свойству вписанного четырехугольника, но и $$\angle BCF + \angle DCB = 180$$ по свойству смежных углов, тогда $$\angle BAD = \angle BCF$$ и, следовательно, треугольники ABD и BCF равны, следовательно, $$S_{ADF}=S_{ABCD}$$

3)$$\angle DBF = 180 - 2*22.5 = 135$$ (из треугольника DBF), $$S_{DBF}=\frac{1}{2}DB*DF*\sin DBF$$, то есть $$S_{DBF}=0,5*6*6*\frac{\sqrt{2}}{2}=9\sqrt{2}$$

Задание 5621

Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжений боковых сторон треугольника и касается основания AC в его середине . Найдите радиус окружности, вписанной в треугольник ABC.

Ответ:

Задание 5622

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответ‐ ственно равны 5, 4 и 3. Найдите площадь параллелограмма ABCD.

Ответ:

Задание 5623

Высоты остроугольного треугольника ABC, проведённые из точек B и C, продолжили до пе‐ ресечения с описанной окружностью в точках B1 и C1 . Оказалось, что отрезок B1C1 проходит через центр описанной окружности. Найдите угол BAC.

Ответ:

Задание 5624

В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ = 14, SQ = 4 .

Ответ:

Задание 5625

Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 96, тангенс угла BAC равен $$\frac{8}{15}$$. Найдите радиус окружности, вписанной в треугольник ABC.

Ответ:

Задание 5626

На стороне AB треугольника ABC взята точка D так, что окружность, проходящая через точки A, C и D, касается прямой BC. Найдите AD, если AC = 40, BC = 34 и CD = 20.

Ответ:

Задание 5627

Диагонали четырёхугольника ABCD, вершины которого расположены на окружности, пересекаются в точке M. Известно, что ABC= 72°, BCD= 102°, AMD= 110°. Найдите $$\angle ACD$$.

Ответ:

Задание 5628

Длина катета AC прямоугольного треугольника ABC равна 8 см. Окружность с диаметром AC пересекает гипотенузу AB в точке M. Найдите площадь треугольника ABC, если известно, что AM:MB=16:9.

Ответ:

Задание 5629

На каждой из двух окружностей с радиусами 3 и 4 лежат по три вершины ромба. Найдите его сторону.

Ответ:

Задание 5630

Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Длина стороны AC равна 4. Найдите радиус описанной окружности треугольника ABC.

Ответ:

Задание 5631

Четырёхугольник ABCD со сторонами AB = 25 и CD = 16 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.

Ответ:

Задание 5632

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM = 17 и MB = 19. Каса‐ тельная к описанной окружности треугольника ABC, проходящая через точку C, пересекает пря‐ мую AB в точке D. Найдите CD

Ответ:

Задание 5634

В треугольнике ABC известны длины сторон AB = 84, AC = 98, точка O — центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.

Ответ:

Задание 5635

Окружность проходит через вершины A и C треугольника ABC и пересекает его стороны AB и AC в точках K и E соответственно. Отрезки AE и CK перпендикулярны. Найдите $$\angle ABC$$, если KCB = 20°.

Ответ:

Задание 5636

Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 9 и 11 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB если $$\cos \angle BAC=\frac{\sqrt{11}}{6}$$

Ответ:

Задание 5637

На стороне BC остроугольного треугольника ABC (AB ≠ AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD = 27, MD = 18, H — точка пересечения высот треугольника ABC. Найдите AH.

Ответ:

Задание 5638

В трапеции ABCD основания AD и BC равны соответственно 49 и 21, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB = 20.

Ответ:

Задание 5639

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность прохо‐ дит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD = 8, BC = 4.

Ответ:

Задание 5640

В треугольнике ABC биссектриса угла A делит высоту, проведённую из вершины B, в отношении 17:15, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC=16.

Ответ:

Задание 6168

Точки K, L, M, N, P расположены последовательно на окружности радиуса $$2\sqrt{2}$$ . Найдите площадь треугольника KLM, если LM || KN, KM || NP, MN || LP, а угол LOM равен 45, где О – точка пересечения хорд LN и MP

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$LM\left | \right | KN\Rightarrow \angle LMK=\angle MKN$$(накрест лежащие)$$\Rightarrow \cup LK=\cup MN$$(вписанные углы равны)

$$MK \left | \right |NP\Rightarrow \angle MKN=\angle KNP\Rightarrow \cup KP=\cup MN=\cup LK.$$

$$LP\left | \right | MN\Rightarrow \angle LPM=\angle PMN\Rightarrow \cup LM=\cup NP.$$

2)Пусть $$\cup KL=\alpha$$ и $$\cup LM=\beta .$$

$$\angle LOM=\angle NOP$$(вертикальные) ,но т.к.

$$\cup LM=\cup NP$$, то $$\angle LOM-\frac{\cup LM+\cup PN}{2}=\beta =45$$

3)$$\Delta LPK : LK=2R \sin LPK= 2R \sin 45$$

$$\Delta LPM: LM=2R \sin LPM =2R \sin 22,5$$

$$S_{\Delta LKM}=\frac{1}{2} *LK*LM* \sin KLM=$$$$\frac{1}{2} *2R \sin 22,5 * \sin (90+22,5)=$$$$2R^{2}* \sin 22,5 * \cos 22,,5 * \sin 45=R^{2}* \sin^{2} 45=4$$

Задание 7313

Четырехугольник ABCD вписан в окружность с центром О, $$\angle BOA=\angle COD=60^{\circ}$$. Перпендикуляр ВК, опущенный из вершины В на сторону АD, равен 6; ВС в три раза меньше АD. Найдите площадь треугольника CОD.

Ответ: $$\frac{63\sqrt{3}}{4}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7620

Окружность касается сторон АС и ВС треугольника АВС в точках А и В соответственно. На дуге этой окружности, лежащей вне треугольника, расположена точка К так, что расстояния от неё до продолжений сторон АС и ВС равны 39 и 156 соответственно. Найдите расстояние от точки К до прямой АВ.

Ответ: 78
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7859

На катете ML прямоугольного треугольника KLM как на диаметре построена окружность. Она пересекает сторону KL в точке P. На стороне KM взята точка R так, что отрезок LR пересекает окружность в точке Q, причём отрезки QP и ML параллельны, KR=2RM и $$ML=8\sqrt{3}$$ . Найдите MQ

Ответ: $$4\sqrt{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть $$MR=x$$ $$\Rightarrow$$ $$RK=2x$$

1) $$MP\perp LK$$ ($$\angle LDM$$ - центральный и опирается на диаметр) $$\Rightarrow$$ $$\bigtriangleup LPM\sim\bigtriangleup LMK$$

2) Аналогично $$\bigtriangleup LQM\sim\bigtriangleup LRM$$

3) $$LM\parallel PQ$$ $$\Rightarrow$$ $$LPQM$$ - трапеция вписанная $$\Rightarrow$$ $$\angle L+\angle Q=180^{\circ}$$; но $$\angle P+\angle Q=180^{\circ}$$ $$\Rightarrow$$ $$\angle P=\angle Q$$ $$\Rightarrow$$ трапеция равнобедренная $$\Rightarrow$$ $$LP=MQ$$ $$\Rightarrow$$ $$\bigtriangleup LPM=\bigtriangleup LMQ$$ $$\Rightarrow$$ $$\bigtriangleup LRM\sim\bigtriangleup LKM$$

4) из подобия : $$\frac{LM}{MK}=\frac{MR}{LM}$$ $$\Rightarrow$$ $$\frac{8\sqrt{3}}{3x}=\frac{x}{8\sqrt{3}}$$ $$\Rightarrow$$ $$3x^{2}=64\cdot3$$ $$\Rightarrow$$ $$x^{2}=64$$ $$\Rightarrow$$ $$x=8$$ $$\Rightarrow$$ $$LR=\sqrt{(8\sqrt{3})^{2}+8^{2}}=16$$ $$\Rightarrow$$ $$MQ=\frac{8\sqrt{3}\cdot8}{16}=4\sqrt{3}$$

Задание 8427

Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 12, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC .

Ответ: 13
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$\tan ABC=\frac{AC}{BC}=2,4=\frac{12}{5}$$. Пусть $$AC=12x$$ $$\Rightarrow$$ $$AB=5x$$. По т. Пифагора: $$AB=\sqrt{AC^{2}+CB^{2}}=13x$$

2) $$\bigtriangleup CPA\sim\bigtriangleup ABC$$ (прямоугольные с общим сотрым углом) $$\Rightarrow$$ $$\frac{O_{1}L}{OK}=\frac{AC}{AB}=\frac{12x}{13x}=\frac{12}{13}$$ $$\Rightarrow$$ $$OK=\frac{O_{1}L\cdot13}{12}=\frac{12\cdot13}{12}=13$$

 

Задание 8949

На стороне BC остроугольного треугольника ABC ($$AB\neq AC$$) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=80, MD=64, Н — точка пересечения высот треугольника ABC. Найдите AH.

Ответ: 28,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9002

На стороне BC остроугольного треугольника ABC ($$AB\neq AC$$) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=90, MD=69, H-точка пересечения высот треугольника ABC. Найдите AH.

Ответ: 37,1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9068

Середина М стороны AD выпуклого четырёхугольника ABCD равноудалена от всех его вершин. Найдите AD, если ВС=3, а углы В и С четырёхугольника равны соответственно 94° и 131°.

Ответ: $$3\sqrt{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9537

Середина М стороны AD выпуклого четырёхугольника ABCD равноудалена от всех его вершин. Найдите AD, если ВС=19, а углы В и С четырёхугольника равны соответственно 95° и 115°.

Ответ: $$\frac{38\sqrt{3}}{3}$$
 

Задание 9861

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=6, ВС=5.

Ответ: $$\sqrt{30}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9926

На каждой из двух окружностей радиусами 3 и 4 лежат по три вершины ромба. Найдите длину стороны ромба.

Ответ: 4,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9980

В трапеции ABCD боковая сторона АВ перпендикулярна основанию ВС. Окружность проходит через точки С и D и касается прямой АВ в точке Е. Найдите расстояние от точки Е до прямой CD , если AD=4, ВС=2.
Ответ: $$2\sqrt{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 10246

Две касающиеся внешним образом в точке K окружности, радиусы которых равны 33 и 39, вписаны в угол с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC .

Ответ: 216
 

Задание 10364

Диагонали четырёхугольника ABCD, вершины которого расположены на окружности, пересекаются в точке M. Известно, $$\angle ABC=72^{\circ}$$, $$\angle BCD=102^{\circ}$$ , $$\angle AMD=110^{\circ}$$. Найдите ACD .

Ответ: 52
 

Задание 10962

Диагонали четырёхугольника ABCD , вершины которого расположены на окружности, пересекаются в точке M . Известно, что $$\angle ABC=72{}^\circ $$, $$\angle BCD=102{}^\circ $$, $$\angle AMD=110{}^\circ $$. Найдите градусную меру угла $$ACD$$.
Ответ: 52
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Пусть $$\angle ACD=x$$. Тогда $$\cup AD=2x$$ (вписанный угол).

2) Также $$\cup ADC=144{}^\circ \left(2\angle ABC\right)\to \cup DC=144-2x\to \angle DAC=72-x$$.

3) Аналогично, $$\cup DAB=204{}^\circ \left(2\angle BCD\right)\to \cup AB=204-2x\to \angle ADB=102{}^\circ -x$$.

4) Из $$\triangle AMD:72-x+102-x+110=180\to 284-2x=180\to 2x=104{}^\circ \to x=52$$.

 

Задание 11173

Биссектриса СМ треугольника АВС делит сторону АВ на отрезки АМ = 8 и МВ = 13. Касательная к окружности, описанной около треугольника АВС, проходит через точку С и пересекает прямую АВ в точке D. Найдите СD.
Ответ: 20,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11238

Биссектриса СМ треугольника АВС делит сторону АВ на отрезки AM = 4 и МВ = 9. Касательная к окружности, описанной около треугольника АВС, проходит через точку С и пересекает прямую АВ в точке D. Найдите CD.

Ответ: 7,2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11303

В трапеции ABCD основания AD и ВС равны соответственно 34 и 14, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки А и В и касающейся прямой CD, если АВ=12.

Ответ: 14,4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11324

В трапеции ABCD основания AD и ВС равны соответственно 34 и 2, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки А и В и касающейся прямой CD, если АВ=24.

Ответ: 13,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11360

На стороне ВС остроугольного треугольника АВС ($$AB\neq AC$$) как на диаметре построена полуокружность, пересекающая высоту AD в точке М, AD=80, MD=64, Н — точка пересечения высот треугольника АВС, Найдите АН.

Ответ: 28,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11403

На стороне ВС остроугольного треугольника АВС ($$AB\neq AC$$) как на диаметре построена полуокружность, пересекающая высоту AD в точке М, AD=90, MD=69, Н — точка пересечения высот треугольника АВС. Найдите АН.

Ответ: 37,1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11518

В прямоугольном треугольнике ABC катет AC равен 8, а катет BC=15. Найдите диаметр окружности, которая проходит через концы гипотенузы и касается прямой BC.

Ответ: 36,125
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11629

Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и к основания касается AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

Ответ: $$\frac{10}{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11795

В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=14, SQ=4.

Ответ: 45
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11816

В треугольнике АВС известны длины сторон АВ=28, АС=56 , точка О — центр окружности, описанной около треугольника АВС. Прямая BD, перпендикулярная прямой АО, пересекает сторону АС в точке D. Найдите CD.

Ответ: 42
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11838

В треугольнике АВС известны длины сторон АВ=14, АС=98, точка О — центр окружности, описанной около треугольника АВС. Прямая BD, перпендикулярная прямой АО, пересекает сторону АС в точке D. Найдите CD.

Ответ: 96
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11983

Точки М и N лежат на стороне АС треугольника АВС на расстояниях соответственно 9 и 32 от вершины А. Найдите радиус окружности, проходящей через точки М и N и касающейся луча АВ, если $$cos\angle BAC=\frac{2\sqrt{2}}{3}$$

Ответ: 13,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12067

Медиана ВМ треугольника АВС является диаметром окружности, проходящей через середину отрезка ВС. Найдите длину стороны АС, если радиус окружности, описанной около треугольника АВС, равен 4,8.

Ответ: 9,6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 12088

Медиана ВМ треугольника АВС является диаметром окружности, проходящей через середину отрезка ВС. Найдите длину стороны АС, если радиус окружности, описанной около треугольника АВС, равен 11.

Ответ: 22
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12151

Четырёхугольник ABCD со сторонами $$АВ\ =\ 11$$ и $$CD\ =\ 41$$ вписан в окружность. Диагонали АС и BD пересекаются в точке К, причём $$\angle AKB\ =\ 60{}^\circ .$$ Найдите радиус окружности, описанной около этого четырёхугольника.

Ответ: $$\sqrt{751}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12172

Четырёхугольник ABCD со сторонами АВ=12 и CD=30 вписан в окружность. Диагонали АС и BD пересекаются в точке К, причём $$\angle AKB = 60°.$$ Найдите радиус окружности, описанной около этого четырёхугольника.

Ответ: $$6\sqrt{13} $$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13140

Окружность, вписанная в треугольник ABC, касается его сторон в точках M,K и P. Найдите больший угол треугольника ABC, если углы треугольника MKP равны 56о , 58о и 66о.

Ответ: 68
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13184

Четырёхугольник ABCD со сторонами АВ = 12 и CD = 30 вписан в окружность. Диагонали АС и BD пересекаются в точке К, причём $$\angle AKB=60^{\circ}$$. Найдите радиус окружности, описанной около этого четырёхугольника.

Ответ: $$6\sqrt{13}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13274

Точки М и N лежат на стороне АС треугольника АВС на расстояниях соответственно 9 и 11 от вершины А. Найдите радиус окружности, проходящей через точки М и А и касающейся луча АВ, если $$\cos \angle BAC=\frac{\sqrt{11}}{6}$$ .

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13295

Точки М и N лежат на стороне АС треугольника АВС на расстояниях соответственно 16 и 39 от вершины А. Найдите радиус окружности, проходящей через точки М и N и касающейся луча АВ, если $$\cos \angle BAC=\frac{\sqrt{39}}{8}$$.

Ответ: 12,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13418

Биссектриса СМ треугольника АВС делит сторону АВ на отрезки AM=8 и МВ=13. Касательная к окружности, описанной около треугольника АВС, проходит через точку С и пересекает прямую АВ в точке D. Найдите CD.

Ответ: 20,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 13439

В треугольнике ABC известны длины сторон AB=60, AC=80 , точка O - центр окружности, описанной около треугольника ABC . Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.

Ответ: 35
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13462

Биссектриса СМ треугольника АВС делит сторону АВ на отрезки AM=4 и МВ=9. Касательная к окружности, описанной около треугольника АВС, проходит через точку С и пересекает прямую АВ в точке D. Найдите CD.

Ответ: 7,2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13588

В трапеции ABCD основания АD и ВС равны соответственно 34 и 14, а сумма углов при основании АD равна 90°. Найдите радиус окружности, проходящей через точки А и В и касающейся прямой CD, если АВ=12.

Ответ: 14,4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13632

В трапеции ABCD основания АD и ВС равны соответственно 34 и 2, а сумма углов при основании АD равна 90°. Найдите радиус окружности, проходящей через точки А и В и касающейся прямой CD, если АВ=24.

Ответ: 13,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13718

На стороне ВС остроугольного треугольника АВС ($$AB\neq AC$$) как на диаметре построена полуокружность, пересекающая высоту AD в точке М, AD=80, MD=64, Н — точка пересечения высот треугольника АВС. Найдите АН.

Ответ: 28,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13739

На стороне ВС остроугольного треугольника АВС ($$AB\neq AC$$) как на диаметре построена полуокружность, пересекающая высоту AD в точке М, AD=90, МР=69, Н — точка пересечения высот треугольника АВС. Найдите АН.

Ответ: 37,1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13888

В треугольнике ABC известны длины сторон AB=36, AC=54, точка O — центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.

Ответ: 30
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 14048

В треугольнике АВС известны длины сторон АВ=28, АС=56, точка О — центр окружности, описанной около треугольника АВС. Прямая BD, перпендикулярная прямой АО, пересекает сторону АС в точке D. Найдите CD.

Ответ: 42
 

Задание 14070

В треугольнике АВС известны длины сторон АВ=14, АС=98, точка О — центр окружности, описанной около треугольника АВС. Прямая BD, перпендикулярная прямой АО, пересекает сторону АС в точке D. Найдите CD.

Ответ: 96
 

Задание 14092

В трапеции ABCD боковая сторона АВ перпендикулярна основанию ВС. Окружность проходит через точки С и D и касается прямой АВ в точке Е. Найдите расстояние от точки Е до прямой CD, если АО=6, ВС=5.

Ответ: $$\sqrt{30}$$
 

Задание 14114

В трапеции ABCD боковая сторона АВ перпендикулярна основанию ВС. Окружность проходит через точки С и D и касается прямой АВ в точке Е. Найдите расстояние от точки Е до прямой СD, если AD=4, ВС=2.

Ответ: $$2\sqrt{2}$$