Перейти к основному содержанию

ОГЭ

Окружность, круг и их элементы

Центральные и вписанные углы

 
Аналоги к этому заданию:

Задание 11164

Площадь круга равна 69. Найдите площадь сектора этого круга, центральный угол которого равен 120°.
Ответ: 23
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть Площадь сектора находится по формуле: $$S_{cek}=\frac{S_{kr}\cdot \alpha}{360}$$, где $$S_{kr}$$ - площадь круга, $$\alpha$$ - центральный угол сектора: $$S_{cek}=\frac{69\cdot 120}{360}=23$$
 
Аналоги к этому заданию:

Задание 8848

В окружности с центром O отрезки AC и BD — диаметры. Угол AOD равен 108°. Найдите угол ACB. Ответ дайте в градусах.

Ответ: 36
Скрыть

Так как АС и BD — диаметры, то дуги AD=BC и AB=CD. Найдем градусную меру дуги AB, на которую опирается вписанный угол ACB. Так как угол AOD = 108°, то градусная мера дуги AD = 108° и тогда градусная мера: 

$$AB=\frac{360^{\circ}-AD-BC}{2}=$$$$\frac{360^{\circ}-2\cdot 108^{\circ}}{2}=72^{\circ}$$

Так как угол ACB является вписанным, то он равен половине градусной меры дуги, на которую опирается, то есть:

$$\angle ACB=\frac{AB}{2}=\frac{72^{\circ}}{2}=36^{\circ}$$

 
Аналоги к этому заданию:

Задание 8821

Отрезки АС и ВD — диаметры окружности с центром О. Угол АСВ равен 53°. Найдите угол АОВ. Ответ дайте в градусах.

Ответ: 74
Скрыть Треугольник BOC - равнобедренный (OB и OC - радиусы окружности), тогда $$\angle OBC=53^{\circ}\Rightarrow$$$$\angle BOC=180-53\cdot 2=74$$ Но углы BOC и AOB - вертикальны, следовательно, равны
Аналоги к этому заданию:

Задание 5713

В угол C ве­ли­чи­ной 90° впи­са­на окруж­ность, ко­то­рая ка­са­ет­ся сто­рон угла в точ­ках A и B, точка O - центр окружности. Най­ди­те угол AOB. Ответ дайте в гра­ду­сах.

Ответ:
Аналоги к этому заданию:

Задание 5712

Треугольник ABC впи­сан в окруж­ность с цен­тром в точке O. Най­ди­те гра­дус­ную меру угла Cтре­уголь­ни­ка ABC, если угол AOB равен 48°.

Ответ:
Аналоги к этому заданию:

Задание 5711

Точки ABC и D лежат на одной окруж­но­сти так, что хорды AB и СD вза­им­но перпендикулярны, а ∠BDC = 25°. Най­ди­те величину угла ACD.

Ответ:
Аналоги к этому заданию:

Задание 3510

Угол ACB равен 42°. Гра­дус­ная ве­ли­чи­на дуги AB окруж­но­сти, не со­дер­жа­щей точек D и E, равна 124°. Най­ди­те угол DAE. Ответ дайте в гра­ду­сах.

Ответ: 20
Аналоги к этому заданию:

Задание 3509

Най­ди­те угол ACB, если впи­сан­ные углы ADB  и DAE опи­ра­ют­ся на дуги окруж­но­сти, гра­дус­ные ве­ли­чи­ны ко­то­рых равны со­от­вет­ствен­но $$118^{\circ}$$ и $$38^{\circ}$$. Ответ дайте в гра­ду­сах.

Ответ: 40
Аналоги к этому заданию:

Задание 3508

В окруж­но­сти с цен­тром O от­рез­ки AC и BD — диа­мет­ры. Цен­траль­ный угол AOD равен 110°. Най­ди­те впи­сан­ный угол ACB. Ответ дайте в гра­ду­сах.

Ответ: 35
Аналоги к этому заданию:

Задание 3507

В окруж­но­сти с цен­тром O от­рез­ки AC и BD — диа­мет­ры. Впи­сан­ный угол ACB равен 38°. Най­ди­те цен­траль­ный угол AOD. Ответ дайте в гра­ду­сах.

Ответ: 104
Аналоги к этому заданию:

Задание 3506

Дуга окруж­но­сти AC, не со­дер­жа­щая точки B, со­став­ля­ет 200°. А дуга окруж­но­сти BC, не со­дер­жа­щая точки A, со­став­ля­ет 80°. Най­ди­те впи­сан­ный угол ACB. Ответ дайте в гра­ду­сах.

Ответ: 40
Аналоги к этому заданию:

Задание 3505

Най­ди­те впи­сан­ный угол, опи­ра­ю­щий­ся на дугу, ко­то­рая со­став­ля­ет $$\frac{1}{5}$$ окруж­но­сти. Ответ дайте в гра­ду­сах.

Ответ: 36
Аналоги к этому заданию:

Задание 3504

Чему равен тупой впи­сан­ный угол, опи­ра­ю­щий­ся на хорду, рав­ную ра­ди­у­су окруж­но­сти? Ответ дайте в гра­ду­сах.

Ответ: 150
Аналоги к этому заданию:

Задание 3503

Чему равен ост­рый впи­сан­ный угол, опи­ра­ю­щий­ся на хорду, рав­ную ра­ди­у­су окруж­но­сти? Ответ дайте в гра­ду­сах.

Ответ: 30
Аналоги к этому заданию:

Задание 1934

В угол ве­ли­чи­ной 70° впи­са­на окруж­ность, ко­то­рая ка­са­ет­ся его сто­рон в точ­ках A и B. На одной из дуг этой окруж­но­сти вы­бра­ли точку C так, как по­ка­за­но на ри­сун­ке. Най­ди­те ве­ли­чи­ну угла ACB.

Ответ: 55
Скрыть

1) OA и OB перпенидулярны сторонам угла (по свойству касательной и радиуса в точку касания)

2) Из четырехугольника AEOB: $$\angle AOB=360-2*90-70=110^{\circ}$$ (по свойству суммы углов выпуклого четырехугольника)

3) $$\angle ACB=\frac{1}{2}\angle AOB=55^{\circ}$$ (по свойству вписанного и центрального угла)

Аналоги к этому заданию:

Задание 1933

Точки A и B делят окруж­ность на две дуги, длины ко­то­рых от­но­сят­ся как 9:11. Най­ди­те ве­ли­чи­ну цен­траль­но­го угла, опи­ра­ю­ще­го­ся на мень­шую из дуг. Ответ дайте в гра­ду­сах.

Ответ: 162
Скрыть

1) Пусть меньшая дуга 9х, тогда большая дуга 11х

2) $$9x+11x=360\Leftrightarrow$$$$x=18$$ (по свойству градусной меры окружности), тогда меньшая дуга составляет $$9x=9*18=162$$

3) $$\angle AOB=\smile AOB=162^{\circ}$$ (по свойству центрального угла)

Аналоги к этому заданию:

Задание 1932

Пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми 5 см и 12 см впи­сан в окруж­ность. Чему равен ра­ди­ус этой окруж­но­сти?

Ответ: 6,5
Скрыть

1) Радиус описанной окружности около прямоугольного треугольника равен половине его гипотенузы. Пусть R - радиус описанной окружности

2) По теореме Пифагора из треугольника ABC: $$AC=\sqrt{12^{2}+5^{2}}=13$$, тогда $$R=\frac{1}{2}AC=6,5$$

Аналоги к этому заданию:

Задание 1931

В окруж­но­сти с цен­тром O AC и BD — диа­мет­ры. Угол ACB равен 26°. Най­ди­те угол AOD. Ответ дайте в гра­ду­сах.

Ответ: 128
Скрыть

1) $$\angle AOD=\angle COB$$ (по свойству вертикальных углов)

2) $$\angle COB=\angle OBC$$ (треугольник COB - равнобедренный, так как CO и OB - радиусы)

3) Из треугольника COB: $$\angle COB=180-2*26=128^{\circ}$$, тогда и $$\angle AOD=128^{\circ}$$

Аналоги к этому заданию:

Задание 1930

Най­ди­те ∠KOM, если из­вест­но, что гра­дус­ная мера дуги MN равна 124°, а гра­дус­ная мера дуги KN равна 180°.

Ответ: 56
Скрыть

1) Меньшая дуга $$KM=KN-MN=180-124=56^{\circ}$$

2) $$\angle KOM=\smile MM-56^{\circ}$$ (по свойству центрального угла)

Аналоги к этому заданию:

Задание 1929

Най­ди­те гра­дус­ную меру ACB, если из­вест­но, что BC яв­ля­ет­ся диа­мет­ром окруж­но­сти, а гра­дус­ная мера AOC равна 96°.

Ответ: 42
Скрыть

1) Треугольник OAC - ранвобедренный (OA=AC - радиусы), тогда $$\angle OAC=\angle OCA$$

2) $$\angle ACB=\angle ACO=\frac{180-96}{2}=42^{\circ}$$ 

Аналоги к этому заданию:

Задание 1928

Най­ди­те ∠DEF, если гра­дус­ные меры дуг DE и EF равны 150° и 68° со­от­вет­ствен­но.

Ответ: 71
Скрыть

1) $$\smile DF=360-150-68=142^{\circ}$$

2) $$\angle DEF=\frac{142}{2}=71^{\circ}$$ (по свойству вписанного угла)

Аналоги к этому заданию:

Задание 1927

Най­ди­те гра­дус­ную меру ∠MON, если из­вест­но, NP — диа­метр, а гра­дус­ная мера ∠MNP равна 18°.

Ответ: 144
Скрыть

1) Треугольник MON - равнобедренный (MO=ON - радиусы), тогда $$\angle ONM=\angle OMN$$

2) $$\angle MON=180-2*18=144^{\circ}$$

Аналоги к этому заданию:

Задание 1926

В окруж­но­сти с цен­тром в точке О про­ве­де­ны диа­мет­ры AD и BC, угол OCD равен 30°. Най­ди­те ве­ли­чи­ну угла OAB.

Ответ: 30
Скрыть

1) Треугольники COD и AOD равны, так как CO=OD=OA=OB (радиусы) и $$\angle COD=\angle AOD$$ (вертикальные углы)

2) Тогда $$\angle OAB=\angle CDO=\angle OCD=30^{\circ}$$

Аналоги к этому заданию:

Задание 1925

Цен­траль­ный угол AOB опи­ра­ет­ся на хорду AB дли­ной 6. При этом угол OAB равен 60°. Най­ди­те ра­ди­ус окруж­но­сти.

Ответ: 6
Скрыть

1) Треугольник AOB - равнобедренный (AO=OB - радиусы), тогда $$\angle OAB=\angle OBA=\frac{180-60}{2}=60^{\circ}$$, следовательно, OAB - равносторонний

2) Из п.1 получаем ,что AO=OB=AB=6

Аналоги к этому заданию:

Задание 956

На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=38°. Найдите угол NMB. Ответ дайте в градусах.

Ответ: 57
Скрыть

Дуга AN на которую опирается угол NBA в два раза больше самого угла (он вписанный, его величина равна половине дуги, на которую он опирается). Значит величина этой дуги = 38 * 2 = 76 градусов. В то же время дуга NB, на которую опирается угол NMB равна 180 - AN = 104 градуса, а значит угол NMB равен 104/2 = 57 (как вписанный)