Перейти к основному содержанию

ОГЭ

ОГЭ / Площади фигур

Задание 798

В тре­уголь­ни­ке ABC угол равен 90°, AB = 13,  $$\tan A=\frac{1}{5}$$. Най­ди­те вы­со­ту CH.

 

Ответ: 2,5

Задание 858

В тре­уголь­ни­ке ABC $$AB=BC=AC=2\sqrt{3}$$. Най­ди­те вы­со­ту CH.

 

Ответ: 3

Задание 861

Най­ди­те пло­щадь тре­уголь­ни­ка, две сто­ро­ны ко­то­ро­го равны 8 и 12, а угол между ними равен 30°.

Ответ: 24

Задание 862

Пло­щадь тре­уголь­ни­ка ABC равна 4. DE  — сред­няя линия. Най­ди­те пло­щадь тре­уголь­ни­ка CDE.

Ответ: 1

Задание 880

Пло­щадь тре­уголь­ни­ка ABC равна 10. DE – сред­няя линия, па­рал­лель­ная сто­ро­не AB. Най­ди­те пло­щадь тра­пе­ции ABED.

 

Ответ: 7,5

Задание 1020

Пе­ри­метр пря­мо­уголь­ни­ка равен 28, а диа­го­наль равна 10. Най­ди­те пло­щадь этого пря­мо­уголь­ни­ка.

Ответ: 48

Задание 1025

Най­ди­те пло­щадь ромба, если его вы­со­та равна 2, а ост­рый угол 30°.

Ответ: 8

Задание 1031

Най­ди­те вы­со­ту ромба, сто­ро­на ко­то­ро­го равна  $$\sqrt{3} $$ , а ост­рый угол равен 60°.

 

Ответ: 1,5

Задание 1033

Две сто­ро­ны па­рал­ле­ло­грам­ма от­но­сят­ся как 3 : 4, а пе­ри­метр его равен 70. Най­ди­те боль­шую сто­ро­ну па­рал­ле­ло­грам­ма.

Ответ: 20

Задание 1034

Бис­сек­три­са ту­по­го угла па­рал­ле­ло­грам­ма делит про­ти­во­по­лож­ную сто­ро­ну в от­но­ше­нии 4 : 3, счи­тая от вер­ши­ны остро­го угла. Най­ди­те боль­шую сто­ро­ну па­рал­ле­ло­грам­ма, если его пе­ри­метр равен 88.

Ответ: 28

Задание 1035

Точка пе­ре­се­че­ния бис­сек­трис двух углов па­рал­ле­ло­грам­ма, при­ле­жа­щих к одной сто­ро­не, при­над­ле­жит про­ти­во­по­лож­ной сто­ро­не. Мень­шая сто­ро­на па­рал­ле­ло­грам­ма равна 5. Най­ди­те его боль­шую сто­ро­ну.

Ответ: 10

Задание 1041

Пло­щадь па­рал­ле­ло­грам­ма ABCD равна 153. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма A'B'C'D', вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся се­ре­ди­ны сто­рон дан­но­го па­рал­ле­ло­грам­ма.

Ответ: 76,5

Задание 1042

Пло­щадь па­рал­ле­ло­грам­ма ABCD равна 176. Точка E — се­ре­ди­на сто­ро­ны CD. Най­ди­те пло­щадь тре­уголь­ни­ка ADE.

Ответ: 44

Задание 1935

Сто­ро­на квад­ра­та равна 10. Най­ди­те его пло­щадь.

Ответ: 100
Скрыть

Площадь квадрата составляет $$S=a^{2}=10^{2}=100$$

Задание 1936

Пе­ри­метр квад­ра­та равен 40. Най­ди­те пло­щадь квад­ра­та.

Ответ: 100
Скрыть

Так как периметр квадрата составляет 40, тогда сторона квадрата равна $$a=\frac{P}{4}=\frac{40}{4}=10$$. Следовательно, площадь квадрата составляет $$S=a^{2}=10^{2}=100$$

Задание 1937

Из квад­ра­та вы­ре­за­ли пря­мо­уголь­ник (см. ри­су­нок). Най­ди­те пло­щадь по­лу­чив­шей­ся фи­гу­ры.

Ответ: 30
Скрыть

Площадь квадрата на данном рисунке составляет $$6^{2}=36$$, площадь прямоугольника составляет $$3*2=6$$, тогда площадь оставшейся фигуры $$36-6=30$$

Задание 1938

Най­ди­те пло­щадь квад­ра­та, если его диа­го­наль равна 1.

Ответ: 0,5
Скрыть

Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними. По свойству квадрата, его диагонали равны, а угол между ними составляет 90 градусов.
Тогда площадь квадрата составит $$S=\frac{1}{2}*1*1*\sin 90^{\circ}=0,5$$

Задание 1939

Най­ди­те пло­щадь квад­ра­та, опи­сан­но­го во­круг окруж­но­сти ра­ди­у­са 83.

Ответ: 27556
Скрыть

Если квадрат описан около окружности, то диаметр окружности и сторона квадрата равны друг другу, тогда радиус окружности в два раза меньше стороны, то есть сторона квадрата $$a=2r=2*83=166$$.
Тогда площадь квадрата составляет $$S=a^{2}=166^{2}=27556$$

Задание 1940

В пря­мо­уголь­ни­ке одна сто­ро­на равна 10, дру­гая сто­ро­на равна 12. Най­ди­те пло­щадь пря­мо­уголь­ни­ка.

Ответ: 120
Скрыть

По определению площади прямоугольника : $$S=10*12=120$$

Задание 1941

В пря­мо­уголь­ни­ке диа­го­наль равна 10, а угол между ней и одной из сто­рон равен 30°. Най­ди­те пло­щадь пря­мо­уголь­ни­ка, делённую на $$\sqrt{3}$$.

Ответ: 25
Скрыть

  1. Из треугольника ABC: пусть угол С равен 30 градусам, тогда $$AB=AC*\sin 30^{\circ}=5$$
  2. Аналогично $$BC=AC*\cos 30^{\circ}=5\sqrt{3}$$
  3. Площадь прямоугольника в таком случае: $$S=5*5\sqrt{3}=25\sqrt{3}$$, в ответе необходимо указать значение, деленное на $$\sqrt{3}$$, то есть 25

Задание 1942

Най­ди­те пло­щадь пря­мо­уголь­ни­ка, если его пе­ри­метр равен 44 и одна сто­ро­на на 2 боль­ше дру­гой.

Ответ: 120
Скрыть
  1. Пусть х - меньшая сторона, тогда х+2 - большая сторона. Из определения периметра прямоугольника: $$(x+x+2)*2=44\Leftrightarrow$$$$x=10$$, тогда меньшая сторона равна 10, большая 12
  2. Из определения площади прямоугольника: $$S=10*12=120$$

Задание 1943

Най­ди­те пло­щадь пря­мо­уголь­ни­ка, если его пе­ри­метр равен 60, а от­но­ше­ние со­сед­них сто­рон равно 4:11.

Ответ: 176
Скрыть
  1. Пусть меньшая сторона 4х, тогда большая сторона 11х. По определению периметра прямоугольника: $$(4x+11x)*2=60\Leftrightarrow$$$$x=2$$, тогда меньшая сторона $$4*2=8$$, большая сторона  $$11*2=22$$
  2. Из формулы площади прямоугольника $$S=8*22=176$$

Задание 1944

В пря­мо­уголь­ни­ке одна сто­ро­на равна 96, а диа­го­наль равна 100. Най­ди­те пло­щадь пря­мо­уголь­ни­ка.

Ответ: 2688
Скрыть

  1) Из треугольника ABC по теореме Пифагора: $$AB=\sqrt{100^{2}-96^{2}}=28$$

  2) Из формулы площади прямоугольника: $$S=96*28=2688$$

Задание 1945

На сто­ро­не BC пря­мо­уголь­ни­ка ABCD, у ко­то­ро­го AB = 12 и AD = 17, от­ме­че­на точка E так, что ∠EAB = 45°. Най­ди­те ED.

Ответ: 13
Скрыть

1) $$\angle EAB=45^{\circ}$$ и $$\angle B=90^{\circ}$$, тогда $$\angle AEB=45^{\circ}$$ (по сумме углов треугольника), следовательно, AEB - равнобедренный, и AB=BE=12

2) EC=BC-BE=17-12=5, DC=AB=12, тогда по теоереме Пифагора из треугольника DCE: $$ED=\sqrt{12^{2}+5^{2}}=13$$ 

Задание 1946

В пря­мо­уголь­ном тре­уголь­ни­ке один из ка­те­тов равен 10, а угол, ле­жа­щий на­про­тив него, равен 45°. Най­ди­те пло­щадь тре­уголь­ни­ка.

Ответ: 50
Скрыть
  1. Если один острый угол прямоугольного треугольника составляет 45 градусов, то и другой угол также равен $$90-45=45^{\circ}$$, тогда треугольник равнобедренный, и катеты равны
  2. По определению площади прямоугольного треугольника: $$S=\frac{1}{2}*10*10=50$$

Задание 1947

В пря­мо­уголь­ном тре­уголь­ни­ке один из ка­те­тов равен 10, ост­рый угол, при­ле­жа­щий к нему, равен 60°, а ги­по­те­ну­за равна 20. Най­ди­те пло­щадь тре­уголь­ни­ка, делённую на $$\sqrt{3}$$.

Ответ: 50
Скрыть

  1. Пусть AB=10, $$\angle A=60^{\circ}$$, тогда из определения тангенса $$BC=AB*tg A=10\sqrt{3}$$
  2. Из определения площади прямоугольного треуольника $$S=\frac{1}{2}*10*10\sqrt{3}=50\sqrt{3}$$, ответ необходимо указать деленный на $$\sqrt{3}$$, то есть 50

Задание 1948

Най­ди­те пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка, если его катет и ги­по­те­ну­за равны со­от­вет­ствен­но 28 и 100.

Ответ: 1344
Скрыть
  1. Пусть b - второй катет, тогда по теореме Пифагора: $$b=\sqrt{100^{2}-28^{2}}=96$$
  2. По определению площади прямоугольного треугольника : $$S=\frac{1}{2}*96*28=1344$$

Задание 1949

В пря­мо­уголь­ном тре­уголь­ни­ке один из ка­те­тов равен 4, а ост­рый угол, при­ле­жа­щий к нему, равен 45°. Най­ди­те пло­щадь тре­уголь­ни­ка.

Ответ: 8
Скрыть

  1. Пусть BC=4, тогда $$\angle C=45^{\circ}$$, тогда $$\angle A=90-45=45^{\circ}$$, следовательно, треугольника ABC - равнобедренный и AB=BC
  2. По определению площади прямоугольного треугольника $$S=\frac{1}{2}*4*4=8$$

Задание 1950

В пря­мо­уголь­ном тре­уголь­ни­ке ги­по­те­ну­за равна 70, а один из ост­рых углов равен 45°. Най­ди­те пло­щадь тре­уголь­ни­ка.

Ответ: 1225
Скрыть

  1. $$AB=AC*\sin 45^{\circ}=$$$$70*\frac{\sqrt{2}}{2}=35\sqrt{2}$$
  2. $$BC=AC*\cos 45^{\circ}=$$$$70*\frac{\sqrt{2}}{2}=35\sqrt{2}$$
  3. Площадь треугольника в таком случае: $$S=\frac{1}{2}*35\sqrt{2}*35\sqrt{2}=1225$$

Задание 1951

Ка­те­ты пря­мо­уголь­но­го тре­уголь­ни­ка равны 8 и 15. Най­ди­те ги­по­те­ну­зу этого тре­уголь­ни­ка.

Ответ: 17
Скрыть

По теореме Пифагора $$c=\sqrt{8^{2}+15^{2}}=17$$, где с - гипотенуза данного треугольника.

Задание 1952

Два ка­те­та пря­мо­уголь­но­го тре­уголь­ни­ка равны 4 и 9. Най­ди­те пло­щадь этого тре­уголь­ни­ка.

Ответ: 18
Скрыть

По определению площади прямоугольного треугольника: $$S=\frac{1}{2}4*9=18$$

Задание 1953

Сто­ро­на рав­но­сто­рон­не­го тре­уголь­ни­ка равна 10. Най­ди­те его пло­щадь, делённую на $$\sqrt{3}$$.

Ответ: 25
Скрыть

Из формулы площади треугольника: $$S=\frac{1}{2}*10*10*\sin 60^{\circ}=25\sqrt{3}$$, в ответе необходимо указать значение без $$\sqrt{3}$$, то есть 25

Задание 1954

Пе­ри­метр рав­но­сто­рон­не­го тре­уголь­ни­ка равен 30. Най­ди­те его пло­щадь, делённую на $$\sqrt{3}$$.

Ответ: 25
Скрыть
  1. Пусть a - сторона равностороннего треугольника, тогда $$a=\frac{P}{3}=10$$
  2. Из формулы площади треугольника: $$S=\frac{1}{2}*10*10*\sin 60^{\circ}=25\sqrt{3}$$, в ответе необходимо указать значение без $$\sqrt{3}$$, то есть 25

Задание 1955

Вы­со­та рав­но­сто­рон­не­го тре­уголь­ни­ка равна 10. Най­ди­те его пло­щадь, делённую на $$\frac{\sqrt{3}}{3}$$.

Ответ: 100
Скрыть

  1. Из треугольника ACH: $$AC=\frac{CH}{\sin A}=\frac{10}{\frac{\sqrt{3}}{2}}=\frac{20}{\sqrt{3}}$$
  2. Так как треугольник равносторонний, то AC=AB, тогда из формулы площади треугольника: $$S=\frac{1}{2}CH*AB=\frac{100}{\sqrt{3}}$$. В ответе необходимо указать результат, деленный на $$\frac{\sqrt{3}}{3}$$: $$\frac{100}{\sqrt{3}}:\frac{\sqrt{3}}{3}=100$$

Задание 1956

В рав­но­бед­рен­ном тре­уголь­ни­ке бо­ко­вая сто­ро­на равна 10, а угол, ле­жа­щий на­про­тив ос­но­ва­ния, равен 120°. Най­ди­те пло­щадь тре­уголь­ни­ка, делённую на $$\sqrt{3}$$

Ответ: 25
Скрыть

По формуле площади треугольника $$S=\frac{10*10*\sin 120^{\circ}}{2}=\frac{1}{2}*10*10*\frac{\sqrt{3}}{2}=25\sqrt{3}$$. В ответе необходимо указать ответ, деленный на $$\sqrt{3}$$, то есть 25

Задание 1957

В рав­но­бед­рен­ном тре­уголь­ни­ке бо­ко­вая сто­ро­на равна 10, ос­но­ва­ние — $$5(\sqrt{6}-\sqrt{2})$$, а угол, ле­жа­щий на­про­тив ос­но­ва­ния, равен 30°. Най­ди­те пло­щадь тре­уголь­ни­ка.

Ответ: 25
Скрыть

По формуле площади треугольника $$S=\frac{AB*AC*\sin B}{2}=\frac{1}{2}*10*10*\frac{1}{2}=25$$

Задание 1958

В рав­но­бед­рен­ном тре­уголь­ни­ке ABC AC=BC. Най­ди­те AC, если вы­со­та CH=12, AB=10.

Ответ: 13
Скрыть

  1. По свойству высоты равнобедренного треугольника, проведенной к основанию: $$AH=HB=\frac{1}{2}AB=5$$
  2. По теореме Пифагора из треугольника ACH: $$AC=\sqrt{12^{2}+5^{2}}=13$$

Задание 1959

Бо­ко­вая сто­ро­на рав­но­бед­рен­но­го тре­уголь­ни­ка равна 34, а ос­но­ва­ние равно 60. Най­ди­те пло­щадь этого тре­уголь­ни­ка.

Ответ: 480
Скрыть
  1. Найдем полупериметр данного треугольника: $$p=\frac{34*2+60}{2}=64$$
  2. По формуле Герона: $$S=\sqrt{64(64-34)^{2}(64-60)}=480$$

Задание 1960

Пе­ри­метр рав­но­бед­рен­но­го тре­уголь­ни­ка равен 216, а бо­ко­вая сто­ро­на — 78. Най­ди­те пло­щадь тре­уголь­ни­ка.

Ответ: 2160
Скрыть
  1. Найдем основание равнобедренного треугольника : $$216-2*78=60$$
  2. Полупериметр данного треугольника: $$p=\frac{216}{2}=108$$. По формуле Герона: $$S=\sqrt{108(108-78)^{2}(108-60)}=2160$$

Задание 1965

Ос­но­ва­ния тра­пе­ции равны 18 и 12, одна из бо­ко­вых сто­рон равна 6, а синус угла между ней и одним из ос­но­ва­ний равен $$\frac{1}{3}$$. Най­ди­те пло­щадь тра­пе­ции.

Ответ: 30
Скрыть

  1. Опустим высоту CE. Пусть $$\sin D=\frac{1}{3}$$, тогда из прямоугольного треугольника CED: $$CE=CD*\sin D=2$$
  2. Из формулы площади трапеции: $$S_{ABCD}=\frac{18+12}{2}*2=30$$

Задание 1966

Ос­но­ва­ния тра­пе­ции равны 18 и 12, одна из бо­ко­вых сто­рон равна 6, а ко­си­нус угла между ней и одним из ос­но­ва­ний равен $$\frac{2\sqrt{2}}{3}$$. Най­ди­те пло­щадь тра­пе­ции.

Ответ: 30
Скрыть

  1. Пусть $$\cos D =\frac{2\sqrt{2}}{3}$$, опустим высоту CE. Тогда из треугольника  CED: $$ED=CD*\cos D=6*\frac{2\sqrt{2}}{3}=4\sqrt{2}$$
  2. По теореме Пифагора из треугольника CED: $$CE=\sqrt{6^{2}-(4\sqrt{2})^{2}}=2$$
  3. Из формулы площади трапеции $$S_{ABCD}=\frac{18+12}{2}*2=30$$

Задание 1967

Сред­няя линия тра­пе­ции равна 11, а мень­ше ос­но­ва­ние равно 5. Най­ди­те боль­шее ос­но­ва­ние тра­пе­ции.

Ответ: 17
Скрыть

Пусть a - большее основание, тогда из формулы длины средней линии трапеции : $$a=2*11-5=17$$

Задание 1968

Бо­ко­вая сто­ро­на тра­пе­ции равна 5, а один из при­ле­га­ю­щих к ней углов равен 30°. Най­ди­те пло­щадь тра­пе­ции, если её ос­но­ва­ния равны 3 и 9.

Ответ: 15
Скрыть

  1. Пусть $$\angle D=30^{\circ}$$. Опустим высоту CE, тогда из прямоугольного треугольника CED: $$CE=CD*\sin D=2,5$$
  2. По формуле площади трапеции $$S_{ABCD}=\frac{3+9}{2}*2,5=15$$

Задание 1969

В рав­но­бед­рен­ной тра­пе­ции ос­но­ва­ния равны 3 и 9, а один из углов между бо­ко­вой сто­ро­ной и ос­но­ва­ни­ем равен 45°. Най­ди­те пло­щадь тра­пе­ции.

Ответ: 18
Скрыть

  1. Опустим высоты CE и BF. Тогда FE=BC=3, $$AF=ED=\frac{AD-FE}{2}=3$$ (из равенства прямоугольных треугольников ABF и CED)
  2. Пусть $$\angle D=45^{\circ}$$, тогда треугольник CED - равнобедренный ($$\angle ECD=90-45=45=\angle D$$), тогда CE=ED=3
  3. Из формулы площади трапеции: $$S_{ABCD}=\frac{3+9}{2}*3=18$$

Задание 1970

Най­ди­те пло­щадь тра­пе­ции, изоб­ражённой на ри­сун­ке.

Ответ: 168
Скрыть
  1. $$AD=AE+ED=21$$
  2. Площадь трапеции ABCD: $$S=\frac{7+21}{2}*12=168$$

Задание 1971

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 5 и 17, а ее бо­ко­вые сто­ро­ны равны 10. Най­ди­те пло­щадь тра­пе­ции.

Ответ: 88
Скрыть

  1. Опустим высоты BF и CE, тогда треугольники ABF и CED равны по гипотенузе и катету, следовательно,  FE=BC=5, $$AF=ED=\frac{AD-BC}{2}=6$$
  2. Из прямоугольного треугольника ABF по теореме Пифагора $$BF=\sqrt{10^{2}-6^{2}}=8$$
  3. Площадь трапеции ABCD: $$S=\frac{5+17}{2}*8=88$$

Задание 1972

Ос­но­ва­ния тра­пе­ции равны 1 и 13, одна из бо­ко­вых сто­рон равна $$15\sqrt{2}$$, а угол между ней и одним из ос­но­ва­ний равен 135°. Най­ди­те пло­щадь тра­пе­ции.

Ответ: 105
Скрыть

  1. Пусть $$\angle C=135^{\circ}, CD=15\sqrt{2}$$. Опустим высоту CE , тогда $$\angle ECD=135-90=45^{\circ}$$, следовательно, треугольник CDE - прямоугольный и равнобедренный
  2. Из треугольника CDE -$$CE=CD*\sin ECD=15\sqrt{2}*\frac{\sqrt{2}}{2}=15$$
  3. Площадь трапеции $$S_{ABCD}=\frac{1+13}{2}*15=105$$

Задание 1973

В тра­пе­ции ABCD AD = 5, BC = 2, а её пло­щадь равна 28. Най­ди­те пло­щадь тра­пе­ции BCNM, где MN – сред­няя линия тра­пе­ции ABCD.

Ответ: 11
Скрыть

  1. Из формулы площади трапеции $$BE=\frac{2S_{ABCD}}{AD+BC}=\frac{2*28}{5+2}=8$$
  2. $$BF=FE=\frac{1}{2}BE=4$$ так как MN - средняя линия трапеции, $$MN=\frac{BC+AD}{2}=\frac{2+5}{2}=3,5$$
  3. Площадь трапеции BCNM: $$S=\frac{BC+MN}{2}*BF=\frac{2+3,5}{2}*4=11$$

Задание 1974

В тра­пе­ции ABCD AD = 3, BC = 1, а её пло­щадь равна 12. Най­ди­те пло­щадь тре­уголь­ни­ка ABC.

Ответ: 3
Скрыть

  1. Из площади трапеции $$AE=\frac{2S_{ABCD}}{BC+AD}=\frac{2*12}{3+1}=6$$
  2. Из формулы площади треугольника: $$S_{ABC}=\frac{1}{2}BC*AE=\frac{1}{2}*6*1=3$$

Задание 1975

В тре­уголь­ни­ке одна из сто­рон равна 10, а опу­щен­ная на нее вы­со­та — 5. Най­ди­те пло­щадь тре­уголь­ни­ка.

Ответ: 25
Скрыть

По формуле площади треугольника $$S=\frac{1}{2}*10*5=25$$

Задание 1976

В тре­уголь­ни­ке одна из сто­рон равна 10, дру­гая равна $$10\sqrt{3}$$, а угол между ними равен 60°. Най­ди­те пло­щадь тре­уголь­ни­ка.

Ответ: 75
Скрыть

По формуле площади треугольника $$S=\frac{1}{2}10*10\sqrt{3}*\sin 60^{\circ}=75$$

Задание 1981

В тре­уголь­ни­ке ABC от­ре­зок DE — сред­няя линия. Пло­щадь тре­уголь­ни­ка CDE равна 45. Най­ди­те пло­щадь тре­уголь­ни­ка ABC.

Ответ: 180
Скрыть

  1. Так как DE - средняя линия, то $$DE=\frac{1}{2}AC$$, но тогда $$S_{CDE}=\frac{1}{2}S_{ADC}$$ (у них одинаковая высота, но различные в два раза основания). То есть $$S_{ADC}=2*45=90$$, тогда $$S_{ADEC}=135$$
  2. Треугольники ABC и DBE подобны (по свойству средней линии), при это $$k=\frac{1}{2}$$ - коэффициент подобия, тогда $$\frac{S_{BDE}}{S_{ABC}}=k^{2}=\frac{1}{4}$$, тогда $$S_{BDE}=\frac{1}{4}S_{ABC}$$, следовательно, $$S_{ADEC}=\frac{3}{4}S_{ABC}$$. Получаем, что $$S_{ABC}=\frac{4}{3}S_{ADEC}=180$$

Задание 1982

Сто­ро­на тре­уголь­ни­ка равна 12, а вы­со­та, про­ведённая к этой сто­ро­не, равна 33. Най­ди­те пло­щадь этого тре­уголь­ни­ка.

Ответ: 198
Скрыть

Из формулы площади треугольника $$S=\frac{1}{2}*12*33=198$$

Задание 1985

Пе­ри­метр ромба равен 40, а один из углов равен 30°. Най­ди­те пло­щадь ромба.

Ответ: 50
Скрыть
  1. Пусть a - сторона ромба, тогда $$a=\frac{40}{4}=10$$
  2. Найдем площадь ромба: $$S=10*10*\sin 30^{\circ}=50$$

Задание 1986

Пе­ри­метр ромба равен 24, а синус од­но­го из углов равен $$\frac{1}{3}$$. Най­ди­те пло­щадь ромба.

Ответ: 12
Скрыть
  1. Пусть a - сторона ромба, тогда $$a=\frac{24}{4}=6$$
  2. Найдем площадь ромба: $$S=6*6*\frac{1}{3}=12$$

Задание 1987

Одна из сто­рон па­рал­ле­ло­грам­ма равна 12, а опу­щен­ная на нее вы­со­та равна 10. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма.

Ответ: 120
Скрыть

Из формулы площади параллелограмма: $$S=12*10=120$$

Задание 1988

Одна из сто­рон па­рал­ле­ло­грам­ма равна 12, дру­гая равна 5, а один из углов — 45°. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма, делённую на $$\sqrt{2}$$.

Ответ: 30
Скрыть

Из формулы площади параллелограмма: $$S=12*5*\sin 45=30\sqrt{2}$$. В ответе необходимо найти указать ответ, деленный на $$\sqrt{2}$$, то есть 30

Задание 1989

В ромбе сто­ро­на равна 10, одна из диа­го­на­лей — $$5(\sqrt{6}-\sqrt{2})$$, а угол, ле­жа­щий на­про­тив этой диа­го­на­ли, равен 30°. Най­ди­те пло­щадь ромба.

Ответ: 50
Скрыть

Пусть угол D равен 30 градусам, тогда из формулы площади ромба: $$S=10*10*\sin D=50$$

Задание 1990

Пло­щадь па­рал­ле­ло­грам­ма ABCD равна 56. Точка E — се­ре­ди­на сто­ро­ны CD. Най­ди­те пло­щадь тра­пе­ции AECB.

Ответ: 42
Скрыть

  1. Найдем площадь треугольника AED: $$S_{AED}=\frac{1}{2}ED*h=\frac{1}{4}CD*h=\frac{1}{4}S_{ABCD}$$, где h - высота параллелограмма
  2. Тогда $$S_{AECB}=\frac{3}{4}S_{ABCD}=42$$

Задание 1991

Най­ди­те пло­щадь ромба, если его диа­го­на­ли равны 14 и 6.

Ответ: 42
Скрыть

Из формулы площади ромба: $$S=\frac{1}{2}*14*6=42$$

Задание 1992

Сто­ро­на ромба равна 9, а рас­сто­я­ние от цен­тра ромба до неё равно 1. Най­ди­те пло­щадь ромба.

Ответ: 18
Скрыть

  1. Из треугольника AED: $$S_{AED}=\frac{1}{2}*1*9=4,5$$
  2. Ромб состоит из четырех равных прямоугольных треугольников, образованных диагоналями ромба, тогда $$S_{ABCD}=4S_{AED}=18$$

Задание 1993

Сто­ро­на ромба равна 50, а диа­го­наль равна 80. Най­ди­те пло­щадь ромба.

Ответ: 2400
Скрыть

  1. Пусть BD=80, тогда по свойству диагоналей ромба: $$ED=\frac{1}{2}BD=40$$
  2. Из прямоугольного треугольника EAD: $$EA=\sqrt{50^{2}-40^{2}}=30$$, тогда AC=60
  3. Из формулы площади ромба: $$S=\frac{1}{2}*80*60=2400$$

Задание 1994

Вы­со­та BH па­рал­ле­ло­грам­ма ABCD делит его сто­ро­ну AD на от­рез­ки AH = 1 и HD = 28. Диа­го­наль па­рал­ле­ло­грам­ма BD равна 53. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма.

Ответ: 1305
Скрыть

  1. Из прямоугольного треуголььника BDH : $$BH=\sqrt{53^{2}-28^{2}}=45$$
  2. $$AD=AH+AD=29$$, тогда площадь параллелограмма $$S=45*29=1305$$

Задание 1995

Вы­со­та BH ромба ABCD делит его сто­ро­ну AD на от­рез­ки AH = 5 и HD = 8. Най­ди­те пло­щадь ромба.

Ответ: 156
Скрыть

  1. $$AD=AH+HD=5+8=13$$, тогда по свойству ромба $$AB=13$$
  2. Из прямоугольного треугольника ABH: $$BH=\sqrt{13^{2}-5^{2}}=12$$
  3. Из формулы площади ромба $$S=12*13=156$$

Задание 1996

Диа­го­наль AC па­рал­ле­ло­грам­ма ABCD об­ра­зу­ет с его сто­ро­на­ми углы, рав­ные 30° и 45° . Най­ди­те боль­ший угол па­рал­ле­ло­грам­ма. Ответ дайте в гра­ду­сах.

Ответ: 105
Скрыть

  1. Пусть $$\angle BAC=30^{\circ} ; \angle CAD=45^{\circ}$$, тогда $$\angle A=30+45=75^{\circ}$$
  2. По свойству углов параллелограмма: $$\angle B=180-75=105^{\circ}$$ - это и есть больший угол

Задание 2482

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 36 и 39.

Ответ: 270
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
$$BC=\sqrt{AC^{2}-AB^{2}}=\sqrt{39^{2}-36^{2}}=15$$ $$S=\frac{1}{2}\cdot AB\cdot BC=\frac{1}{2}\cdot 36\cdot 15=270$$  

 

Задание 2664

Боковая сторона равнобедренного треугольника равна 39, а основание равно 30. Найдите площадь этого треугольника.

Ответ: 540
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) BD - высота и медиана $$\Rightarrow$$ $$DC=15$$

2) $$BD=\sqrt{BC^{2}-DC^{2}}=\sqrt{39^{2}-15^{2}}=36$$'

3) $$S=\frac{1}{2}AC\cdot BD=\frac{1}{2}\cdot 30\cdot 36=540$$

 

Задание 2768

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 36 и 39
 

Ответ: 270
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть x - второй катет. $$x=\sqrt{39^{2}-36^{2}}=15$$

$$S=\frac{1}{2}\cdot 15\cdot 36=270$$

 

 

Задание 2809

Найдите площадь треугольника, изображённого на рисунке.

 

Ответ: 240
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$AC=\sqrt{AB^{2}-BC^{2}}=\sqrt{34^{2}-30^{2}}=16$$ $$S=\frac{1}{2}BC\cdot AC=\frac{1}{2}\cdot30\cdot 16=240$$

Задание 2922

Боковая сторона равнобедренного треугольника равна 26, а основание равно 48. Найдите площадь этого треугольника.

Ответ: 240
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

AB=26

AC=48

Проведем высоту(медиана и биссектрисса) BH. AH будет равна половине AC = 24

По теореме Пифагора из треугольника AHB: $$BH=\sqrt{AB^{2}-AH^{2}}=10$$

Тогда площадь будет равна 0.5*10*48=240

Задание 2967

Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 62° и 84°. Найдите меньший угол параллелограмма. Ответ дайте в градусах.

Ответ: 34
Скрыть

$$\angle B=62+84=146^{\circ}$$ $$\angle A=180-\angle A=180-146=34^{\circ}$$

Задание 2969

Найдите площадь квадрата, если его диагональ равна 14.
 

Ответ: 98
Скрыть

$$AC^{2}=x^{2}+x^{2}=14^{2}$$ $$2x^{2}=196$$ $$x^{2}=98$$ $$S=x^{2}=98$$

Задание 3012

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 36 и 39.

Ответ: 270
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\sqrt{39^{2}-36^{2}}=\sqrt{(39-39)\cdot(39+36)}=$$ $$=\sqrt{3\cdot75}=\sqrt{3\cdot3\cdot5^{2}}=15$$ $$S=\frac{1}{2}\cdot36\cdot15=18\cdot15=270$$

Задание 3096

Высота BH ромба ABCD равна 10 и делит его сторону AD на отрезки AH=5 и HD=8. Найдите площадь ромба.

Ответ: 130
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

AD=5+8=13 S=AD*BH=13*10=130

Задание 3136

Найдите площадь трапеции, изображённой на рисунке
Ответ: 3864
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$S=\frac{a+b}{2}*h=\frac{21+64+76}{2}*48=3864$$

Задание 3232

В прямоугольнике одна сторона равна 16, а диагональ равна 65. Найдите площадь прямоугольника.

Ответ: 1008
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдем вторую сторону по теореме Пифагора: $$b = \sqrt{65^{2}-16^{2}}=63$$ Площадь прямоугольника вычисляется как произведение длин его смежных сторон: 16*63=

Задание 3353

Сторона ромба равна 25, а диагональ равна 48. Найдите площадь ромба.

Ответ: 336
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Введем обозначения, как показано на рисунке

Пусть AD=25, AC=48. Диагонали в ромбе делятся пополам и перпендикулярны, значит AH = 48/2 = 24. По теореме Пифагора из прямоугольного треугольника AHD: $$HD = \sqrt{AD^{2}-AH^{2}}=\sqrt{625-576}=7$$

Тогда BD = 7*2 =14

Площадь ромба вычисляется как половина произведния длин его диагоналей: $$S=0,5*14*48=336$$

Задание 3402

В треугольнике ABC известно, что DE — средняя линия. Площадь треугольника CDE равна 12. Найдите площадь треугольника ABC.

Ответ: 48
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Т.к. DE - средняя линия, то $$k=\frac{1}{2}$$ $$\frac{S_{CDE}}{S_{ABC}}=k^{2}=\frac{1}{4}$$ $$\Rightarrow$$ $$S_{ABC}=4S_{CDE}=4\cdot12=48$$

Задание 4322

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 15 и 39.

Ответ: 270
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть а  - второй катет по т. Пифагоора: $$a=\sqrt{39^{2}-15^{2}}=\sqrt{(39-15)(39+15)}=\sqrt{24\cdot54}=$$ $$\sqrt{8\cdot3\cdot27\cdot2}=\sqrt{2^{4}\cdot3^{4}}=4\cdot9=36$$; $$S=\frac{1}{2}\cdot36\cdot15=270$$

Задание 4645

Найдите площадь треугольника, изображенного на рисунке:

Ответ: 1290
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$S=\frac{1}{2}ah=0.5*60(32+11)=1290$$

Задание 4795

Сторона ромба равна 15, а диагональ равна 24. Найдите площадь ромба.

Ответ: 216
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

По свойству ромба, диагонали делятся пополам и под прямым углом, в таком случае мы можем по теореме Пифагора найти половину второй диагонали: $$\sqrt{15^{2}-12^{2}}=9$$. В таком случае вся вторая диагональ составляет 18. Площадь ромба можно найти как половину произведения его диагоналей: $$0,5*18*24=216$$

Задание 4843

Найдите площадь ромба, если его диагонали равны 12 и 7. 

Ответ: 42
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$S=\frac{1}{2}d_{1}d_{2}=\frac{1}{2}\cdot12\cdot7=42$$

Задание 4891

 Высота BH ромба ABCD делит его сторону AD на отрезки AH=8 и HD=9. Найдите площадь ромба. 

Ответ: 255
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$BH=\sqrt{17^{2}-8^{2}}=\sqrt{(17-8)(17+8)}=15$$; $$S=17\cdot15=255$$

Задание 4937

Угол при вершине, противолежащей основанию равнобедренного треугольника равен $$150^{\circ}$$. Боковая сторона треугольника равна 8. Найдите площадь этого треугольника. 

Ответ: 16
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$S=\frac{1}{2}\cdot8\cdot8\cdot\sin150^{\circ}=\frac{1}{2}\cdot8\cdot8\cdot\frac{1}{2}=16$$

Задание 5081

Боковая сторона равнобедренного треугольника равна 13, а основание равно 24. Найдите площадь этого треугольника. 

Ответ: 60
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$h=\sqrt{13^{2}-12^{2}}=5$$; $$S=\frac{1}{2}\cdot a\cdot h=\frac{1}{2}\cdot24\cdot5=60$$

Задание 5121

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 24 и 26. 

Ответ: 120
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Второй катет найдем по теореме Пифагора: $$\sqrt{26^{2}-24^{2}}=10$$. Площадь прямоугольного треугольника вычисляется как половина произведения длин катетов: $$S=0,5*10*24=120$$

Задание 5168

В треугольнике ABC угол C равен $$90^{\circ}$$, CH — высота, BC=15, CH=9. Найдите $$\sin A$$. 

Ответ: 0,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\sin A=\sin HCB$$; $$HB=\sqrt{CB^{2}-CH^{2}}=12$$; $$\sin A=\frac{HB}{CB}=\frac{12}{15}=0,8$$

Задание 5266

Найдите площадь трапеции, изображенной на рисунке 

Ответ: 168
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Площадь трапеции вычисляется как полусумму оснований на высоту: $$S = \frac{7+9+12}{2}*12=168$$

Задание 5272

Одна из сторон параллелограмма равна $$4\sqrt{3}$$ см, его площадь равна 12 см2, а острый угол между сторонами равен $$60^{\circ}$$. Найдите длину другой стороны параллелограмма. 

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Площадь параллелограмма вычисляется как произведение длин сторон на синус угла между ними. Пусть х - вторая сторона. Тогда; $$4\sqrt{3} * x * \sin 60^{\circ}=12 \Leftrightarrow$$$$x=\frac{12}{4\sqrt{3}*\frac{\sqrt{3}}{2}}=2$$

Задание 5314

Боковая сторона равнобедренного треугольника равна 26, а основание равно 10. Найдите площадь этого треугольника.

Ответ: $$5\sqrt{651}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Высота треугольника : $$h = \sqrt{26^{2}-5^{2}}=\sqrt{651}$$. Тогда его площадь $$S=\frac{1}{2}h*10=5\sqrt{651}$$

Задание 5361

Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если его площадь равна половине площади прямоугольника. Ответ дайте в градусах.

Ответ: 30
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть a,b - стороны прямоугольника и параллелограмма. Площадь прямоугольника: $$S_{1}=ab$$, площадь параллелограмма: $$S_{2}=ab\sin\alpha$$, где $$\alpha$$ - острый угол между сторонами параллелограмма, тогда: $$\frac{1}{2}ab=ab\sin\alpha\Leftrightarrow$$$$\sin\alpha=\frac{1}{2}\Leftrightarrow$$$$\alpha=30^{\circ}$$

Задание 6065

Найдите площадь квадрата, если его диагональ равна 6.

Ответ: 18
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть $$a$$–сторона квадрата, тогда его площадь: $$S=a^{2}$$. По т. Пифагора $$\sqrt{a^{2}+a^{2}}\Rightarrow$$$$ 2a ^{2}=36\Leftrightarrow a ^{2}=18=S$$.

Задание 6112

Боковая сторона равнобедренного треугольника равна 26, а основание равно 12. Найдите площадь этого треугольника

Ответ: $$48\sqrt{10}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Воспользуемся формулой Герона для вычисления площади треугольника. Найдем полупериметр: $$p=\frac{26+26+12}{2}=32$$. Тогда площадь треугольника равна: $$S=\sqrt{32(32-62)(32-26)(32-12)}=48\sqrt{10}$$

Задание 6254

Боковая сторона равнобедренного треугольника равна 25, а основание равно 14. Найдите площадь этого треугольника.

Ответ: 168
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Найдём полупериметр $$p=\frac{25+25+14}{2}=32$$ $$S=\sqrt{p(p-a)(p-b)(p-c)}=$$$$\sqrt{32(32-25)^{2}(32-14)}=$$$$\sqrt{2^{5}*7^{2}*2*3^{2}}=$$$$2^{3}*3*7=168$$

Задание 6302

Сторона ромба равна 26, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?

Ответ: 13
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Из ABH: $$\angle B=90-\angle A=30\Rightarrow$$ $$AH=\frac{1}{2}AB=13$$

$$HD=AD-AH=13$$

Задание 6303

Найдите площадь квадрата, если его диагональ равна 8.

Ответ: 32
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть AB=BC=a

По т. Пифагора $$\Delta ABC$$: $$a^{2}+a^{2}=8^{2}$$

$$2a^{2}=64$$

$$a^{2}=32$$

$$S_{ABCD}=a^{2}=32$$

Задание 6350

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 24 и 26.

Ответ: 120
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$OB=\sqrt{26^{2}-24^{2}}=10$$

$$S=\frac{1}{2}*10*24=120$$

Задание 6499

В прямоугольнике одна сторона равна 12, а диагональ равна 37. Найдите площадь прямоугольника.

Ответ: 420
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\Delta BCD$$: $$CD=\sqrt{37^{2}-12^{2}}=35$$(по т. Пифагора)

$$S=BC*CD=12*35=420$$

Задание 6707

Сторона ромба равна 17, а диагональ равна 16. Найдите площадь ромба

Ответ: 240
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Из $$\Delta ABH$$: $$BH=\sqrt{17^{2}-8^{2}}=15\Rightarrow$$ $$BD=30$$

$$S_{ABCD}=\frac{1}{2}AC*BD=$$$$\frac{1}{2}*30*16=240$$

Задание 6782

В треугольнике ABC известно, что DE — средняя линия. Площадь треугольника CDE равна 8. Найдите площадь треугольника ABC

Ответ: 32
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\frac{DE}{AB}=\frac{1}{2}=k\Rightarrow$$ $$\frac{S_{DCE}}{S_{ABC}}=k^{2}=\frac{1}{4}\Rightarrow$$ $$S_{ABC}=8*4=32$$

Задание 6853

В равнобедренном треугольнике ABC АВ = ВС, AС = 24, cos A = 0,48. Найдите площадь треугольника АВС.

Ответ: $$12\sqrt{481}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Опустим высоту (медиану) BH

1) $$AH=\frac{AC}{2}=12$$

2) $$AB=\frac{AH}{\cos A}=\frac{12}{0,48}=25$$

3) По формуле Герона: $$S=\sqrt{p(p-a)(p-b)(p-c)}$$; $$p=\frac{a+b+c}{2}$$

$$p=\frac{25+25+24}{2}=37$$

$$S=\sqrt{37*12*12*13}=12\sqrt{481}$$

Задание 6901

В треугольнике со сторонами 15 и 3 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 1. Чему равна высота, проведённая ко второй стороне?

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$S=\frac{1}{2} AH*BC=\frac{1}{2} AC*BM\Rightarrow$$ $$AH*BC=AC*BM$$

Пусть BC=15, AC=3, AH=1, тогда $$BM=\frac{AH*BC}{AC}=\frac{1*15}{3}=5$$

Задание 7082

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 12 и 13.

Ответ: 30
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

По теореме Пифагора другой катет: $$\sqrt{13^{2}-12^{2}}=5$$, тогда площадь $$S=\frac{1}{2}*12*5=30$$

Задание 7156

Найдите площадь треугольника, изображенного на рисунке:

Ответ: 1290
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$S=\frac{1}{2} ah$$ , где a-сторона треугольника , h- высота к ней проведенная $$\Rightarrow$$ $$S=\frac{1}{2}(32+11)*60=1290$$

Задание 7243

Сторона ромба равна 15, а диагональ равна 18. Найдите площадь ромба

Ответ: 24
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть $$BD\cap AC=H\Rightarrow$$ $$BH=HD=\frac{18}{2}=9$$ Из $$\Delta ABH$$: $$AH=\sqrt{AB^{2}-BH^{2}}=12$$$$\Rightarrow$$ $$AC=24$$

Задание 7273

Найдите площадь ромба, если его диагонали равны 16 и 9.

Ответ: 72
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Площадь ромба вычисляется как половина произведения диагоналей, тогда $$S=\frac{1}{2}*16*9=72$$

Задание 7305

Высота BH ромба ABCD делит его сторону AD на отрезки AH=5 и HD=8. Найдите площадь ромба.

Ответ: 156
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7388

В равнобедренном треугольнике с углом 45 при основании вписан квадрат так, что одна из его сторон лежит на боковой стороне треугольника. Найдите площадь квадрата, если площадь треугольника равна 18.

Ответ: 9
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7491

Найдите площадь трапеции, изображённой на рисунке.

Ответ: 40
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7612

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 21 и 29.

Ответ: 210
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7661

На стороне AC треугольника ABC отмечена точка D так, что AD=2, DC=7 . Площадь треугольника ABC равна 27. Найдите площадь треугольника BCD.

Ответ: 21
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7708

В прямоугольнике одна сторона равна 16, а диагональ равна 65. Найдите площадь прямоугольника.

Ответ: 1008
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7755

Точка P является серединой стороны CD параллелограмма ABCD. Площадь трапеции ABCP равна 24. Найдите площадь параллелограмма ABCD.

Ответ: 32
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8393

Найдите площадь прямоугольной трапеции, одна из боковых сторон которой равна 7, а радиус окружности, вписанной в эту трапецию, равен 3.

Ответ: 39
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть Если дана прямоугольная трапеция,в которую вписана окружность, то диаметр окружности равен высоте трапеции, которая так же является боковой стороной, то есть боковая сторона, перпендикулярная основаниям, равна 6. Так как окружность вписана, то сумма противоположных сторон трапеции равна, то есть сумма оснований так же 6+7=13 Тогда площадь трапеции: $$S=\frac{13}{2}*6=39$$

Задание 8419

Периметр треугольника равен 16, а боковая сторона – 5. Найдите площадь треугольника.

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8471

Высота BH параллелограмма ABCD делит сторону AD на отрезки AH=8 и H=36. Диагональ параллелограмма BD равна 85. Найдите площадь параллелограмма.

Ответ: 3388
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8523

Основания трапеции равны 18 и 12, одна из боковых сторон равна $$4/sqrt{2}$$, а угол между этой боковой стороной и одним из оснований трапеции равен 135. Найдите площадь этой трапеции.

Ответ: 60
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8575

Найдите площадь квадрата, описанного вокруг окружности радиуса 7.

Ответ: 196
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8627

В треугольнике ABC известно, что DE – средняя линия. Площадь треугольника равна 21. Найдите площадь треугольника ABC .

Ответ: 84
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8822

Диагонали параллелограмма равны 12 и 17, а угол между ними равен 30°. Найдите площадь этого параллелограмма.

Ответ: 51
Скрыть Площадь параллелограмма можно вычислить как половину произведения диагоналей на синус угла между ними (синус угла в 30 градусов равен $$\frac{1}{2}$$): $$S=\frac{1}{2}\cdot 12\cdot 17 \cdot \frac{1}{2}=51$$
 

Задание 8849

Две стороны параллелограмма равны 10 и 12, а один из углов этого параллелограмма равен 30°. Найдите площадь этого параллелограмма.

Ответ: 60
Скрыть Площадь параллелограмма можно найти как половину произведения смежных сторон на синус угла между ними. Учтем, что синус угла в 30 градусов равен $$\frac{1}{2}$$: $$S=\frac{1}{2}10\cdot 12\cdot \frac{1}{2}=60$$
 

Задание 8941

Периметр ромба равен 12, а один из углов равен 30. Найдите площадь ромба.

Ответ: 4,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8967

Периметр квадрата равен 24. Найдите площадь этого квадрата.

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8994

Периметр ромба равен 56, а один из углов равен 30°. Найдите площадь ромба.

Ответ: 98
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9189

Сторона ромба равна 6, а один из углов этого ромба равен 150°. Найдите площадь этого ромба.

Ответ: 18
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9580

Высота BH ромба ABCD делит его сторону AD на отрезки AH=48 и HD=25 . Найдите площадь ромба.

Ответ: 4015
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9581

Из квадрата с диагональю $$5\sqrt{2}$$ вырезали прямоугольник со сторонами 3 и 4. Найдите площадь получившейся фигуры.

Ответ: 13
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 9705

В трапеции ABCD известно, что AD=6 , BC=1, а её площадь равна 84. Найдите площадь треугольника ABC.

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9731

В треугольнике ABC проведена средняя линия DE. Площадь треугольника равна 9. Найдите площадь треугольника ABC .

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9853

Сторона ромба равна 5, а расстояние от точки пересечения диагоналей ромба до неё равно 2. Найдите площадь ромба.

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9918

В трапеции ABCD известно, что AD=9 , BC=1, MN – средняя линия трапеции. Найдите площадь трапеции ABCD, если площадь трапеции BCNM равна 21.

Ответ: 70
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9972

Сторона ромба равна 8, а расстояние от точки пересечения диагоналей ромба до неё равно 2. Найдите площадь ромба.

Ответ: 32
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10238

Периметр равностороннего треугольника равен 30. Найдите его площадь S. В ответе запишите значение выражения $$S\sqrt{3}$$.

Ответ: 75

Задание 10301

В прямоугольнике одна сторона равна 52, а диагональ равна 65. Найдите площадь этого прямоугольника.

Ответ: 2028
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10323

Площадь параллелограмма ABCD равна 6. Точка E – середина стороны AB . Найдите площадь трапеции.

Ответ: 4,5
 

Задание 10356

Радиус круга равен 41. Найдите его площадь S. В ответе укажите значение выражения $$\frac{S}{\pi}$$.

Ответ: 1681
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10368

В прямоугольнике диагональ равна 42, а угол между ней и одной из сторон равен 30o . Найдите площадь S прямоугольника. В ответе запишите значение выражения $$S\sqrt{3}$$.

Ответ: 1323
 

Задание 10419

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны 30 и 50.

Ответ: 600

Задание 10460

Найдите площадь параллелограмма, изображённого на рисунке.

Ответ: 28
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Сторона (a), к которой проведена высота равна $$3+4=7$$.

Площадь параллелограмма равна $$S=ah=7\cdot 4=28$$

 

Задание 10954

Основания трапеции равны 6 и 24, одна из боковых сторон равна 11, а тангенс угла между ней и одним из оснований равен $$\frac{1}{\sqrt{35}}$$. Найдите площадь этой трапеции.
Ответ: 27,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть Пусть $$AB=11;\ {\tan A\ }=\frac{1}{\sqrt{35}}\to \frac{1}{35}+1=\frac{1}{{{\cos }^{{\rm 2}} A\ }}\to {{\cos }^{{\rm 2}} A\ }=\frac{35}{36}\to$$ $$\to {\cos A\ }=\frac{\sqrt{35}}{6}\to {\sin A\ }=\sqrt{1-{{\cos }^{{\rm 2}} A\ }}=\frac{1}{6}\to BH=AB{\sin A\ }=\frac{11}{6}$$. $$S_{ABCD}=\frac{6+24}{2}\cdot \frac{11}{6}=27,5$$
 

Задание 10975

Сторона треугольника равна 29, а высота, проведённая к этой стороне, равна 12. Найдите площадь этого треугольника.

Ответ: 174
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть $$S=\frac{1}{2}ah=\frac{1}{2}\cdot 29\cdot 12=174$$
 

Задание 11036

Сторона треугольника равна 16, а высота, проведённая к этой стороне, равна 27. Найдите площадь этого треугольника.

Ответ: 216
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть $$S=\frac{1}{2}ah=\frac{1}{2}\cdot 16\cdot 27=216$$
 

Задание 11060

Сторона треугольника равна 14, а высота, проведённая к этой стороне, равна 23. Найдите площадь этого треугольника.

Ответ: 161
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть $$S=\frac{1}{2}ah=\frac{1}{2}\cdot 14\cdot 23=161$$
 

Задание 11165

Диагонали параллелограмма равны 7 и 24, а угол между ними равен 30°. Найдите площадь этого параллелограмма.

Ответ: 42
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть Площадь параллелограмма можно найти как половину произведения длин его диагоналей на синус угла между ними: $$S-\frac{1}{2}\cdot 7\cdot 24\cdot \frac{1}{2}=42$$
 

Задание 11187

Найдите площадь параллелограмма, изображённого на рисунке.

Ответ: 96
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11209

Найдите площадь параллелограмма, изображённого на рисунке

Ответ: 44
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11230

Диагонали параллелограмма равны 10 и 26, а угол между ними равен 30°. Найдите площадь этого параллелограмма.

Ответ: 65
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11253

Основания трапеции равны 20 и 26, одна из боковых сторон равна $$8\sqrt{3}$$, а угол между ней и одним из оснований равен 120o. Найдите площадь трапеции.

Ответ: 276
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11295

Диагонали параллелограмма равны 12 и 17, а угол между ними равен 30o. Найдите площадь этого параллелограмма.

Ответ: 51
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11316

Две стороны параллелограмма равны 10 и 12, а один из углов этого параллелограмма равен 30°. Найдите площадь этого параллелограмма.

Ответ: 60
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11352

Периметр ромба равен 12, а один из углов равен 30o.Найдите площадь ромба.

Ответ: 4,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11395

Периметр ромба равен 56, а один из углов равен 30° Найдите площадь ромба.

Ответ: 98
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11438

В трапеции ABCD AB=CD, $$\angle BDA=22^{\circ}$$ и $$\angle BDC=45^{\circ}$$. Найдите угол ABD. Ответ дайте в градусах.

Ответ: 91
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11510

Площадь параллелограмма ABCD равна 108. Точка E – середина стороны CD. Найдите площадь трапеции ABED .

Ответ: 81
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11533

В трапеции ABCD известно, что AD=7, BC=3, а её площадь равна 85. Найдите площадь трапеции BCNM , где MN – средняя линия трапеции ABCD .

Ответ: 34
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11554

Сторона ромба равна 6, а один из углов этого ромба равен 150°. Найдите площадь этого ромба.

Ответ: 18
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11576

Сторона ромба равна 14, а один из углов этого ромба равен 150°. Найдите высоту этого ромба.

Ответ: 7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11598

Основания трапеции равны 1 и 7. Одна из боковых сторон равна $$23\sqrt{3}$$, а угол между ней и одним из оснований равен 120o. Найдите площадь трапеции.

Ответ: 138
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11621

Площадь ромба равна 54, а периметр равен 36. Найдите высоту ромба.

Ответ: 6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11641

Площадь параллелограмма ABCD равна 66. Точка E – середина стороны AB. Найдите площадь трапеции EBCD

Ответ: 49,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11662

В ромбе ABCD угол АВС равен 68°. Найдите угол ACD. Ответ дайте в градусах.

Ответ: 56
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11786

В трапеции ABCD с основаниями AD и BC известно, что AD=8 , BC=2, а её площадь равна 35. Найдите площадь треугольника ABC .

Ответ: 7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11920

Сторона ромба равна 5, а расстояние от точки пересечения диагоналей ромба до неё равно 2. Найдите площадь ромба.

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11941

Сторона ромба равна 8, а расстояние от точки пересечения диагоналей ромба до неё равно 2. Найдите площадь ромба.

Ответ: 32
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11973

На стороне АС треугольника АВС отмечена точка D так, что AD = 4, DC = 11. Площадь треугольника АВС равна 75. Найдите площадь треугольника ABD.

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11994

На стороне АС треугольника АВС отмечена точка D так, что AD=5, DC=15. Площадь треугольника АВС равна 120. Найдите площадь треугольника BCD.

Ответ: 90
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12017

Периметр квадрата равен 84. Найдите площадь этого квадрата.

Ответ: 441
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12038

Периметр квадрата равен 68. Найдите площадь этого квадрата.

Ответ: 289
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12080

В равнобедренной трапеции основания равны 3 и 9, а один из углов между боковой стороной и основанием равен 45$${}^\circ$$. Найдите площадь трапеции.

Ответ: 18
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12141

Два катета прямоугольного треугольника равны 11 и 8. Найдите его площадь.

 

Ответ: 44
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12162

Два катета прямоугольного треугольника равны 7 и 12. Найдите его площадь.

Ответ: 42
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12185

Найдите площадь ромба, если его диагонали равны 5 и 6.

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12206

Найдите площадь ромба, если его диагонали равны 21 и 6.

Ответ: 63
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12933

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 3 и 5.

Ответ: 6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12999

Прямая, параллельная стороне АС треугольника АВС, пересекает стороны АВ и ВС в точках М и N соответственно, АС = 36, MN= 28. Площадь треугольника АВС равна 162. Найдите площадь треугольника MBN.

Ответ: 98
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13022

Две стороны параллелограмма равны 6 и 17, а один из углов этого параллелограмма равен 30°. Найдите площадь этого параллелограмма.

Ответ: 51
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13044

Две стороны параллелограмма равны 7 и 12, а один из углов этого параллелограмма равен 30°. Найдите площадь этого параллелограмма.

Ответ: 42
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13109

Периметр квадрата равен 160. Найдите площадь квадрата.

Ответ: 1600
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13132

Найдите площадь кругового сектора, если радиус круга равен 3, а угол сектора равен 120o. В ответе укажите площадь, деленную на $$\pi$$.

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13197

Найдите площадь трапеции ABCD, изображенной на рисунке, если известно, что AB=2.

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13218

Периметр равностороннего треугольника равен 30. Найдите его площадь, умноженную на $$\sqrt{3}$$.

Ответ: 75
 

Задание 13240

Найдите площадь прямоугольника, если его периметр равен 44 и одна сторона на 2 больше другой.

Ответ: 120
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13328

Сторона треугольника равна 16, а высота, проведённая - к этой стороне, равна 27. Найдите площадь этого треугольника.

Ответ: 216
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13351

Периметр ромба равен 56, а один из углов равен 30 . Найдите площадь ромба.

Ответ: 98
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13410

Диагонали параллелограмма равны 7 и 24, а угол между ними равен 30°. Найдите площадь этого параллелограмма.

Ответ: 42
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 13431

В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 12. Найди площадь четырёхугольника ABMN.

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13454

Диагонали параллелограмма равны 10 и 26, а угол между ними равен 30°. Найдите площадь этого параллелограмма.

Ответ: 65
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13475

Найдите площадь параллелограмма, изображённого на рисунке.

Ответ: 96
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13498

Найдите площадь параллелограмма, изображённого на рисунке.

Ответ: 44
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13520

Найдите площадь треугольника с длинами сторон 86, 122 и 136.

Ответ: 5160
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13580

Площадь параллелограмма ABCD равна 92. Точка Е — середина стороны АВ. Найдите площадь трапеции DAEC.

Ответ: 69
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13602

Высота равностороннего треугольника равна $$10\sqrt[4]{3}$$. Найдите его площадь.

Ответ: 100
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13624

Площадь параллелограмма ABCD равна 96. Точка Е — середина стороны АВ. Найдите площадь треугольника СВЕ.

Ответ: 24
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13646

Найдите площадь трапеции, изображённой на рисунке

Ответ: 3864
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13710

Периметр ромба равен 12, а один из углов равен 30°. Найдите площадь ромба.

Ответ: 4,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13731

Периметр ромба равен 56, а один из углов равен 30о. Найдите площадь ромба.

Ответ: 98
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13754

Найдите площадь квадрата, если его диагональ равна 16.

Ответ: 128
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13836

Найдите площадь прямоугольника, если его периметр равен 60, а отношение соседних сторон равно 4:11.

Ответ: 176
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13857

Одна из сторон параллелограмма равна 12, другая равна 5, а синус одного из углов равен $$\frac{1}{3}$$. Найдите площадь параллелограмма

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13880

В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 76. Найдите площадь четырёхугольника ABMN.

Ответ: 228
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13942

Сторона ромба равна 6, а один из углов этого ромба равен 150°. Найдите площадь этого ромба.

Ответ: 18
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13964

Сторона ромба равна 14, а один из углов этого ромба равен 150°. Найдите высоту этого ромба.

Ответ: 7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 14084

Сторона ромба равна 5, а расстояние от точки пересечения диагоналей ромба до неё равно 2. Найдите площадь ромба.

Ответ: 20
 

Задание 14106

Сторона ромба равна 8, а расстояние от точки пересечения диагоналей ромба до неё равно 2. Найдите площадь ромба.

Ответ: 32
 

Задание 14172

Найдите площадь ромба, если его диагонали равны 21 и 6.

Ответ: 63
 

Задание 14194

Найдите площадь ромба, если его диагонали равны 5 и 6.

Ответ: 15