Перейти к основному содержанию

ОГЭ

Окружность, круг и их элементы

Окружность, описанная вокруг многоугольника

 
Аналоги к этому заданию:

Задание 10976

Четырёхугольник ABCD вписан в окружность. Угол АВС равен 38°, угол CAD равен 33°. Найдите угол ABD. Ответ дайте в градусах.

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть $$\angle ABC=38^{\circ}\to \cup ADC=76^{\circ}; \angle CAD=33^{\circ}\to \cup DC=66^{\circ} \to$$ $$\to \cup AD=76^{\circ}-66^{\circ}=10^{\circ}\to \angle ABD=\frac{\cup AD}{2}=5^{\circ}$$
Аналоги к этому заданию:

Задание 10459

Радиус окружности, описанной около квадрата, равен $$6\sqrt{2}$$. Найдите радиус окружности, вписанной в этот квадрат.

Ответ: 6
Скрыть

Радиус вписанной окружности в квадрат равен половине стороны квадрата, описанной около квадрата - половине диагонали. Пусть а - сторона квадрата, тогда диагонали квадрата $$a\sqrt{2}$$, следовательно: $$\frac{a\sqrt{2}}{2}=6\sqrt{2}$$. Тогда $$a=12$$, и радиус вписанной окружности $$\frac{12}{2}=6$$

 
Аналоги к этому заданию:

Задание 10418

Центр окружности, описанной коло треугольника ABC, лежит на стороне AB. Найдите угол ABC, если угол BAC равен 44o. Ответ дайте в градусах.

Ответ: 46
Аналоги к этому заданию:

Задание 3596

Угол между сто­ро­ной пра­виль­но­го  -уголь­ни­ка, впи­сан­но­го в окруж­ность, и ра­ди­у­сом этой окруж­но­сти, про­ве­ден­ным в одну из вер­шин сто­ро­ны, равен 54°. Най­ди­те n.

Ответ: 5
Аналоги к этому заданию:

Задание 3595

Пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка равен 72. Най­ди­те диа­метр опи­сан­ной окруж­но­сти.

Ответ: 24
Аналоги к этому заданию:

Задание 3594

Два угла впи­сан­но­го в окруж­ность че­ты­рех­уголь­ни­ка равны 82° и 58°. Най­ди­те боль­ший из остав­ших­ся углов. Ответ дайте в гра­ду­сах.

Ответ: 122
Аналоги к этому заданию:

Задание 3593

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 8 и 6. Ра­ди­ус опи­сан­ной окруж­но­сти равен 5. Най­ди­те вы­со­ту тра­пе­ции.

Ответ: 7
Аналоги к этому заданию:

Задание 3592

Бо­ко­вая сто­ро­на рав­но­бед­рен­ной тра­пе­ции равна ее мень­ше­му ос­но­ва­нию, угол при ос­но­ва­нии равен 60°, боль­шее ос­но­ва­ние равно 12. Най­ди­те ра­ди­ус опи­сан­ной окруж­но­сти этой тра­пе­ции.

Ответ: 6
Аналоги к этому заданию:

Задание 3591

Около тра­пе­ции опи­са­на окруж­ность. Пе­ри­метр тра­пе­ции равен 22, сред­няя линия равна 5. Най­ди­те бо­ко­вую сто­ро­ну тра­пе­ции.

Ответ: 6
Аналоги к этому заданию:

Задание 3590

Бо­ко­вые сто­ро­ны рав­но­бед­рен­но­го тре­уголь­ни­ка равны 40, ос­но­ва­ние равно 48. Най­ди­те ра­ди­ус опи­сан­ной окруж­но­сти этого тре­уголь­ни­ка.

Ответ: 25
Аналоги к этому заданию:

Задание 3589

Сто­ро­на AB тре­уголь­ни­ка ABC равна 1. Про­ти­во­ле­жа­щий ей угол C равен 150°. Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около этого тре­уголь­ни­ка.

Ответ: 1
Аналоги к этому заданию:

Задание 3588

Угол C тре­уголь­ни­ка ABC, впи­сан­но­го в окруж­ность ра­ди­у­са 3, равен 30°. Най­ди­те сто­ро­ну AB этого тре­уголь­ни­ка.

Ответ: 3
Аналоги к этому заданию:

Задание 3587

Одна сто­ро­на тре­уголь­ни­ка равна ра­ди­у­су опи­сан­ной окруж­но­сти. Най­ди­те угол тре­уголь­ни­ка, про­ти­во­ле­жа­щий этой сто­ро­не. Ответ дайте в гра­ду­сах

Ответ: 30
Аналоги к этому заданию:

Задание 3586

Сто­ро­на AB тре­уголь­ни­ка ABC равна 1. Про­ти­во­ле­жа­щий ей угол C равен 30°. Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около этого тре­уголь­ни­ка.

Ответ: 1
Аналоги к этому заданию:

Задание 3585

Чему равна сто­ро­на пра­виль­но­го ше­сти­уголь­ни­ка, впи­сан­но­го в окруж­ность, ра­ди­ус ко­то­рой равен 6?

Ответ: 6
Аналоги к этому заданию:

Задание 3583

В тре­уголь­ни­ке ABC AC = 4, BC = 3, угол C равен 90°. Най­ди­те ра­ди­ус опи­сан­ной окруж­но­сти этого тре­уголь­ни­ка.

Ответ: 2,5
Аналоги к этому заданию:

Задание 3581

Ги­по­те­ну­за пря­мо­уголь­но­го тре­уголь­ни­ка равна 12. Най­ди­те ра­ди­ус опи­сан­ной окруж­но­сти этого тре­уголь­ни­ка.

Ответ: 6
Аналоги к этому заданию:

Задание 3580

Ра­ди­ус окруж­но­сти, опи­сан­ной около пра­виль­но­го тре­уголь­ни­ка, равен 3. Най­ди­те вы­со­ту этого тре­уголь­ни­ка.

Ответ: 4,5
Аналоги к этому заданию:

Задание 3579

Вы­со­та пра­виль­но­го тре­уголь­ни­ка равна 3. Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около этого тре­уголь­ни­ка.

Ответ: 10
Аналоги к этому заданию:

Задание 3578

Ра­ди­ус окруж­но­сти, опи­сан­ной около пра­виль­но­го тре­уголь­ни­ка, равен $$\sqrt{3}$$. Най­ди­те сто­ро­ну этого тре­уголь­ни­ка.

Ответ: 3
Аналоги к этому заданию:

Задание 3577

Сто­ро­на пра­виль­но­го тре­уголь­ни­ка равна $$\sqrt{3}$$. Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около этого тре­уголь­ни­ка.

Ответ: 1
Аналоги к этому заданию:

Задание 3576

Че­ты­рех­уголь­ник ABCD впи­сан в окруж­ность. Угол ABC равен 110°, угол ABD равен 70°. Най­ди­те угол CAD. Ответ дайте в гра­ду­сах.

Ответ: 40
Аналоги к этому заданию:

Задание 3575

Че­ты­рех­уголь­ник ABCD впи­сан в окруж­ность. Угол ABD равен 75°, угол CAD равен 35°. Най­ди­те угол ABC. Ответ дайте в гра­ду­сах.

Ответ: 110
Аналоги к этому заданию:

Задание 3573

Точки ABCD, рас­по­ло­жен­ные на окруж­но­сти, делят эту окруж­ность на че­ты­ре дуги ABBCCD и AD, гра­дус­ные ве­ли­чи­ны ко­то­рых от­но­сят­ся со­от­вет­ствен­но как 4 : 2 : 3 : 6. Най­ди­те угол A че­ты­рех­уголь­ни­ка ABCD. Ответ дайте в гра­ду­сах.

Ответ: 60
Аналоги к этому заданию:

Задание 3572

Сто­ро­ны че­ты­рех­уголь­ни­ка ABCD AB, BC, CD и AD стя­ги­ва­ют дуги опи­сан­ной окруж­но­сти, гра­дус­ные ве­ли­чи­ны ко­то­рых равны со­от­вет­ствен­но $$95^{\circ}$$, $$49^{\circ}$$, $$71^{\circ}$$, $$145^{\circ}$$. Най­ди­те угол B этого че­ты­рех­уголь­ни­ка. Ответ дайте в гра­ду­сах.

Ответ: 108
Аналоги к этому заданию:

Задание 3571

Угол A че­ты­рех­уголь­ни­ка ABCD, впи­сан­но­го в окруж­ность, равен 58°. Най­ди­те угол C этого че­ты­рех­уголь­ни­ка. Ответ дайте в гра­ду­сах.

Ответ: 122
Аналоги к этому заданию:

Задание 3570

Точки ABC, рас­по­ло­жен­ные на окруж­но­сти, делят ее на три дуги, гра­дус­ные ве­ли­чи­ны ко­то­рых от­но­сят­ся как 1 : 3 : 5. Най­ди­те боль­ший угол тре­уголь­ни­ка ABC. Ответ дайте в гра­ду­сах.

Ответ: 100
Аналоги к этому заданию:

Задание 3543

К окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC, про­ве­де­ны три ка­са­тель­ные. Пе­ри­мет­ры от­се­чен­ных тре­уголь­ни­ков равны 6, 8, 10. Най­ди­те пе­ри­метр дан­но­го тре­уголь­ни­ка.

Ответ: 24
Аналоги к этому заданию:

Задание 3542

В че­ты­рех­уголь­ник ABCD впи­са­на окруж­ность, AB = 10, BC = 11 и CD = 15. Най­ди­те чет­вер­тую сто­ро­ну че­ты­рех­уголь­ни­ка.

Ответ: 14
Аналоги к этому заданию:

Задание 3541

Пе­ри­метр че­ты­рех­уголь­ни­ка, опи­сан­но­го около окруж­но­сти, равен 24, две его сто­ро­ны равны 5 и 6. Най­ди­те боль­шую из остав­ших­ся сто­рон.

Ответ: 7
Аналоги к этому заданию:

Задание 3540

В че­ты­рех­уголь­ник ABCD впи­са­на окруж­ность, AB = 10, CD = 16. Най­ди­те пе­ри­метр че­ты­рех­уголь­ни­ка ABCD.

Ответ: 52
Аналоги к этому заданию:

Задание 3539

Пе­ри­метр пря­мо­уголь­ной тра­пе­ции, опи­сан­ной около окруж­но­сти, равен 22, ее боль­шая бо­ко­вая сто­ро­на равна 7. Най­ди­те ра­ди­ус окруж­но­сти.

Ответ: 2
Аналоги к этому заданию:

Задание 3538

Около окруж­но­сти опи­са­на тра­пе­ция, пе­ри­метр ко­то­рой равен 40. Най­ди­те длину её сред­ней линии.

Ответ: 10
Аналоги к этому заданию:

Задание 3537

Бо­ко­вые сто­ро­ны тра­пе­ции, опи­сан­ной около окруж­но­сти, равны 3 и 5. Най­ди­те сред­нюю линию тра­пе­ции.

Ответ: 4
Аналоги к этому заданию:

Задание 3535

Окруж­ность, впи­сан­ная в рав­но­бед­рен­ный тре­уголь­ник, делит в точке ка­са­ния одну из бо­ко­вых сто­рон на два от­рез­ка, длины ко­то­рых равны 5 и 3, счи­тая от вер­ши­ны, про­ти­во­ле­жа­щей ос­но­ва­нию. Най­ди­те пе­ри­метр тре­уголь­ни­ка.

Ответ: 22
Аналоги к этому заданию:

Задание 3534

Бо­ко­вые сто­ро­ны рав­но­бед­рен­но­го тре­уголь­ни­ка равны 5, ос­но­ва­ние равно 6. Най­ди­те ра­ди­ус впи­сан­ной окруж­но­сти.

Ответ: 1,5
Аналоги к этому заданию:

Задание 3533

В тре­уголь­ни­ке ABC сто­ро­ны AC = 4, BC = 3, угол C равен 90°. Най­ди­те ра­ди­ус впи­сан­ной окруж­но­сти.

Ответ: 1
Аналоги к этому заданию:

Задание 3532

Ка­те­ты рав­но­бед­рен­но­го пря­мо­уголь­но­го тре­уголь­ни­ка равны $$2+\sqrt{2}$$. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в этот тре­уголь­ник.

Ответ: 1
Аналоги к этому заданию:

Задание 3531

Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в пра­виль­ный ше­сти­уголь­ник со сто­ро­ной $$\sqrt{3}$$.

Ответ: 1,5
Аналоги к этому заданию:

Задание 3530

Най­ди­те сто­ро­ну пра­виль­но­го ше­сти­уголь­ни­ка, опи­сан­но­го около окруж­но­сти, ра­ди­ус ко­то­рой равен $$\sqrt{3}$$.

Ответ: 2
Аналоги к этому заданию:

Задание 3529

Ост­рый угол ромба равен 30°. Ра­ди­ус впи­сан­ной в этот ромб окруж­но­сти равен 2. Най­ди­те сто­ро­ну ромба.

Ответ: 8
Аналоги к этому заданию:

Задание 3528

Сто­ро­на ромба равна 1, ост­рый угол равен $$30^{\circ}$$. Най­ди­те ра­ди­ус впи­сан­ной окруж­но­сти этого ромба.

Ответ: 0,25
Аналоги к этому заданию:

Задание 3527

Ра­ди­ус окруж­но­сти, впи­сан­ной в пра­виль­ный тре­уголь­ник, равен $$\frac{\sqrt{3}}{6}$$. Най­ди­те сто­ро­ну этого тре­уголь­ни­ка.

Ответ: 1
Аналоги к этому заданию:

Задание 3526

Сто­ро­на пра­виль­но­го тре­уголь­ни­ка равна $$\sqrt{3}$$. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в этот тре­уголь­ник.

Ответ: 0,5
Аналоги к этому заданию:

Задание 3525

Ра­ди­ус окруж­но­сти, впи­сан­ной в пра­виль­ный тре­уголь­ник, равен 6. Най­ди­те вы­со­ту этого тре­уголь­ни­ка.

Ответ: 18
Аналоги к этому заданию:

Задание 3524

Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в пра­виль­ный тре­уголь­ник, вы­со­та ко­то­ро­го равна 6.

Ответ: 2
Аналоги к этому заданию:

Задание 3523

Около окруж­но­сти, ра­ди­ус ко­то­рой равен 3, опи­сан мно­го­уголь­ник, пе­ри­метр ко­то­ро­го равен 20. Най­ди­те его пло­щадь.

Ответ: 30
Аналоги к этому заданию:

Задание 3522

Пе­ри­метр тре­уголь­ни­ка равен 12, а ра­ди­ус впи­сан­ной окруж­но­сти равен 1. Най­ди­те пло­щадь этого тре­уголь­ни­ка.

Ответ: 6
Аналоги к этому заданию:

Задание 1923

Че­ты­рех­уголь­ник ABCD впи­сан в окруж­ность. Угол ABC равен 70°, угол CAD равен 49°. Най­ди­те угол ABD. Ответ дайте в гра­ду­сах.

Ответ: 21
Скрыть

   1) $$\angle ABC=\frac{1}{2}\smile AC$$ (по свойству вписанного угла), тогда $$\smile AC=140^{\circ}$$

   2) $$\angle CAD=\frac{1}{2}\smile DC$$ (по свойству вписанного угла), тогда $$\smile DC=98^{\circ}$$

   3) $$\smile AD=140-98=42^{\circ}$$, тогда $$\angle ABD=\frac{1}{2}\smile AD=21^{\circ}$$ (по свойству вписанного угла)

Аналоги к этому заданию:

Задание 1922

Окруж­ность с цен­тром в точке O опи­са­на около рав­но­бед­рен­но­го тре­уголь­ни­ка ABC, в ко­то­ром AB = BC и ∠ABC = 177°. Най­ди­те ве­ли­чи­ну угла BOC. Ответ дайте в гра­ду­сах.

Ответ: 3
Скрыть

   1) Треугольник ABC - равнобедренный, $$\angle BAC=\angle BCA=\frac{180-177}{2}=1,5$$.

   2) $$\angle BAC=\frac{1}{2}BC$$ (по свойству вписанного угла), тогда $$\smile BC=2*1,5=3^{\circ}$$

   3) $$\angle BOC=\smile BC=3^{\circ}$$ (по свойству центрального угла)

Аналоги к этому заданию:

Задание 1921

Бо­ко­вая сто­ро­на рав­но­бед­рен­но­го тре­уголь­ни­ка равна 4. Угол при вер­ши­не, про­ти­во­ле­жа­щий ос­но­ва­нию, равен 120°. Най­ди­те диа­метр окруж­но­сти, опи­сан­ной около этого тре­уголь­ни­ка.

Ответ: 8
Скрыть

  1) $$\angle ABC=\frac{1}{2}\smile AC$$ (по свойству вписанного угла), тогда $$\smile AC=2*120=240^{\circ}$$ (большая дуга)

  2) Вся окружность равна $$360^{\circ}$$, тогда меньшая дуга AC составляет $$120^{\circ}$$

  3) $$\angle AOC=\smile AC=120^{\circ}$$ (меньшей дуге, по свойству центрального угла), тогда треугольники ABC и AOC равны (оба равнобедренных, общая сторона), следовательно OC=4, и диаметр составляет 4*2=8

Аналоги к этому заданию:

Задание 1919

В окруж­ность впи­сан рав­но­сто­рон­ний вось­ми­уголь­ник. Най­ди­те ве­ли­чи­ну угла ABH.

Ответ: 22,5
Скрыть

  1) Для нахождения угла правильного n-угольника, можно воспользоваться формулой: $$\alpha=\frac{n-2}{n}*180$$

  2) $$\angle ABC = \frac{8-2}{8}*180=135^{\circ}$$

  3) Из треугольника HOA: $$\angle HOA=180-2\angle OHA=180-\angle H=45^{\circ}$$ (треугольник равнобедренный, OH - биссектрисса угла H)

  4) Меньшая дуга $$HA=\angle HOA=45^{\circ}$$ (по свойству центрального угла)

  5) $$\angle ABH=\frac{1}{2}\smile HA=22,5^{\circ}$$ (по свойству вписанного угла)