ОГЭ
Задание 2929
Докажите, что если в треугольнике две высоты равны, то он равнобедренный.
Решение временно отсутствует, можете найти его в моем видео-разборе ( вначале варианта )
Задание 3019
Докажите, что если медиана треугольника совпадает с его биссектрисой, то этот треугольник равнобедренный.
AH - медиана и биссектриса $$\Rightarrow$$ $$\angle HAC=\angle HAB$$; BH=HC и АН - общая.
По теореме косинусов:
$$\left.\begin{matrix}\frac{AH}{\sin C}=\frac{HC}{\sin HAC}\\\frac{AH}{\sin B}=\frac{HB}{\sin BAH}\end{matrix}\right\}$$
$$\Rightarrow \sin C=\sin B\Rightarrow \angle C=\angle B$$
ч.т.д.
Задание 2972
Докажите, что если у треугольника равны две высоты, то этот треугольник равнобедренный.
$$CH=AM$$ $$\bigtriangleup BCH=\bigtriangleup AMB$$ ($$\angle B$$ - общий катеты равны) $$\Rightarrow$$ $$AB=BC$$ $$\Rightarrow$$ $$\bigtriangleup ABC$$ - равнобедренный.
ч. т. д.
Задание 4803
Докажите, что сумма длин медиан треугольника меньше его периметра.
На каждой стороне треугольника достроим параллелограмм, как показано на рисунке и введем обозначения: BC=a;AB=c;AC=b;CC1=mc;BB1=mb;AA1=ma
Задание 4871
На высоте $$AD$$ треугольника $$ABC$$ взята точка $$N$$. Докажите, что $$AB^{2}-AC^{2}=NB^{2}-NC^{2}$$.
Задание 5041
В треугольнике $$ABC$$ угол $$ACB$$ тупой, $$BO\perp AC$$, $$OF\perp AB$$, $$OD\perp BC$$. Докажите, что $$\angle ACB=\angle DFB$$.
Пусть $$\angle A=\alpha$$; $$\angle B=\beta$$ $$\Rightarrow$$ $$\angle ACB=180-\angle\alpha-\angle\beta$$
1) $$\angle BCO=180-\angle C=\alpha+\beta$$ $$\Rightarrow$$ из $$\bigtriangleup OCB$$: $$\angle CBO=90^{\circ}-\angle BCO=90^{\circ}-\alpha-\beta$$
2) $$\bigtriangleup ODN\sim\bigtriangleup FNB$$ (прямоугольные); $$\angle DNO=\angle FNB$$ (как вертикал.); $$\Rightarrow$$ $$\frac{ON}{NB}=\frac{DN}{FN}$$ $$\Rightarrow$$ $$\frac{ON}{DN}=\frac{NB}{NF}$$ $$\Rightarrow$$ $$\angle DFN=\angle NBO=90^{\circ}-\alpha-\beta$$ $$\Rightarrow$$ $$\angle DFB=90^{\circ}+90^{\circ}-\alpha-\beta=180^{\circ}-\alpha-\beta=\angle ACB$$
ч.т.д.
Задание 5088
Докажите, что если в треугольнике два угла равны, то он равнобедренный.
Пусть $$BH\perp AC$$ $$\Rightarrow$$ $$\bigtriangleup ABH\sim\bigtriangleup BHC$$ по 2 углам, но т.к. $$BH$$ - общая ,то $$\bigtriangleup ABH=\bigtriangleup BHC$$ $$\Rightarrow$$ $$AB=BC$$
ч.т.д.
Задание 5559
Докажите, что медиана треугольника делит его на два треугольника, площади которых равны между собой.
1) Пусть дан $$\bigtriangleup ABC$$, $$CM$$ - медиана $$\Rightarrow$$ $$AM=MB$$ ($$\star$$)
2) Пусть $$CH\perp AB$$, тогда $$S_{AMC}=\frac{1}{2}AM\cdot CH$$; $$S_{CMB}=\frac{1}{2}MB\cdot CH$$ с учетом ($$\star$$): $$S_{AMC}=S_{CMB}$$