ОГЭ
Задание 11934
Перед началом первого тура чемпионата по теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 51 спортсмен, среди которых 14 спортсменов из России, в том числе Д. Найдите вероятность того, что в первом туре Д. будет играть с каким-либо спортсменом не из России.
Задание 11823
Научная конференция проводится в 3 дня. Всего запланировано 50 докладов: в первый день — 16 докладов, остальные распределены поровну между вторым и третьим днями. На конференции планируется доклад профессора Н. Порядок докладов определяется случайным образом. Какова вероятность того, что доклад профессора Н. окажется запланированным на последний день конференции?
Задание 11801
Научная конференция проводится в 4 дня. Всего запланировано 50 докладов: первые два дня — по 13 докладов, остальные распределены поровну между третьим и четвёртым днями. На конференции планируется доклад профессора К. Порядок докладов определяется случайным образом. Какова вероятность того, что доклад профессора К. окажется запланированным на последний день конференции?
Задание 11591
В соревнованиях по художественной гимнастике участвуют три гимнастки из России, три гимнастки из Украины и четыре гимнастки из Белоруссии. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что первой будет выступать гимнастка из России.
Задание 11569
В соревнованиях по толканию ядра участвуют 6 спортсменов из Великобритании, 3 спортсмена из Франции, 6 спортсменов из Германии и 10 — из Италии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, выступающий последним, окажется из Франции.
Задание 11547
В соревнованиях по толканию ядра участвуют 4 спортсмена из Македонии, 9 спортсменов из Сербии, 7 спортсменов из Хорватии и 5 — из Словении. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, выступающий последним, окажется из Македонии.
Задание 11479
В коробке вперемешку лежат чайные пакетики с чёрным и зелёным чаем, одинаковые на вид, причём пакетиков с зелёным чаем в 7 раз меньше, чем пакетиков с чёрным. Найдите вероятность того, что случайно выбранный из этой коробки пакетик окажется пакетиком с чёрным чаем.
Задание 11431
В коробке вперемешку лежат чайные пакетики с чёрным и зелёным чаем, одинаковые на вид, причём пакетиков с чёрным чаем в 4 раза меньше, чем пакетиков с зелёным. Найдите вероятность того, что случайно выбранный из этой коробки пакетик окажется пакетиком с зелёным чаем.
Задание 11202
В лыжных гонках участвуют 13 спортсменов из России, 2 спортсмена из Норвегии и 5 спортсменов из Швеции. Порядок, в котором спортсмены стартуют, определяется жребием. Найдите вероятность того, что первым будет стартовать спортсмен из Норвегии или Швеции.
Задание 11159
Задание 10970
В магазине канцтоваров продаётся 200 ручек: 31 красная, 25 зелёных, 38 фиолетовых, остальные синие и чёрные, их поровну. Найдите вероятность того, что случайно выбранная в этом магазине ручка будет красной или чёрной.
Задание 10452
Вероятность того, что стекло мобильного телефона разобьётся при падении на твёрдую поверхность, равна 0,91. Найдите вероятность того, что при падении на твёрдую поверхность стекло мобильного телефона не разобьётся.
Исход того, что не разобьется, противоположен исходу, что разобьется, Следовательно, сумма их вероятностей равна 1. Потому, вероятность исхода "не разобьется": $$1-0,91=0,09$$
Задание 5763
В соревновании по биатлону участвуют спортсмены из 25 стран, одна из которых ― Россия. Всего на старт вышло 60 участников, из которых 6 ― из России. Порядок старта определяется жребием, стартуют спортсмены друг за другом. Какова вероятность того, что десятым стартовал спортсмен из России?
Задание 5762
Проводится жеребьёвка Лиги Чемпионов. На первом этапе жеребьёвки восемь команд, среди которых команда «Барселона», распределились случайным образом по восьми игровым группам — по одной команде в группу. Затем по этим же группам случайным образом распределяются еще восемь команд, среди которых команда «Зенит». Найдите вероятность того, что команды «Барселона» и «Зенит» окажутся в одной игровой группе.
Задание 2258
В таблице представлены результаты четырёх стрелков, показанные ими на тренировке.
Номер стрелка |
Число выстрелов |
Число попаданий |
1 |
42 |
28 |
2 |
70 |
20 |
3 |
54 |
45 |
4 |
46 |
42 |
Тренер решил послать на соревнования того стрелка, у которого относительная частота попаданий выше. Кого из стрелков выберет тренер? Укажите в ответе его номер.
Задание 2252
В соревнованиях по художественной гимнастике участвуют три гимнастки из России, три гимнастки из Украины и четыре гимнастки из Белоруссии. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что первой будет выступать гимнастка из России.
Задание 2248
В лыжных гонках участвуют 11 спортсменов из России, 6 спортсменов из Норвегии и 3 спортсмена из Швеции. Порядок, в котором спортсмены стартуют, определяется жребием. Найдите вероятность того, что первым будет стартовать спортсмен из России.
Задание 2247
Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд будет первой владеть мячом. Команда А должна сыграть два матча — с командой В и с командой С. Найдите вероятность того, что в обоих матчах первой мячом будет владеть команда А.
Задание 2244
В группе из 20 российских туристов несколько человек владеют иностранными языками. Из них пятеро говорят только по-английски, трое только по-французски, двое по-французски и по-английски. Какова вероятность того, что случайно выбранный турист говорит по-французски?
Задание 2237
Родительский комитет закупил 25 пазлов для подарков детям на окончание года, из них 15 с машинами и 10 с видами городов. Подарки распределяются случайным образом. Найдите вероятность того, что Толе достанется пазл с машиной.
Задание 2235
Миша с папой решили покататься на колесе обозрения. Всего на колесе двадцать четыре кабинки, из них 5 — синие, 7 — зеленые, остальные — красные. Кабинки по очереди подходят к платформе для посадки. Найдите вероятность того, что Миша прокатится в красной кабинке.
Задание 2231
Телевизор у Маши сломался и показывает только один случайный канал. Маша включает телевизор. В это время по трем каналам из двадцати показывают кинокомедии. Найдите вероятность того, что Маша попадет на канал, где комедия не идет.
Задание 721
В торговом центре два одинаковых автомата продают кофе. Обслуживание автоматов происходит по вечерам после закрытия центра. Известно, что вероятность события «К вечеру в первом автомате закончится кофе» равна 0,25. Такая же вероятность события «К вечеру во втором автомате закончится кофе». Вероятность того, что кофе к вечеру закончится в обоих автоматах, равна 0,15. Найдите вероятность того, что к вечеру дня кофе останется в обоих автоматах.
Задание 715
В среднем из 2000 садовых насосов, поступивших в продажу, 6 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает?
Вероятность того, что насос подтекает: $$\frac{6}{2000}=0,003$$. Тогда вероятность противоположного события, что не подтекает: $$1-0,003=0,997$$
Задание 714
В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что выпадет хотя бы две решки.
Всего возможных исходов: $$2^{3}=8$$ (количество сторон предмета в степени количества бросков). Найдем варианты выпадения хотя бы двух решек - две решки или три решки: РРО ; РОР ; ОРР ; РРР. Всего исходов - 4. Тогда вероятность составит: $$\frac{4}{8}=0,5$$
Задание 713
На чемпионате по прыжкам в воду выступают 20 спортсменов, среди них 3 прыгуна из Чехии и 2 прыгуна из Боливии. Порядок выступлений определяется жеребьевкой. Найдите вероятность того, что двенадцатым будет выступать прыгун из Чехии.
Необходимо количество спортсменов из Чехии поделить на общее количество спортсменов: $$\frac{3}{20}=0,15$$
Задание 712
У Вити в копилке лежит 12 рублёвых, 6 двухрублёвых, 4 пятирублёвых и 3 десятирублёвых монеты. Витя наугад достаёт из копилки одну монету. Найдите вероятность того, что оставшаяся в копилке сумма составит более 70 рублей.
Всего в копилке: $$12+6*2+4*5+3*10=74$$ рубля. Чтобы оставшаяся сумма составила более 70 рублей, Витя должен достать или рублевую или 2х рублевую монету. Всего монет - 25, рублевых и 2х рублевых - 18. Тогда вероятность составит: $$\frac{18}{25}=0,72$$
Задание 710
За круглый стол на 9 стульев в случайном порядке рассаживаются 7 мальчиков и 2 девочки. Найдите вероятность того, что обе девочки будут сидеть рядом.
Пусть одна из девочек уже сидит на каком-то стуле, рядом с ней находятся еще два стула. Чтобы вторая девочка села рядом, она должна попасть на один из этих стульев. Но ребят, претендующих на них остается 8 (7 мальчиков и 1 девочка), тогда вероятность составит: $$\frac{2}{8}=0,25$$
Задание 709
Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась, достигнув отметки 10, но не дойдя до отметки 1.
Всего на циферблате 12 делений часовых. Между 10 и 1 находится 3 деления-часа (10 ; 11 ; 12, 1 - не входит, так как не достигается), т.е. проходит 3 часа времени (из 12), тогда вероятность составит $$\frac{3}{12}=0,25$$.
Задание 708
В кармане у Миши было четыре конфеты — «Грильяж», «Белочка», «Коровка» и «Ласточка», а также ключи от квартиры. Вынимая ключи, Миша случайно выронил из кармана одну конфету. Найдите вероятность того, что потерялась конфета «Грильяж».
Для этого необходимо количество конфет "Грильяж" поделить на общее количества конфет: $$\frac{1}{4}=0,25$$
Задание 707
Вероятность того, что новый DVD-проигрыватель в течение года поступит в гарантийный ремонт, равна 0,045. В некотором городе из 1000 проданных DVD-проигрывателей в течение года в гарантийную мастерскую поступила 51 штука. На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?
Частота события составляет: $$\frac{51}{1000}=0,051$$. Разница между частой и вероятностью в таком случае: $$0,051-0,045=0,006$$
Задание 706
В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта.
Вероятность того, что турист П. полетит каким-либо рейсом вычисляется как отношения мест в этом рейсе к общему количеству туристу, то есть, вероятность того, что полетит первым рейсом: $$\frac{6}{30}=0,2$$
Задание 705
В фирме такси в наличии 50 легковых автомобилей; 27 из них чёрного цвета с жёлтыми надписями на бортах, остальные — жёлтого цвета с чёрными надписями. Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета с чёрными надписями.
Вероятность того, что приедет черная, составляет :$$\frac{27}{50}=0,54$$, тогда вероятность того, что приедет желтая равна: $$1-0,54=0,46$$ (как противоположное событие приезду черной)
Задание 703
На олимпиаде по русскому языку 250 участников разместили в трёх аудиториях. В первых двух удалось разместить по 120 человек, оставшихся перевели в запасную аудиторию в другом корпусе. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.
В первых двух разместили : 120*2=240 участников, следовательно, в запасной 250-240=10 участников, тогда вероятность попасть в запасную аудиторию составила: $$\frac{10}{250}=0,04$$
Задание 702
На борту самолёта 12 кресел расположены рядом с запасными выходами и 18 — за перегородками, разделяющими салоны. Все эти места удобны для пассажира высокого роста. Остальные места неудобны. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест.
Удобных мест для пассажира: 12+18=30. Всего мест 300, тогда вероятность того, что место достанется удобное: $$\frac{30}{300}=0,1$$
Задание 701
В некотором городе из 5000 появившихся на свет младенцев 2512 мальчиков. Найдите частоту рождения девочек в этом городе. Результат округлите до тысячных.
Частота рождения мальчиков вычисляется ,как отношения общего количества родившихся мальчиков, к общему количеству родившихся детей: $$\frac{2512}{5000}=0,5024$$, тогда частота рождения девочек составляет: $$1-0,5024=0,4976\approx 0,498$$
Задание 700
На рок-фестивале выступают группы — по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Дании будет выступать после группы из Швеции и после группы из Норвегии? Результат округлите до сотых.
Количество команд в таком случае не имеет значение, имеет значение возможные расположения трех команд (Дании (Д), Швеции (Ш), Норвегии (Н)) друг относительно друга - их : ДШН; ДНШ; НДШ; НШД; ШНД; ШДН (вычисляет по формуле числа перестановок: $$N=n!$$, где n - число объектов, потому $$N=3!=1*2*3=6$$), вариантов расположения Дании после Швеции и Норвегии - 2 (ШНД и НШД), тогда вероятность данного события :$$\frac{2}{6}=0,(3)$$. Если округлить до сотых: $$0,3333...\approx 0,33$$
Задание 699
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что наступит исход ОР (в первый раз выпадает орёл, во второй — решка).
Всего исходов - 4 (количество сторон монеты в степени количества бросков $$2^{2}=4$$), исход ОР - 1, тогда вероятность: $$\frac{1}{4}=0,25$$
Задание 697
Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Физик» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Физик» выиграет жребий ровно два раза.
Распишем все возможные варианты для команды "Физик" (В - выиграла жребий, П - проиграла жребий) - всего их будет 8, так как вариантов исхода жребия -2 (выиграл и проиграл), а игр - 3: $$2^{3}=8$$: ВВВ; ВВП; ВПВ; ПВВ; ВПП; ПВП; ППВ; ППП. Количество вариантов, где встречается два раза В всего 3: ВВП; ВПВ; ПВВ, тогда вероятность составит: $$\frac{3}{8}=0,375$$
Задание 696
В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село в магазин за продуктами. Какова вероятность того, что турист Д., входящий в состав группы, пойдёт в магазин?
В группе, которая пойдет в магазин 2 человека, всего же туристов - 5, тогда вероятность того, что турист Д. пойдет в магазин (как и любой другой из туристов): $$\frac{2}{5}=0,4$$
Задание 695
Из множества натуральных чисел от 10 до 19 наудачу выбирают одно число. Какова вероятность того, что оно делится на 3?
Количество чисел с данного промежутка, которые делятся на три - 3 (12 ; 15 ; 18), общее количество цифр - 10 (19-9=10, берем 9 вместо 10 как вычитаемое, потому что 10 входит в промежуток), тогда вероятность того, что число делится на три: $$\frac{3}{10}=0,3$$
Задание 694
На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет чётной?
Количество четных цифр - 5 (0 ; 2 ; 4 ; 6 ; 8), общее количество цифр - 10, тогда вероятность того, что цифра будет четной : $$\frac{5}{10}=0,5$$
Задание 693
В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп:
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.
Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?
Количество команд во второй группе - 4, общее количество команд - 16, тогда вероятность того, что команда из России окажется во второй группе (как и в любой другой) составляет: $$\frac{4}{16}=0,25$$
Задание 692
Вася, Петя, Коля и Лёша бросили жребий — кому начинать игру. Найдите вероятность того, что начинать игру должен будет Петя.
Для этого необходимо найти отношение количества Петь к общему количеству ребят: $$\frac{1}{4}=0,25$$
Задание 691
В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по теме "Неравенства". Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по теме "Неравенства".
Найдем вероятность того, что вопрос будет по теме "Неравенства": $$\frac{10}{25}=0,4$$. Тогда вероятность противоположного события, что вопрос будет не по теме "Неравенства" составляет : $$1-0,4=0,6$$
Задание 690
В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по теме "Ботаника". Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по теме "Ботаника".
Для этого необходимо найти отношения количества вопросов по теме "Ботаника" к общему количеству вопросов: $$\frac{11}{55}=0,2$$
Задание 689
Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 спортсменов из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России.
Кроме Руслана Орлова из России 10-1=9 бадминтонистом, а всего 26-1=25 бадминтонистом. Тогда, вероятность играть с кем-либо из России у него составит: $$\frac{9}{25}=0,36$$
Задание 688
На конференцию приехали 3 ученых из Норвегии, 3 из России и 4 из Испании. Каждый из них делает на конференции один доклад. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что восьмым окажется доклад ученого из России.
Общее количество исполнителей: 3+3+4=10. Исполнителей из России 3, следовательно, вероятность выступления восьмым ( как и любым другим по счету ) исполнителя из России составит: $$\frac{3}{10}=0,3$$
Задание 687
Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений — по одному от каждой страны, участвующей в конкурсе. Исполнитель из России участвует в конкурсе. В первый день запланировано 8 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление исполнителя из России состоится в третий день конкурса?
На оставшиеся 4 дня приходится: 80-8=72 выступления. Следовательно, каждый из оставшихся дней будет проходить : $$\frac{72}{4}=18$$ выступлений ( в том числе и в третий ). Тогда, вероятность выступления исполнителя из России в третий день ( как и в любой и 4 оставшихся ) составляет: $$\frac{18}{80}=0,225$$
Задание 686
Научная конференция проводится в 5 дней. Всего запланировано 75 докладов — первые три дня по 17 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?
На четвертый день запланировано: $$n=\frac{75-17*3}{2}=12$$. Вероятность того, что выступление будет в последний день вычисляется как отношение количества докладов, запланированных в последний день, к общему количеству докладов: $$P=\frac{12}{75}=0,16$$
Задание 685
В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5 — из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Швеции.
Задание 684
Фабрика выпускает сумки. В среднем 8 сумок из 100 имеют скрытые дефекты. Найдите вероятность того, что купленная сумка окажется без дефектов.
Количество сумок без дефектов: $$n=100-8=92$$
Вероятность, что будет без дефекта вычисляется как отношение количества без дефектов, к общему количеству:$$P=\frac{92}{100}=0,92$$
Задание 683
При производстве в среднем на каждые 2982 исправных насоса приходится 18 неисправных. Найдите вероятность того, что случайно выбранный насос окажется неисправным.
Общее количество насосов в таком случае составляет : $$N=2982+18=3000$$
В таком случае вероятность равна отношению количества подтекающих, к общему количеству насосов:$$P=\frac{18}{3000}=0,006$$
Задание 682
В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.
Количество спортсменок из Китая составляет: $$n=20-8-7=5$$
Вероятность равна отношению количество спортсменок из Китая к общему количеству спортсменок: $$P=\frac{n}{N}=\frac{5}{20}=0,25$$
Задание 681
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.
Всего количество исходов $$N=2^{2}=4$$(количество сторон монеты в степени равной количеству бросков), исходов, когда орел ровно один раз всего 2 (ОР и РО). Тогда вероятность составляет $$P=\frac{n}{N}=0,5$$
Задание 680
В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.
Если бросается две кости одновременно, то общее количество исходов вычисляется как: $$N=6^{2}=36$$ (количество сторон предмета возводится в степень количества бросков). Исходы, при которых может получится 8 очков следующие (первое число - первый кубик, второе число - второй кубик): 2+6 ; 3+5 ; 4+4 ; 5+3 ; 6+2 - то есть $$n=5$$
$$P=\frac{5}{36}\approx 0,14$$
Задание 679
На тарелке 16 пирожков: 7 с рыбой, 5 с вареньем и 4 с вишней. Юля наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.
Для этого необходимо количество пирожков с вишней поделить на общее количество пирожков всех: $$P=\frac{4}{16}=0,25$$
Задание 678
В фирме такси в данный момент свободно 20 машин: 10 черных, 2 желтых и 8 зеленых. По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчице. Найдите вероятность того, что к ней приедет зеленое такси.
Для этого необходимо количество зеленых машин поделить на общее количество машин: $$P=\frac{8}{20}=0,4$$
Задание 677
На экзамен вынесено 60 вопросов, Андрей не выучил 3 из них. Найдите вероятность того, что ему попадется выученный вопрос.
Андрей выучил: $$60-3=57$$ вопросов. В таком случае вероятность того, что ему попадется выученный: $$P=\frac{57}{60}=0,95$$