Перейти к основному содержанию

ОГЭ

ОГЭ / Треугольники, четырёхугольники, многоугольники и их элементы

 
Аналоги к этому заданию:

Задание 11163

В треугольнике АВС угол А равен 45°, угол В равен 30°‚ ВС = $$8\sqrt{2}$$. Найдите АС.
Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть По теореме синусов: $$\frac{BC}{\sin A}=\frac{AC}{\sin B}$$. Тогда $$AC=\frac{BC\sin B}{\sin A}$$. Подставим известные значения: $$AC=\frac{8\sqrt{2}\cdot \frac{1}{2}}{\frac{\sqrt{2}}{2}}=8$$
 
Аналоги к этому заданию:

Задание 10977

Диагональ прямоугольника образует угол 47° с одной из его сторон. Найдите острый угол между диагоналями этого прямоугольника. Ответ дайте в градусах.

Ответ: 86
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть Пусть $$\angle HDC=47^{\circ}$$, тогда $$\triangle HCD=47^{\circ}$$ (диагонали равны и точкой пересечения делятся пополам) $$\to$$ из $$\triangle DHC:\angle DHC=180-2\cdot 47=86^{\circ}$$
 
Аналоги к этому заданию:

Задание 10458

Один из острых углов прямоугольного треугольника равен 23°. Найдите его другой острый угол. Ответ дайте в градусах.

Ответ: 67
Скрыть

Сумма острых углов прямоугольного треугольника составляет 90 градусов, тогда второй острый: $$90^{\circ}-23^{\circ}=67^{\circ}$$

 
Аналоги к этому заданию:

Задание 10417

В треугольнике ABC известно, что AB=BC, $$\angle ABC=124^{\circ}$$. Найдите градусную меру угла BCA.

Ответ: 28
 
Аналоги к этому заданию:

Задание 8847

В треугольнике ABC угол C равен 90°, AC=14, AB=20. Найдите $$\sin B$$

Ответ: 0,7
Скрыть Синус угла B равен отношению противолежащего катета AC на гипотенузу AB, имеем: $$\sin B=\frac{AC}{AB}=\frac{14}{20}=0,7$$
 
Аналоги к этому заданию:

Задание 8820

В треугольнике АВС угол С равен 90°, АС=14, АВ=20. Найдите $$\sin B$$.
Ответ: 0,7
Скрыть $$\sin B=\frac{AC}{AB}=\frac{14}{20}=0,7$$
Аналоги к этому заданию:

Задание 8733

Площадь параллелограмма ABCD равна 145. Найдите площадь параллелограмма A'B'C'D', вершинами которого являются середины сторон данного параллелограмма.

Ответ: 72,5
Аналоги к этому заданию:

Задание 6642

В треугольнике ABC угол C равен 90°, AC=12, tg A=0,75. Найдите BC.

Ответ: 9
Скрыть

$$tg A=\frac{CB}{AC}\Rightarrow$$ $$CB=AC*tg A=12*0,75=9$$

Аналоги к этому заданию:

Задание 6639

В треугольнике АВС углы А и С равны 32° и 68° соответственно. Найдите угол между высотой ВН и биссектрисой BD.

Ответ: 18
Скрыть

1) $$\angle B=180-(\angle A+\angle \angle C)=80$$

2) $$\angle DBC=\frac{1}{2}\angle B=40$$(DB - биссектриса)

3) $$\angle HBC=90-\angle C=22$$($$\Delta BHC$$ - прямоугольный)

4) $$\angle DBH=\angle DBC-\angle HBC=18$$

Аналоги к этому заданию:

Задание 5699

Найдите угол ​ABC. Ответ дайте в градусах.

Ответ:
Аналоги к этому заданию:

Задание 5698

Найдите угол ABC. Ответ дайте в градусах.

Ответ:
Аналоги к этому заданию:

Задание 5697

Углы, от­ме­чен­ные на ри­сун­ке одной дугой, равны. Най­ди­те угол α. Ответ дайте в градусах

Ответ:
Аналоги к этому заданию:

Задание 5696

Углы, от­ме­чен­ные на ри­сун­ке одной дугой, равны. Най­ди­те угол α. Ответ дайте в градусах

Ответ:
Аналоги к этому заданию:

Задание 5695

В треугольнике ABC известно, что AC=38, BM- медиана, BM=17. Найдите AM

Ответ:
Аналоги к этому заданию:

Задание 5694

Медиана равностороннего треугольника равна $$9\sqrt{3}$$. Найдите сторону этого треугольника.

Ответ:
Аналоги к этому заданию:

Задание 5693

Высота рав­но­бед­рен­ной трапеции, проведённая из вер­ши­ны C, делит ос­но­ва­ние AD на от­рез­ки дли­ной 1 и 5. Най­ди­те длину ос­но­ва­ния BC.

Ответ:
Аналоги к этому заданию:

Задание 5692

В тра­пе­ции ABCD AB = CD, ∠BDA = 49° и ∠BDC = 13°. Най­ди­те угол ABD. Ответ дайте в градусах.

Ответ:
Аналоги к этому заданию:

Задание 5691

Найдите угол  ABC  рав­но­бед­рен­ной тра­пе­ции  ABCD, если диа­го­наль  AC  об­ра­зу­ет с ос­но­ва­ни­ем  AD и бо­ко­вой сто­ро­ной  CD  углы, рав­ные 30° и 80° соответственно.

Ответ:
Аналоги к этому заданию:

Задание 5690

Высота BH ромба ABCD делит его сторону AD на отрезки AH = 44 и HD = 11. Найдите площадь ромба.

Ответ:
Аналоги к этому заданию:

Задание 5689

Найдите ве­ли­чи­ну остро­го угла па­рал­ле­ло­грам­ма ABCD, если бис­сек­три­са угла A об­ра­зу­ет со сто­ро­ной BC угол, рав­ный 15°. Ответ дайте в градусах.

Ответ:
Аналоги к этому заданию:

Задание 5688

На про­дол­же­нии сто­ро­ны AD па­рал­ле­ло­грам­ма ABCD за точ­кой D от­ме­че­на точка E так, что DC = DE. Най­ди­те боль­ший угол па­рал­ле­ло­грам­ма ABCD, если ∠DEC = 53°. Ответ дайте в градусах.

Ответ:
Аналоги к этому заданию:

Задание 3502

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 6 и 12. Синус остро­го угла тра­пе­ции равен 0,8. Най­ди­те бо­ко­вую сто­ро­ну.

Ответ: 5
Аналоги к этому заданию:

Задание 3501

Диа­го­на­ли че­ты­рех­уголь­ни­ка равны 4 и 5. Най­ди­те пе­ри­метр че­ты­рех­уголь­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся се­ре­ди­ны сто­рон дан­но­го че­ты­рех­уголь­ни­ка.

Ответ: 9
Аналоги к этому заданию:

Задание 3500

В рав­но­бед­рен­ной тра­пе­ции диа­го­на­ли пер­пен­ди­ку­ляр­ны. Вы­со­та тра­пе­ции равна 12. Най­ди­те ее сред­нюю линию.

Ответ: 12
Аналоги к этому заданию:

Задание 3499

Ос­но­ва­ния тра­пе­ции равны 3 и 2. Най­ди­те от­ре­зок, со­еди­ня­ю­щий се­ре­ди­ны диа­го­на­лей тра­пе­ции.

Ответ: 0,5
Аналоги к этому заданию:

Задание 3498

Основания равнобедренной трапеции равны 15 и 9, один из углов равен $$45^{\circ}$$. Найдите высоту трапеции.

Ответ: 3
Аналоги к этому заданию:

Задание 3497

Перпендикуляр, опущенный из вершины тупого угла на большее основание равнобедренной трапеции, делит его на части, имеющие длины 10 и 4. Найдите среднюю линию этой трапеции.

Ответ: 10
Аналоги к этому заданию:

Задание 3496

Пря­мая, про­ве­ден­ная па­рал­лель­но бо­ко­вой сто­ро­не тра­пе­ции через конец мень­ше­го ос­но­ва­ния, рав­но­го 4, от­се­ка­ет тре­уголь­ник, пе­ри­метр ко­то­ро­го равен 15. Най­ди­те пе­ри­метр тра­пе­ции.

Ответ: 23
Аналоги к этому заданию:

Задание 3495

В рав­но­бед­рен­ной тра­пе­ции ос­но­ва­ния равны 12 и 27, ост­рый угол равен $$60^{\circ}$$. Най­ди­те ее пе­ри­метр.

Ответ: 69
Аналоги к этому заданию:

Задание 3494

В рав­но­бед­рен­ной тра­пе­ции боль­шее ос­но­ва­ние равно 25, бо­ко­вая сто­ро­на равна 10, угол между ними $$60^{\circ}$$. Най­ди­те мень­шее ос­но­ва­ние.

Ответ: 15
Аналоги к этому заданию:

Задание 3492

Ос­но­ва­ния тра­пе­ции равны 27 и 9, бо­ко­вая сто­ро­на равна 8. Пло­щадь тра­пе­ции равна 72. Най­ди­те ост­рый угол тра­пе­ции, при­ле­жа­щий к дан­ной бо­ко­вой сто­ро­не. Ответ вы­ра­зи­те в гра­ду­сах.

Ответ: 30
Аналоги к этому заданию:

Задание 3491

Ос­но­ва­ния тра­пе­ции равны 18 и 6, бо­ко­вая сто­ро­на, рав­ная 7, об­ра­зу­ет с одним из ос­но­ва­ний тра­пе­ции угол 150°. Най­ди­те пло­щадь тра­пе­ции.

Ответ: 42
Аналоги к этому заданию:

Задание 3490

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 7 и 13, а ее пло­щадь равна 40. Най­ди­те бо­ко­вую сто­ро­ну тра­пе­ции.

Ответ: 5
Аналоги к этому заданию:

Задание 3489

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 14 и 26, а ее бо­ко­вые сто­ро­ны равны 10. Най­ди­те пло­щадь тра­пе­ции.

Ответ: 160
Аналоги к этому заданию:

Задание 3488

Ос­но­ва­ния пря­мо­уголь­ной тра­пе­ции равны 12 и 4. Ее пло­щадь равна 64. Най­ди­те ост­рый угол этой тра­пе­ции. Ответ дайте в гра­ду­сах.

Ответ: 45
Аналоги к этому заданию:

Задание 3487

Най­ди­те пло­щадь пря­мо­уголь­ной тра­пе­ции, ос­но­ва­ния ко­то­рой равны 6 и 2, боль­шая бо­ко­вая сто­ро­на со­став­ля­ет с ос­но­ва­ни­ем угол 45°.

Ответ: 16
Аналоги к этому заданию:

Задание 3486

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 7 и 13, а ее пло­щадь равна 40. Най­ди­те пе­ри­метр тра­пе­ции.

Ответ: 30
Аналоги к этому заданию:

Задание 3485

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 14 и 26, а ее пе­ри­метр равен 60. Най­ди­те пло­щадь тра­пе­ции.

Ответ: 160
Аналоги к этому заданию:

Задание 3484

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 17 и 87. Вы­со­та тра­пе­ции равна 14. Най­ди­те тан­генс остро­го угла.

Ответ: 0,4
Аналоги к этому заданию:

Задание 3483

Мень­шее ос­но­ва­ние рав­но­бед­рен­ной тра­пе­ции равно 23. Вы­со­та тра­пе­ции равна 39. Тан­генс остро­го угла равен $$\frac{13}{8}$$. Най­ди­те боль­шее ос­но­ва­ние.

Ответ: 71
Аналоги к этому заданию:

Задание 3482

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 7 и 51. Тан­генс остро­го угла равен $$\frac{5}{11}$$. Най­ди­те вы­со­ту тра­пе­ции.

Ответ: 10
Аналоги к этому заданию:

Задание 3481

Боль­шее ос­но­ва­ние рав­но­бед­рен­ной тра­пе­ции равно 34. Бо­ко­вая сто­ро­на равна 14. Синус остро­го угла равен $$\frac{2\sqrt{10}}{7}$$. Най­ди­те мень­шее ос­но­ва­ние.

Ответ: 22
Аналоги к этому заданию:

Задание 3480

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 43 и 73. Ко­си­нус остро­го угла тра­пе­ции равен $$\frac{5}{7}$$. Най­ди­те бо­ко­вую сто­ро­ну.

Ответ: 21
Аналоги к этому заданию:

Задание 3479

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 51 и 65. Бо­ко­вые сто­ро­ны равны 25. Най­ди­те синус остро­го угла тра­пе­ции.

Ответ: 0,96
Аналоги к этому заданию:

Задание 2744

В тре­уголь­ни­ке ABC AB = BC. Внеш­ний угол при вер­ши­не B равен 138°. Най­ди­те угол C. Ответ дайте в гра­ду­сах.

 

Ответ: 69
Аналоги к этому заданию:

Задание 2743

Угол при вер­ши­не, про­ти­во­ле­жа­щей ос­но­ва­нию рав­но­бед­рен­но­го тре­уголь­ни­ка, равен 150°. Най­ди­те бо­ко­вую сто­ро­ну тре­уголь­ни­ка, если его пло­щадь равна 100.

 

Ответ: 20
Аналоги к этому заданию:

Задание 2742

Угол при вер­ши­не, про­ти­во­ле­жа­щей ос­но­ва­нию рав­но­бед­рен­но­го тре­уголь­ни­ка, равен 150°. Бо­ко­вая сто­ро­на тре­уголь­ни­ка равна 20. Най­ди­те пло­щадь этого тре­уголь­ни­ка.

 

Ответ: 100
Аналоги к этому заданию:

Задание 2741

В тре­уголь­ни­ке ABC $$AC=BC=27$$, AH — вы­со­та, $$\cos BAC=\frac{2}{3}$$. Най­ди­те BH.

 

Ответ: 24
Аналоги к этому заданию:

Задание 2740

В тре­уголь­ни­ке ABC $$AC=BC=4\sqrt{15}$$, $$\cos BAC=0,25$$. Най­ди­те вы­со­ту AH.

 

Ответ: 7,5
Аналоги к этому заданию:

Задание 2739

В тре­уголь­ни­ке ABC $$AC=BC-27$$, AH — вы­со­та, $$\sin BAC=\frac{2}{3}$$. Най­ди­те BH.

 

Ответ: 30
Аналоги к этому заданию:

Задание 2738

В тре­уголь­ни­ке ABC $$AC=BC=4\sqrt{15}$$, $$\sin BAC=0,25$$ . Най­ди­те вы­со­ту AH.

 

Ответ: 7,5
Аналоги к этому заданию:

Задание 1908

В тре­уголь­ни­ке ABC из­вест­но, что AC=14, $$BC=\sqrt{165}$$, угол C равен 90°. Най­ди­те ра­ди­ус опи­сан­ной окруж­но­сти этого тре­уголь­ни­ка.

Ответ: 9,5
Скрыть

Радиус описанной окружности около прямоугольного треугольника равен половине его гипотенузы, тогда по теореме Пифагора: $$AB=\sqrt{AC^{2}+CB^{2}}=\sqrt{361}=19$$, тогда радиус описанной окружности составляет 9,5

Аналоги к этому заданию:

Задание 1907

Один из ост­рых углов пря­мо­уголь­но­го тре­уголь­ни­ка равен 23°. Най­ди­те его дру­гой ост­рый угол. Ответ дайте в гра­ду­сах.

Ответ: 67
Скрыть

По свойству суммы острых углов прямоугольного треугольника второй острый угол будет равен: $$90-23=67^{\circ}$$

Аналоги к этому заданию:

Задание 1906

Най­ди­те пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка, если его катет и ги­по­те­ну­за равны со­от­вет­ствен­но 12 и 13.

Ответ: 30
Скрыть

По теореме Пифагора найдем второй катет: $$\sqrt{13^{2}-12^{2}}=5$$
Найдем площадь прямоугольного треугольника как половину произведения длин его катетов :$$\frac{1}{2}*12*5=30$$

Аналоги к этому заданию:

Задание 1904

В пря­мо­уголь­ном тре­уголь­ни­ке ABC катет AC равен 35, а вы­со­та CH, опу­щен­ная на ги­по­те­ну­зу, равна $$14\sqrt{6}$$. Най­ди­те $$\sin\angle ABC$$.

Ответ: 0,2
Скрыть

По свойству высоты прямоугольного треугольника, опущенной из прямого угла: $$\angle ACH=\angle ABC$$

Тогда из треугольника ACH: $$\cos ACH=\frac{CH}{AC}=\frac{14\sqrt{6}}{35}=\frac{2\sqrt{6}}{5}$$

По основному тригонометрическому тождеству: $$\sin ACH=\sqrt{1-\cos^{2} ACH}=\sqrt{\frac{24}{25}}=\frac{1}{5}$$.

Аналоги к этому заданию:

Задание 1903

Точка H яв­ля­ет­ся ос­но­ва­ни­ем вы­со­ты, про­ведённой из вер­ши­ны пря­мо­го угла B тре­уголь­ни­ка ABC к ги­по­те­ну­зе AC. Най­ди­те AB, если AH = 6, AC = 24.

Ответ: 12
Скрыть

Из подобия треугольников BHA и ABC (по свойтсву высоты прямоугольного треугольника, проведенной из вершины прямого угла): $$\frac{HA}{AB}=\frac{AB}{AC}\Leftrightarrow$$$$AB=\sqrt{HA*AC}=12$$

Аналоги к этому заданию:

Задание 1902

В тре­уголь­ни­ке ABC угол C равен 90°, AC=12, $$\tan A=\frac{2\sqrt{10}}{3}$$. Най­ди­те AB.

Ответ: 28
Скрыть

Из определения тангенса угла: $$CB=AC*tg A=8\sqrt{10}$$

По теореме Пифагора: $$AB=\sqrt{AC^{2}+CB^{2}}=\sqrt{144+640}=28$$

Аналоги к этому заданию:

Задание 1901

Пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка равна $$32\sqrt{3}$$. Один из ост­рых углов равен 30°. Най­ди­те длину ги­по­те­ну­зы.

Ответ: 16
Скрыть

Пусть катет, лежащий напротив угла в 30 градусов равен х, тогда по свойству катета, лежащего напротив угла в 30 градусов, гипотенуза равна 2х.
По теореме Пифагора третий катет будет равен: $$\sqrt{(2x)^{2}-x^{2}}=\sqrt{3}x$$
Распишем площадь треугольника как половину произведения его катетов:$$\frac{1}{2}x*\sqrt{3}x=32\sqrt{3}\Leftrightarrow$$$$x^{2}=64\Leftrightarrow$$$$x=8$$, тогда гипотенуза составит $$2*8=16$$

Аналоги к этому заданию:

Задание 1900

Ка­те­ты пря­мо­уголь­но­го тре­уголь­ни­ка равны $$\sqrt{15}$$ и 1. Най­ди­те синус наи­мень­ше­го угла этого тре­уголь­ни­ка.

Ответ: 0,25
Скрыть

Найдем гипотенузу по теореме Пифагора: $$\sqrt{(\sqrt{15})^{2}+1^{2}}=4$$
Напротив меньшей стороны лежит меньший угол, то есть меньший угол лежит напротив катета, равного 1, тогда $$\sin \alpha=\frac{1}{4}=0,25$$

Аналоги к этому заданию:

Задание 1899

Ка­те­ты пря­мо­уголь­но­го тре­уголь­ни­ка равны 35 и 120. Най­ди­те вы­со­ту, про­ве­ден­ную к ги­по­те­ну­зе.

Ответ: 33,6
Скрыть

Найдем гипотенузу треугольника по теореме Пифагора: $$\sqrt{35^{2}+120^{2}}=125$$
Высоту прямоугольного треугольника, опущенного из прямого угла можно выразить как: $$h=\frac{ab}{c}$$, где a,b - катеты, с - гипотенуза, тогда $$h=\frac{35*120}{125}=33,6$$

Аналоги к этому заданию:

Задание 1898

В тре­уголь­ни­ке ABC угол C равен 90°, BC = 20, $$\tan A=0,5$$. Най­ди­те AC.

Ответ: 40
Скрыть

Из определения тангенса угла: $$AC=\frac{BC}{tg A}=\frac{20}{0,5}=40$$

Аналоги к этому заданию:

Задание 1897

В тре­уголь­ни­ке ABC угол C равен 90°, AC = 20, tgA = 0,5. Най­ди­те BC.

Ответ: 10
Скрыть

По определению тангенса: $$CB=AC*tg A=20*0,5=10$$

Аналоги к этому заданию:

Задание 1896

В тре­уголь­ни­ке ABC угол C равен 90°, BC=12, $$\sin A=\frac{4}{11}$$.  Най­ди­те AB.

Ответ: 33
Скрыть

По определению синуса: $$AB=\frac{BC}{\sin A}=\frac{12}{\frac{4}{11}}=33$$

Аналоги к этому заданию:

Задание 1895

В тре­уголь­ни­ке ABC угол C равен 90°, AC=15, $$\cos A=\frac{5}{7}$$. Най­ди­те AB.

Ответ: 21
Скрыть

По определению косинуса: $$AB=\frac{AC}{\cos A}=\frac{15}{\frac{5}{7}}=21$$

Аналоги к этому заданию:

Задание 1894

Два ост­рых угла пря­мо­уголь­но­го тре­уголь­ни­ка от­но­сят­ся как 4:5. Най­ди­те боль­ший ост­рый угол. Ответ дайте в гра­ду­сах.

Ответ: 50
Скрыть

Пусть меньший угол равен 4х, тогда больший - 5х. По свойству суммы острых углов прямоугольного треугольника: $$4x+5x=90\Leftrightarrow$$$$x=10$$, тогда больший угол $$5*10=50^{\circ}$$

Аналоги к этому заданию:

Задание 1892

Най­ди­те угол ABC. Ответ дайте в гра­ду­сах.

Ответ: 90
Скрыть

Так как одна из сторон проходит через диаметр окружности, тогда угол, противолежащий этой стороне равен $$90^{\circ}$$ по свойству вписанного угла

Аналоги к этому заданию:

Задание 1889

В тре­уголь­ни­ке два угла равны 54° и 58°. Най­ди­те его тре­тий угол. Ответ дайте в гра­ду­сах.

Ответ: 68
Скрыть

По свойству суммы углов треугольника: $$\angle 3=180^{\circ}-\angle 2-\angle 1$$, тогда $$\angle 3=180-54-58=68^{\circ}$$

Аналоги к этому заданию:

Задание 1888

В тре­уголь­ни­ке ABC из­вест­но, что $$\angle BAC=48^{\circ}$$, AD - бис­сек­три­са. Най­ди­те угол BAD. Ответ дайте в гра­ду­сах.

Ответ: 24
Скрыть

По свойству биссектрисы: $$\angle BAD=\frac{1}{2}\angle BAC=24^{\circ}$$

Аналоги к этому заданию:

Задание 1887

На пря­мой AB взята точка M. Луч MD — бис­сек­три­са угла CMB. Из­вест­но, что ∠DMC = 60°. Най­ди­те угол CMA. Ответ дайте в гра­ду­сах.

Ответ: 60
Скрыть

По свойству биссектрисы $$\angle CMD=\angle DMB=60^{\circ}$$
По свойству смежных углов: $$\angle AMC=180-\angle CMB=180-(60+60)=60^{\circ}$$
Аналоги к этому заданию:

Задание 1886

Най­ди­те ве­ли­чи­ну угла AOK, если OK — бис­сек­три­са угла AOD, ∠AOB = 64°. Ответ дайте в гра­ду­сах.

Ответ: 58
Скрыть

По свойству смежных углов: $$\angle AOD=180-\angle AOB=116^{\circ}$$

По свойству биссеткрисы: $$\angle AOK=\frac{\angle AOD}{2}=58^{\circ}$$

Аналоги к этому заданию:

Задание 1884

Пря­мые m и n па­рал­лель­ны. Най­ди­те ∠3, если ∠1 = 22°, ∠2 = 72°. Ответ дайте в гра­ду­сах.

Ответ: 86
Скрыть

Вертикальный угол для $$\angle 3$$ составляет с углами 1 и 2 по свойству смежных углов 180 градусов, тогда $$\angle 3=180-(\angle 1+\angle 2)=86^{\circ}$$

Аналоги к этому заданию:

Задание 1883

Диа­го­наль пря­мо­уголь­ни­ка об­ра­зу­ет угол 51° с одной из его сто­рон. Най­ди­те ост­рый угол между диа­го­на­ля­ми этого пря­мо­уголь­ни­ка. Ответ дайте в гра­ду­сах.

Ответ: 78
Скрыть

Пусть $$\angle EDH=51^{\circ}$$, по свойству диагоналей прямоугольника $$\angle DEH=\angle EDH$$, следовательно, из треугольника EHD по свойству суммы углов треугольника $$\angle EHD=180-2*51=78^{\circ}$$.

Причечание: при пересечении двух прямых получается две пары равных вертикальных углов, при нахождении угла между прямыми из них всегда выбирается острый, потому искать угол DHG нет смысла

Аналоги к этому заданию:

Задание 1882

На плос­ко­сти даны че­ты­ре пря­мые. Из­вест­но, что $$\angle 1=120^{\circ}$$, $$\angle 2=60^{\circ}$$, $$\angle 3=55^{\circ}$$. Най­ди­те $$\angle 4$$. Ответ дайте в гра­ду­сах.

Ответ: 125
Скрыть

По свойству вертиикальных углов $$\angle 2=\angle LMK$$, но $$\angle 1+\angle LMK=120+60=180$$, следовательно, так как они являются односторонними, то прямые параллельны. Следовательно, $$\angle 3+\angle 4=180\Leftrightarrow$$$$\angle 4=180-125=55^{\circ}$$, так как так же являются односторонними. 

Аналоги к этому заданию:

Задание 1879

Бис­сек­три­сы углов N и M тре­уголь­ни­ка  MNP  пе­ре­се­ка­ют­ся в точке  A. Най­ди­те $$\angle NAM$$, если $$\angle N=84^{\circ}$$, а $$\angle M=42^{\circ}$$.

Ответ: 117
Скрыть

По свойству биссетрис: $$\angle NMB=\frac{1}{2}\angle M=21^{\circ}$$ и $$\angle MNK=\frac{1}{2}\angle N=42^{\circ}$$

По свойству суммы углов треугольника из треугольника NAM: $$\angle NAM=180-\angle NMB -\angle MNK=117^{\circ}$$

Аналоги к этому заданию:

Задание 1878

Точки M и N яв­ля­ют­ся се­ре­ди­на­ми сто­рон AB и BC тре­уголь­ни­ка ABC, сто­ро­на AB равна 66, сто­ро­на BC равна 37, сто­ро­нa AC равна 74. Най­ди­те MN.

Ответ: 37
Скрыть

Так как M и N середины сторон, то отрезок MN является средней линией, которая, в свою очередь равна половине стороны, которой она параллельна, то есть AC, тогда MN=0,5AC=37

Аналоги к этому заданию:

Задание 1877

В тре­уголь­ни­ке два угла равны 43° и 88°. Най­ди­те его тре­тий угол. Ответ дайте в гра­ду­сах.

Ответ: 49
Скрыть

По свойству углов треугольника: $$\angle 3=180-\angle 1 -\angle 2=180-43-88=49^{\circ}$$

Аналоги к этому заданию:

Задание 1876

В тре­уголь­ни­ке ABC из­вест­но, что AC=54, BM - ме­ди­а­на, BM=43. Най­ди­те AM.

Ответ: 27
Скрыть

По свойству медианы: $$AM=\frac{1}{2}AC=\frac{1}{2}*54=27$$

Аналоги к этому заданию:

Задание 1875

Углы B и C тре­уголь­ни­ка ABC равны со­от­вет­ствен­но 65° и 85°. Най­ди­те BC, если ра­ди­ус окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка ABC, равен 14.

Ответ: 14
Скрыть

По свойству углов треугольника: $$\angle A=180-\angle B -\angle C=180-85-65=30^{\circ}$$

По теореме синусов: $$BC=2R*\sin A$$, где R - радиус описанной окружности около треугольника ABC, тогда $$BC=2*14*\sin 30^{\circ}=14$$

Аналоги к этому заданию:

Задание 1874

В тре­уголь­ни­ке ABC BM — ме­ди­а­на и BH – вы­со­та. Из­вест­но, что AC = 216, HC = 54 и ∠ACB = 40°. Най­ди­те угол AMB. Ответ дайте в гра­ду­сах.

Ответ: 140
Скрыть

По свойству медианы: $$MC=\frac{1}{2}AC=108$$
Найдем отрезок MH: $$MH=MC-HC=54=HM$$, следовательно, BH - медиана, но так как она и высота, то треугольник MBC - равнобедренный
$$\angle BMC=\angle ACB$$, тогда по свойству смежных углов $$\angle AMB=180-\angle BMC$$ или $$\angle AMB=180-\angle ACB=140^{\circ}$$
Аналоги к этому заданию:

Задание 1873

В тре­уголь­ни­ке ABC AB = BC, а вы­со­та AH делит сто­ро­ну BC на от­рез­ки BH = 64 и CH = 16. Най­ди­те cos B.

Ответ: 0,8
Скрыть

Так как AB=AC, то AB=BH+HC=64+16=80.
Из прямоугольного треугольника ABH косинус угла B : $$\cos B=\frac{BH}{AB}=\frac{64}{80}=0,8$$
Аналоги к этому заданию:

Задание 1872

В ост­ро­уголь­ном тре­уголь­ни­ке ABC вы­со­та AH равна $$20\sqrt{3}$$,а сто­ро­на AB равна 40. Най­ди­те $$\cos B$$.

Ответ: 0,5
Скрыть

Из прямоугольного треугольника ABH: $$\cos B=\frac{BH}{AB}$$, по теореме Пифагора: $$BH=\sqrt{AB^{2}-AH^{2}}=\sqrt{1600-400*3}=20$$, тогда $$\cos B=\frac{20}{40}=0,5$$

Аналоги к этому заданию:

Задание 1871

В тре­уголь­ни­ке ABC про­ве­де­ны ме­ди­а­на BM и вы­со­та BH . Из­вест­но, что AC = 84 и BC = BM. Най­ди­те AH.

Ответ: 63
Скрыть

Треугольник BMC - равнобедренный, следовательно, по свойству высоты равнобедренного треугольника BH - медиана, и $$MH=HC=\frac{1}{2}MC$$

BM - медиана в треугольнике ABC, следовательно, $$AM=MC=\frac{1}{2}AC$$, тогда $$MH=\frac{1}{2}AM=\frac{1}{4}AC$$, то есть $$AH=\frac{3}{4}AC=63$$

Аналоги к этому заданию:

Задание 1870

В тре­уголь­ни­ке ABC про­ве­де­на бис­сек­три­са AL, угол ALC равен 112°, угол ABC равен 106°. Най­ди­те угол ACB. Ответ дайте в гра­ду­сах.

Ответ: 62
Скрыть

$$\angle ALB=180-\angle ALC=68^{\circ}$$ по свойству смежых углов
По свойству суммы углов треугольника из треугольника ABL: $$\angle BAL = 180-\angle ABL-\angle ALB=6^{\circ}$$
По свойству биссетрисы: $$\angle BAL=\angle LAC$$, тогда $$\angle A=12^{\circ}$$
По свойству суммы углов треугольника из треугольника ABC: $$\angle C = 180-\angle A-\angle B=62^{\circ}$$
Аналоги к этому заданию:

Задание 1869

У тре­уголь­ни­ка со сто­ро­на­ми 16 и 2 про­ве­де­ны вы­со­ты к этим сто­ро­нам. Вы­со­та, про­ведённая к пер­вой сто­ро­не, равна 1. Чему равна вы­со­та, про­ведённая ко вто­рой сто­ро­не?

Ответ: 8
Скрыть

Из формулы площади треугольника: $$S=\frac{1}{2}AL*BC=\frac{1}{2}AC*BD$$ , тогда пусть AC=16, BC=2, BD=1, получаем, что $$AL=\frac{AC*BD}{BC}=8$$

Аналоги к этому заданию:

Задание 1868

В тра­пе­цию, сумма длин бо­ко­вых сто­рон ко­то­рой равна 24, впи­са­на окруж­ность. Най­ди­те длину сред­ней линии тра­пе­ции.

Ответ: 12
Скрыть

По свойству описанного четырехугольника AD+BC=AB+CD, тогда сумма оснований тоже 24, средняя линия же равна полусумме оснований, то есть 24/2=12.

Аналоги к этому заданию:

Задание 1867

Около тра­пе­ции, один из углов ко­то­рой равен 49°, опи­са­на окруж­ность. Най­ди­те осталь­ные углы тра­пе­ции.

За­пи­ши­те ве­ли­чи­ны углов в ответ через точку с за­пя­той в по­ряд­ке не­убы­ва­ния.

Ответ: 49; 131; 131
Скрыть

По свойству вписанного четырехугольник $$\angle A+\angle C=180^{\circ}$$, пусть $$\angle A=49^{\circ}\Rightarrow$$$$\angle C=180-49=131^{\circ}$$. По свойству углов трапеции $$\angle B=180-\angle C=180-131=49^{\circ}$$, аналогично $$\angle D=180-\angle A=131^{\circ}$$

Аналоги к этому заданию:

Задание 1866

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 50 и 104, бо­ко­вая сто­ро­на 45. Най­ди­те длину диа­го­на­ли тра­пе­ции.

Ответ: 85
Скрыть

Опустим две высоты DE=CF, тогда AE=FB (из равенства прямоугольных треугольников ADE и CFB по катету и гипотенузе), и DC=EF=50, тогда $$AE=FB=\frac{104-50}{2}=27$$. Тогда из прямоугольного треугольника ADE : $$DE=\sqrt{AD^{2}-AE^{2}}=\sqrt{45^{2}-27^{2}}=36$$, следовательно, EB=AB-AE=104-27=77. Тогда из прямоугольного треугольника DEB: $$DB=\sqrt{DE^{2}+EB^{2}}=\sqrt{77^{2}+36^{2}}=85$$

Аналоги к этому заданию:

Задание 1865

Ос­но­ва­ния тра­пе­ции равны 4 и 10. Най­ди­те боль­ший из от­рез­ков, на ко­то­рые делит сред­нюю линию этой тра­пе­ции одна из её диа­го­на­лей.

Ответ: 5
Скрыть

EG - средняя линия треугольника ADB, тогда $$EG=\frac{1}{2}=AB=5$$, аналогично GF - средняя линия треугольника DCB, тогда $$GF=\frac{1}{2}DC=2$$, наибольший в таком случае равен 5

Примечение: больший из отрезков всегда будет равен половине большего основания

Аналоги к этому заданию:

Задание 1864

В рав­но­бед­рен­ной тра­пе­ции из­вест­ны вы­со­та 4, мень­шее ос­но­ва­ние 8 и угол при ос­но­ва­нии $$45^{\circ}$$. Най­ди­те боль­шее ос­но­ва­ние.

Ответ: 16
Скрыть

Опустим высоты DE=CF=4, тогда из прямоугольного треугольника ADE: так как $$\angle A=45^{\circ}$$, то $$\angle ADE=90-45=45^{\circ}$$, следовательно, реугольник AED - равнобедренный, и AE=DE=4, аналогично FB=4. Но EF=DC=8, тогда AB=4+4+8=16.

Аналоги к этому заданию:

Задание 1863

Тан­генс остро­го угла пря­мо­уголь­ной тра­пе­ции равен $$\frac{5}{6}$$. Най­ди­те её боль­шее ос­но­ва­ние, если мень­шее ос­но­ва­ние равно вы­со­те и равно 15.

Ответ: 33
Скрыть

Опустим высоту CF, тогда из прямоугольного треугольника CFB: $$FB=\frac{CF}{tgB}=\frac{15}{\frac{5}{6}}=18$$. DC=AF=15, тогда AB=15+18=33.

Аналоги к этому заданию:

Задание 1861

Най­ди­те мень­ший угол рав­но­бед­рен­ной тра­пе­ции, если два ее угла от­но­сят­ся как 1:2. Ответ дайте в гра­ду­сах.

Ответ: 60
Скрыть

Пусть меньший угол равен х, тогда больший угол равен 2х. По свойству углов трапеции получаем, что $$x+2x=180\Leftrightarrow$$$$x=60$$, то есть меньший угол составляет $$60^{\circ}$$

Аналоги к этому заданию:

Задание 1860

Сумма двух углов рав­но­бед­рен­ной тра­пе­ции равна 140°. Най­ди­те боль­ший угол тра­пе­ции. Ответ дайте в гра­ду­сах.

Ответ: 110
Скрыть

Так как дана равнобедренная трапеция, то сумма острых углов при большем основании будет составлять 140 градусов, $$\angle A=\angle B=\frac{140}{2}=70^{\circ}$$, по свойству углов трапеции: $$\angle D=180-\angle A=110^{\circ}$$

Аналоги к этому заданию:

Задание 1859

Най­ди­те угол АDС рав­но­бед­рен­ной тра­пе­ции ABCD, если диа­го­наль АС об­ра­зу­ет с ос­но­ва­ни­ем ВС и бо­ко­вой сто­ро­ной АВ углы, рав­ные 30° и 50° со­от­вет­ствен­но.

Ответ: 80
Скрыть

$$\angle A=\angle BAC+\angle CAD=30+50=80^{\circ}$$

Аналоги к этому заданию:

Задание 1858

Най­ди­те боль­ший угол рав­но­бед­рен­ной тра­пе­ции ABCD, если диа­го­наль AC об­ра­зу­ет с ос­но­ва­ни­ем AD и бо­ко­вой сто­ро­ной AB углы, рав­ные 30° и 45° со­от­вет­ствен­но.

Ответ: 105
Скрыть

$$\angle A=\angle BAC+\angle CAD=30+45=75^{\circ}$$, тогда по свойству углов трапеции: $$\angle B=180-\angle A=105^{\circ}$$

Аналоги к этому заданию:

Задание 1857

Точка O — центр окруж­но­сти, на ко­то­рой лежат точки P, Q и R таким об­ра­зом, что OPQR — ромб. Най­ди­те угол ORQ. Ответ дайте в гра­ду­сах.

Ответ: 60
Скрыть

OP=OR=PQ=QR ( по свойству ромба ), тогда, так как PR - общая, то треугольники POR И PQR равны, следовательно, $$\angle O=\angle Q$$. Пусть $$\angle Q=x$$, тогда большая дуга PR=2x (по свойству вписанного угла), тогда меньшая дуга RP=360-2x и $$\angle O=360-2x$$ ( по свойству центрального угла ), тогда $$x=360-2x\Leftrightarrow$$$$x=120$$, то есть $$\angle O=120^{\circ}$$, тогда по свойству углов ромба $$\angle P=180-\angle O=60^{\circ}$$

Аналоги к этому заданию:

Задание 1856

Рас­сто­я­ние от точки пе­ре­се­че­ния диа­го­на­лей ромба до одной из его сто­рон равно 19, а одна из диа­го­на­лей ромба равна 76. Най­ди­те углы ромба.

В от­ве­те за­пи­ши­те ве­ли­чи­ны раз­лич­ных углов в по­ряд­ке воз­рас­та­ния через точку с за­пя­той.

Ответ: 60; 120
Скрыть

По свойству диагоналей ромба: $$AE=\frac{1}{2}AC$$, пусть AC=76, тогда AE=38. Треугольник AEF - прямоугольный, тогда $$\sin EAF=\frac{EF}{EA}=\frac{19}{38}=0,5\Rightarrow$$$$\angle EAF=30^{\circ}$$, тогда по свойству диагоналей ромба $$\angle A=60^{\circ}$$ и по свойству углов ромба $$\angle B=180-\angle A=120^{\circ}$$

Аналоги к этому заданию:

Задание 1855

Пло­щадь ромба равна 27, а пе­ри­метр равен 36. Най­ди­те вы­со­ту ромба.

Ответ: 3
Скрыть

Сторона ромба равна $$\frac{36}{4}=9$$, из формулы площади ромба:$$h=\frac{S}{a}=\frac{36}{9}=4$$, где h - высота, a - сторона ромба.

Аналоги к этому заданию:

Задание 1854

Сто­ро­на ромба равна 34, а ост­рый угол равен 60° . Вы­со­та ромба, опу­щен­ная из вер­ши­ны ту­по­го угла, делит сто­ро­ну на два от­рез­ка. Ка­ко­вы длины этих от­рез­ков?

Пе­ре­чис­ли­те эти длины в от­ве­те через точку с за­пя­той в по­ряд­ке воз­рас­та­ния.

Ответ: 17; 17
Скрыть

Пусть BH - высота ромба, тогда треугльник BHA - прямоугольный и $$AH=AB*\cos A=34*\frac{1}{2}=17$$, тогда HD=AD-AH=34-17=17

Аналоги к этому заданию:

Задание 1853

В тре­уголь­ни­ке ABC AC = BC. Внеш­ний угол при вер­ши­не B равен 140°. Най­ди­те угол C. Ответ дайте в гра­ду­сах.

Ответ: 100
Скрыть

$$\angle ABC=180-\angle CBD=180-140=40^{\circ}$$ (по свойству смежных углов), но так как AC=BC, то $$\angle CAB=\angle CBA=40^{\circ}$$, тогда $$\angle C=180-40*2=100$$(по свойству углов треугольника)

Аналоги к этому заданию:

Задание 1852

Сто­ро­на рав­но­сто­рон­не­го тре­уголь­ни­ка равна $$12\sqrt{3}$$. Най­ди­те бис­сек­три­су этого тре­уголь­ни­ка.

Ответ: 18
Скрыть

По свойству биссектрисы равностороннего трекугольника $$\angle AHC=90^{\circ}$$, тогда из треугольника AHC: $$AH=AC*\sin ACH$$, $$\angle ACH=60^{\circ}$$( по свойству углов равностороннего треугольника), следовательно, $$AH=12\sqrt{3}*\frac{\sqrt{3}}{2}=18$$

Аналоги к этому заданию:

Задание 1851

Бо­ко­вая сто­ро­на рав­но­бед­рен­но­го тре­уголь­ни­ка равна 10, а ос­но­ва­ние равно 12. Най­ди­те пло­щадь этого тре­уголь­ни­ка.

Ответ: 48
Скрыть

Воспользуемся формулой Герона для нахождения площади треугольника. Найдем полупериметр: $$p=\frac{10+10+12}{2}=16$$, тогда $$S=\sqrt{16*(16-10)(16-10)(16-12)}=48$$

Аналоги к этому заданию:

Задание 1850

В тре­уголь­ни­ке ABC AB = BC = 53, AC = 56. Най­ди­те длину ме­ди­а­ны BM.

Ответ: 45
Скрыть

По свойству медианы в равнобедренном треугольнике: $$MC=\frac{1}{2}AC=28$$, из прямоугольного треугольника BMC по теореме Пифагора: $$BM=\sqrt{BC^{2}-MC^{2}}=\sqrt{53^{2}-28^{2}}=45$$

Аналоги к этому заданию:

Задание 1849

Вы­со­та рав­но­сто­рон­не­го тре­уголь­ни­ка равна $$15\sqrt{3}$$. Най­ди­те его пе­ри­метр.

Ответ: 90
Скрыть

По свойству высоты равностороннего треугольника $$\angle AHC=90^{\circ}$$ , тогда из треугольника AHC: $$AC=\frac{AH}{\sin ACH}$$, $$\angle ACH=60^{\circ}$$ ( по свойству углов равностороннего треугольника), следовательно, $$AC=\frac{15\sqrt{3}}{\frac{\sqrt{3}}{2}}=30$$, тогда периметр треугольника составит: $$30*3=90$$

Аналоги к этому заданию:

Задание 1848

Точка D на сто­ро­не AB тре­уголь­ни­ка ABC вы­бра­на так, что AD = AC. Из­вест­но, что ∠CAB = 80° и ∠ACB=59°. Най­ди­те угол DCB. Ответ дайте в гра­ду­сах.

Ответ: 9
Скрыть

Так как AD=AC, то треугольник ADC - равнобедренный и $$\angle ADC=\angle ACD=\frac{180-\angle CAB}{2}=50^{\circ}$$, тогда $$\angle DCB=\angle ACB-\angle ACD=59-50=9^{\circ}$$

Аналоги к этому заданию:

Задание 1847

Пе­ри­метр рав­но­бед­рен­но­го тре­уголь­ни­ка равен 196, а ос­но­ва­ние — 96. Най­ди­те пло­щадь тре­уголь­ни­ка.

Ответ: 672
Скрыть

Найдем боковую сторону данного треугольника: $$\frac{196-96}{2}=50$$, полупериметр данного треугольника $$p=\frac{196}{3}=98$$, тогда по формуле Герона площадь данного треугольника: $$S=\sqrt{98(98-50)(98-50)(98-96)}=48*14=672$$

Аналоги к этому заданию:

Задание 1846

Пло­щадь рав­но­бед­рен­но­го тре­уголь­ни­ка равна $$196\sqrt{3}$$. Угол, ле­жа­щий на­про­тив ос­но­ва­ния равен 120°. Най­ди­те длину бо­ко­вой сто­ро­ны.

Ответ: 28
Скрыть

Площадь треугольника можно выразить как половину произведения сторон треугольник на синус угла между ними, пусть х - боковая сторона треугольника, тогда $$196\sqrt{3}=\frac{1}{2}x^{2}*\sin 120^{\circ}\Leftrightarrow$$$$x=\sqrt{\frac{196\sqrt{3}*2}{\frac{\sqrt{3}}{2}}}=28$$

Аналоги к этому заданию:

Задание 1845

Бо­ко­вая сто­ро­на рав­но­бед­рен­но­го тре­уголь­ни­ка равна 5. Угол при вер­ши­не, про­ти­во­ле­жа­щий ос­но­ва­нию, равен 120°. Най­ди­те диа­метр окруж­но­сти, опи­сан­ной около этого тре­уголь­ни­ка.

Ответ: 10
Скрыть

Пусть угол B равен 120 градусам, тогда $$\smile AC = 240^{\circ}$$ (по свойству вписанного угла), тогда меньшая дуга CA равна $$360-240=120^{\circ}$$, и центральный угол, опирающийся на эту дугу так же составляет 120 градусов ($$\angle AOC$$). Так как треугольники ABC и ACO равнобедренные, имею общую сторону и равные углы против этой стороны, то они между собой равны, следовательно, AO=5=r, где r - радиус окружности, следовательно, диаметр окружности равен 10

Аналоги к этому заданию:

Задание 1844

В рав­но­бед­рен­ном тре­уголь­ни­ке ABC с ос­но­ва­ни­ем AC внеш­ний угол при вер­ши­не C равен 123°. Най­ди­те ве­ли­чи­ну угла ABC. Ответ дайте в гра­ду­сах.

Ответ: 66
Скрыть

По свойству смежных углов: $$\angle BCA=180-\angle BCD=180-123=57^{\circ}$$, так как треугольник равнобедренный, то $$\angle A=\angle BCA=57^{\circ}$$, следовательно по свойству улов треугольника $$\angle ABC=180-57*2=66^{\circ}$$

Аналоги к этому заданию:

Задание 1843

В рав­но­сто­рон­нем тре­уголь­ни­ке  ABC  ме­ди­а­ны  BK  и  AM  пе­ре­се­ка­ют­ся в точке O. Най­ди­те $$\angle AOK$$.

Ответ: 60
Скрыть

По свойству медианы раностороннего треугольника $$\angle AKO =90^{\circ}$$ и $$\angle OAK=\frac{1}{2}\angle A$$, по свойству углов равностороннего треугольника: $$\angle A=60^{\circ}\Rightarrow$$$$\angle OAK=30^{\circ}\Rightarrow$$$$\angle AOK=90-\angle OAK=60^{\circ}$$

Аналоги к этому заданию:

Задание 1842

В рав­но­сто­рон­нем тре­уголь­ни­ке ABC бис­сек­три­сы CN и AM пе­ре­се­ка­ют­ся в точке P. Най­ди­те $$\angle MPN$$.

Ответ: 120
Скрыть

По свойству биссектрис равностороннего треугольника $$\angle BNP=\angle BMP=90^{\circ}$$, по свойству углов равностороннего треугольника $$\angle B=60^{\circ}$$, тогда по свойству углов выпуклого четырехугольника $$\angle MPN=360-90*2-60=120^{\circ}$$

Аналоги к этому заданию:

Задание 1841

Най­ди­те ост­рый угол па­рал­ле­ло­грам­ма ABCD, если бис­сек­три­са угла A об­ра­зу­ет со сто­ро­ной BC угол, рав­ный 33°. Ответ дайте в гра­ду­сах.

Ответ: 66
Скрыть

$$\angle EAD = \angle BEA=33^{\circ}$$ (накрестлежащие), но так как AE - биссектриса, то $$\angle BAE=\angle DAE=33^{\circ}$$, тогда $$\angle A=33+33=66^{\circ}$$

Аналоги к этому заданию:

Задание 1839

Бис­сек­три­са угла A па­рал­ле­ло­грам­ма ABCD пе­ре­се­ка­ет сто­ро­ну BC в точке K. Най­ди­те пе­ри­метр па­рал­ле­ло­грам­ма, если BK = 7, CK = 12.

Ответ: 52
Скрыть

$$\angle BAK=\angle KAD$$(свойство биссеткрисы), $$\angle BKA=\angle KAD$$ (накрестлежащие углы), следовательно, $$\angle BAK=\angle BKA$$, тогда треугольник ABK - равнобедренный и AB=BK=7, но BC=BK+KC=7+132=19=AD, тогда периметр составит: $$2*(7+19)=52$$

Аналоги к этому заданию:

Задание 1838

В па­рал­ле­ло­грам­ме ABCD диа­го­наль AC в 2 раза боль­ше сто­ро­ны AB и ∠ACD = 84°. Най­ди­те угол между диа­го­на­ля­ми па­рал­ле­ло­грам­ма. Ответ дайте в гра­ду­сах.

Ответ: 48
Скрыть

AE=EC (свойство диагоналей параллелограмма), тогда AB=AE, следовательно, треугольник ABE - равнобедренный и $$\angle ABE=\angle BEA$$, $$\angle ACD=\angle BAE$$ (накрестлежащие), тогда из треугольника ABE: $$\angle BEA=\frac{180-\angle BAE}{2}=\frac{180-84}{2}=48$$

Аналоги к этому заданию:

Задание 1837

В па­рал­ле­ло­грамм впи­са­на окруж­ность. Най­ди­те пе­ри­метр па­рал­ле­ло­грам­ма, если одна из его сто­рон равна 6.

Ответ: 24
Скрыть

AB+CD=AD+BC (свойство описанного четырехугольника), но AB=CD, AD=BC (свойство параллелограмма), тогда AB=BC=CD=AD, и ABCD - ромб, тогда его периметр $$6*4=24$$

Аналоги к этому заданию:

Задание 1836

Диа­го­наль  AC  па­рал­ле­ло­грам­ма  ABCD  об­ра­зу­ет с его сто­ро­на­ми углы, рав­ные 30° и 45°. Най­ди­те боль­ший угол па­рал­ле­ло­грам­ма.

Ответ: 105
Скрыть

Пусть $$\angle BAC=30^{\circ}; \angle CAD=45^{\circ}$$, тогда $$\angle A=30+45=75^{\circ}$$, и по свойству углов параллелограмма: $$\angle B=180-\angle A=180-75=105^{\circ}$$, что и есть больший угол

Аналоги к этому заданию:

Задание 1835

Один угол па­рал­ле­ло­грам­ма в два раза боль­ше дру­го­го. Най­ди­те мень­ший угол. Ответ дайте в гра­ду­сах.

Ответ: 60
Скрыть

Пусть $$\angle A=x$$, тогда $$\angle B=2x$$, по свойству углов параллелограмма $$\angle A+\angle B=180^{\circ}\Leftrightarrow$$$$x+2x=180\Leftrightarrow$$$$x=60$$, следовательно, $$\angle A=60^{\circ}$$, что и есть меньший угол

Аналоги к этому заданию:

Задание 1834

Раз­ность углов, при­ле­жа­щих к одной сто­ро­не па­рал­ле­ло­грам­ма, равна 40°. Най­ди­те мень­ший угол па­рал­ле­ло­грам­ма. Ответ дайте в гра­ду­сах.

Ответ: 70
Скрыть

Пусть $$\angle A=x$$, тогда $$\angle B=x+40$$, по свойству углов параллелограмма $$\angle A+\angle B=180\Leftrightarrow$$$$x+x+40=180\Leftrightarrow$$$$x=70$$,то есть $$\angle A=70^{\circ}$$, что и есть меньший угол

Аналоги к этому заданию:

Задание 1833

Диа­го­наль BD па­рал­ле­ло­грам­ма ABCD об­ра­зу­ет с его сто­ро­на­ми углы, рав­ные 65° и 50°. Най­ди­те мень­ший угол па­рал­ле­ло­грам­ма.

Ответ: 65
Скрыть

Пусть $$\angle ABC=65^{\circ};\angle CBD=50^{\circ}$$, тогда $$\angle B=65+50=115^{\circ}$$, и по свойству углов параллелограмма $$\angle A=180-\angle B=180-115=65^{\circ}$$, что и есть меньший угол парарллелограмма

Аналоги к этому заданию:

Задание 1832

Сто­ро­на AC тре­уголь­ни­ка ABC про­хо­дит через центр опи­сан­ной около него окруж­но­сти. Най­ди­те $$\angle C$$, если $$\angle A=81^{\circ}$$. Ответ дайте в гра­ду­сах.

Ответ: 9
Скрыть

Так ка сторона проходит через центр окружности, то треугольник является прямоугольным, следовательно: $$\angle C=90^{\circ}-\angle A=90^{\circ}-81^{\circ}=9^{\circ}$$

Аналоги к этому заданию:

Задание 1831

В вы­пук­лом че­ты­рех­уголь­ни­ке ABCD AB = BCAD = CD, ∠B = 77°, ∠D = 141°. Най­ди­те угол A. Ответ дайте в гра­ду­сах.

Ответ: 71
Скрыть

Так как AB = BCAD = CD, то $$\angle A=\angle C$$. Сумма углов выпуклового четырехугольника составляет $$360^{\circ}$$, следовательно, $$\angle A=\frac{360^{\circ}-\angle B -\angle D}{2}=\frac{360-77-141}{2}=71^{\circ}$$

Аналоги к этому заданию:

Задание 1829

Ра­ди­ус окруж­но­сти с цен­тром в точке O равен 85, длина хорды AB равна 80 (см. ри­су­нок). Най­ди­те рас­сто­я­ние от хорды AB до па­рал­лель­ной ей ка­са­тель­ной k.

Ответ: 160
Скрыть

Пусть EH - общий перпендикуляр к AB и k, тогда EH - искомое расстояние. Из треугольника AOH (прямоугольный) по теореме Пифагора: $$OH=\sqrt{OA^{2}-AH^{2}}$$, AH=0,5AB=40, тогда: $$OH=\sqrt{85^{2}-40^{2}}=75$$. EH=EO+OH=85+75=160.

Аналоги к этому заданию:

Задание 1828

ABCDEFGH — пра­виль­ный вось­ми­уголь­ник. Най­ди­те угол EFG. Ответ дайте в гра­ду­сах.

Ответ: 135
Скрыть

Так как дан правильный восьмиугольник, то всего его углы равны. Угол же правильного n-угольника можно найти по формуле :$$\alpha =\frac{n-2}{n}*180$$, тогда $$\angle EFG=\frac{8-2}{8}*180=135^{\circ}$$

Аналоги к этому заданию:

Задание 1827

Четырёхуголь­ник ABCD впи­сан в окруж­ность. Угол ABC равен 136°, угол CAD равен 82°. Най­ди­те угол ABD. Ответ дайте в гра­ду­сах.

Ответ: 54
Скрыть

Угол ABC - вписанный, следовательно, величина дуги ADC два раза больше (так как он опирается на данную дугу), тогда $$\smile ADC=272^{\circ}$$, аналогично $$\smile DC =2\angle CAD=164^{\circ}$$, тогда $$\smile AD=\smile ADC-\smile DC=272-164=108^{\circ}$$, но угол ABD опираются на эту дугу и является вписанным, следовательно, $$\angle ABD=\frac{1}{2}\smile AD=54^{\circ}$$

Аналоги к этому заданию:

Задание 1826

Два угла впи­сан­но­го в окруж­ность че­ты­рех­уголь­ни­ка равны 82° и 58°. Най­ди­те боль­ший из остав­ших­ся углов. Ответ дайте в гра­ду­сах.

Ответ: 122
Скрыть

Сумма противоположных углов вписанного в окружность четырехугольника составляет 180 градусов, следовательно, больший из оставшихся будет равен $$180-58=122^{\circ}$$ (второй из оставшихся $$180-82=98^{\circ}$$)

Аналоги к этому заданию:

Задание 1825

Углы вы­пук­ло­го че­ты­рех­уголь­ни­ка от­но­сят­ся как 1:2:3:4. Най­ди­те мень­ший угол. Ответ дайте в гра­ду­сах.

Ответ: 36
Скрыть

Сумма углов четырехугольника составляет 360 градусов. Пусть меньший из углов (угол А) равен х, тогда остальные углы равны 2х, 3х, 4х. Тогда: $$x+2x+3x+4x=360\Leftrightarrow$$$$10x=360\Leftrightarrow$$$$x=36$$, то есть меньший угол равен 36 градусам

Аналоги к этому заданию:

Задание 1823

Сумма трех углов вы­пук­ло­го че­ты­рех­уголь­ни­ка равна 300°. Най­ди­те чет­вер­тый угол. Ответ дайте в гра­ду­сах.

Ответ: 60
Скрыть

Сумма всех углов выпуклого четырехугольника составляет 360 градусов, тогда оставшийся их четырех углов равен: $$360-300=60^{\circ}$$

Аналоги к этому заданию:

Задание 1039

В ромбе ABCD угол ACD равен 43°. Най­ди­те угол ABC. Ответ дайте в гра­ду­сах.

Ответ: 94
Аналоги к этому заданию:

Задание 1038

В ромбе ABCD угол ABC равен 122°. Най­ди­те угол ACD. Ответ дайте в гра­ду­сах.

Ответ: 29
Аналоги к этому заданию:

Задание 1037

Диа­го­на­ли ромба от­но­сят­ся как 3:4. Пе­ри­метр ромба равен 200. Най­ди­те вы­со­ту ромба.

Ответ: 48
Аналоги к этому заданию:

Задание 1036

Най­ди­те боль­шую диа­го­наль ромба, сто­ро­на ко­то­ро­го равна  $$\sqrt{3}$$ , а ост­рый угол равен 60°.

 

Ответ: 3
Аналоги к этому заданию:

Задание 1032

Най­ди­те угол между бис­сек­три­са­ми углов па­рал­ле­ло­грам­ма, при­ле­жа­щих к одной сто­ро­не. Ответ дайте в гра­ду­сах.

Ответ: 90
Аналоги к этому заданию:

Задание 1030

Пе­ри­метр па­рал­ле­ло­грам­ма равен 46. Одна сто­ро­на па­рал­ле­ло­грам­ма на 3 боль­ше дру­гой. Най­ди­те мень­шую сто­ро­ну па­рал­ле­ло­грам­ма.

Ответ: 10
Аналоги к этому заданию:

Задание 1029

Диа­го­наль па­рал­ле­ло­грам­ма об­ра­зу­ет с двумя его сто­ро­на­ми углы 24 и 36. Най­ди­те боль­ший угол па­рал­ле­ло­грам­ма. Ответ дайте в гра­ду­сах.

Ответ: 120
Аналоги к этому заданию:

Задание 1028

Пло­щадь ромба равна 6. Одна из его диа­го­на­лей в 3 раза боль­ше дру­гой. Най­ди­те мень­шую диа­го­наль.

Ответ: 2
Аналоги к этому заданию:

Задание 1027

Пло­щадь ромба равна 18. Одна из его диа­го­на­лей равна 12. Най­ди­те дру­гую диа­го­наль.

Ответ: 3
Аналоги к этому заданию:

Задание 1024

Пло­щадь па­рал­ле­ло­грам­ма равна 40, две его сто­ро­ны равны 5 и 10. Най­ди­те боль­шую вы­со­ту этого па­рал­ле­ло­грам­ма

Ответ: 8
Аналоги к этому заданию:

Задание 1023

Сто­ро­ны па­рал­ле­ло­грам­ма равны 9 и 15. Вы­со­та, опу­щен­ная на первую сто­ро­ну, равна 10. Най­ди­те вы­со­ту, опу­щен­ную на вто­рую сто­ро­ну па­рал­ле­ло­грам­ма.

Ответ: 6
Аналоги к этому заданию:

Задание 1022

Па­рал­ле­ло­грамм и пря­мо­уголь­ник имеют оди­на­ко­вые сто­ро­ны. Най­ди­те ост­рый угол па­рал­ле­ло­грам­ма, если его пло­щадь равна по­ло­ви­не пло­ща­ди пря­мо­уголь­ни­ка. Ответ дайте в гра­ду­сах.

 

Ответ: 30
Аналоги к этому заданию:

Задание 1021

Пе­ри­метр пря­мо­уголь­ни­ка равен 34, а пло­щадь равна 60. Най­ди­те диа­го­наль этого пря­мо­уголь­ни­ка.

Ответ: 13
Аналоги к этому заданию:

Задание 1019

Периметр прямоугольника равен 42, а площадь 98. Найдите большую сторону прямоугольника.

Ответ: 14
Аналоги к этому заданию:

Задание 1004

Най­ди­те пе­ри­метр пря­мо­уголь­ни­ка, если его пло­щадь равна 18, а от­но­ше­ние со­сед­них сто­рон равно 1:2.

Ответ: 18
Аналоги к этому заданию:

Задание 1003

Пло­щадь пря­мо­уголь­ни­ка равна 18. Най­ди­те его боль­шую сто­ро­ну, если она на 3 боль­ше мень­шей сто­ро­ны.

Ответ: 6
Аналоги к этому заданию:

Задание 1001

В па­рал­ле­ло­грам­ме ABCD AB = 3, AD = 21,  $$\sin a = \frac{6}{7} $$ . Най­ди­те боль­шую вы­со­ту па­рал­ле­ло­грам­ма.

Ответ: 18
Аналоги к этому заданию:

Задание 957

Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 30° и 120°, а CD=25.

Ответ: 25
Скрыть

Данные углы принадлежат одной стороне , то есть они односторонние, и , при этом, их сумма равна 180. А это значит, что нам дан параллелограмм , а не трапеция. А это , в свою очередь, означает, что AB = CD = 25

Аналоги к этому заданию:

Задание 883

В тре­уголь­ни­ке ABC угол A равна 135°. Про­дол­же­ния высот BD и CE пе­ре­се­ка­ют­ся в точке O. Най­ди­те угол DOE. Ответ дайте в гра­ду­сах.

Ответ: 45
Аналоги к этому заданию:

Задание 882

На клет­ча­той бу­ма­ге с квад­рат­ны­ми клет­ка­ми изоб­ражён тре­уголь­ник ABC. Най­ди­те тан­генс угла С.

Ответ: 2
Аналоги к этому заданию:

Задание 881

В тре­уголь­ни­ке ABC угол A равен 14°, внеш­ний угол при вер­ши­не B равен 91°. Най­ди­те угол C. Ответ дайте в гра­ду­сах

Ответ: 77
Аналоги к этому заданию:

Задание 879

В тре­уголь­ни­ке ABC угол A равен 46, углы B и C - ост­рые, вы­со­ты BD и CE пе­ре­се­ка­ют­ся в точке O. Най­ди­те угол DOE. Ответ дайте в гра­ду­сах.

Ответ: 134
Аналоги к этому заданию:

Задание 878

В тре­уголь­ни­ке ABC угол A равен 60°, угол B равен 82°. ADBE и CF — вы­со­ты, пе­ре­се­ка­ю­щи­е­ся в точке O. Най­ди­те угол AOF. Ответ дайте в гра­ду­сах.

Ответ: 82
Аналоги к этому заданию:

Задание 877

В тре­уголь­ни­ке ABC угол A равен 60°, угол B равен 82°. ADBE и CF — бис­сек­три­сы, пе­ре­се­ка­ю­щи­е­ся в точке O. Най­ди­те угол AOF. Ответ дайте в гра­ду­сах.

Ответ: 49
Аналоги к этому заданию:

Задание 876

В тре­уголь­ни­ке ABC угол A равен 30°, угол B равен 86°, CD — бис­сек­три­са внеш­не­го угла при вер­ши­не C, при­чем точка D лежит на пря­мой AB. На про­дол­же­нии сто­ро­ны AC за точку C вы­бра­на такая точка E, что CE = CB. Най­ди­те угол BDE. Ответ дайте в гра­ду­сах

Ответ: 56
Аналоги к этому заданию:

Задание 875

В тре­уголь­ни­ке ABC угол B равен 45°, угол C равен 85°, AD — бис­сек­три­са, E  — такая точка на AB, что AE = AC. Най­ди­те угол BDE. Ответ дайте в гра­ду­сах.

Ответ: 40
Аналоги к этому заданию:

Задание 874

В тре­уголь­ни­ке ABC угол A равен 44°, угол C равен 62°. На про­дол­же­нии сто­ро­ны AB за точку B от­ло­жен от­ре­зок BD, рав­ный сто­ро­не BC. Най­ди­те угол D тре­уголь­ни­ка BCD. Ответ дайте в гра­ду­сах.

Ответ: 37
Аналоги к этому заданию:

Задание 873

В тре­уголь­ни­ке ABC про­ве­де­на бис­сек­три­са AD и AB = AD = CD. Най­ди­те мень­ший угол тре­уголь­ни­ка ABC. Ответ дайте в гра­ду­сах.

Ответ: 36
Аналоги к этому заданию:

Задание 872

В тре­уголь­ни­ке ABC CH — вы­со­та, AD — бис­сек­три­са, O — точка пе­ре­се­че­ния CH и AD, угол BAD равен 26°. Най­ди­те угол AOC. Ответ дайте в гра­ду­сах.

Ответ: 116
Аналоги к этому заданию:

Задание 871

В тре­уголь­ни­ке ABC угол C равен 58°, AD и BE — бис­сек­три­сы, пе­ре­се­ка­ю­щи­е­ся в точке O. Най­ди­те угол AOB. Ответ дайте в гра­ду­сах.

Ответ: 119
Аналоги к этому заданию:

Задание 870

Два угла тре­уголь­ни­ка равны 58° и 72°. Най­ди­те тупой угол, ко­то­рый об­ра­зу­ют вы­со­ты тре­уголь­ни­ка, вы­хо­дя­щие из вер­шин этих углов. Ответ дайте в гра­ду­сах.

Ответ: 130
Аналоги к этому заданию:

Задание 869

В ост­ро­уголь­ном тре­уголь­ни­ке ABC угол A равен 65°. BD и CE — вы­со­ты, пе­ре­се­ка­ю­щи­е­ся в точке O. Най­ди­те угол DOE. Ответ дайте в гра­ду­сах.

Ответ: 115
Аналоги к этому заданию:

Задание 868

В тре­уголь­ни­ке ABC AC = BCAD — вы­со­та, угол BAD равен 24°. Най­ди­те угол C. Ответ дайте в гра­ду­сах.

Ответ: 48
Аналоги к этому заданию:

Задание 867

В тре­уголь­ни­ке ABC AD — бис­сек­три­са, угол C равен 30°, угол BAD равен 22°. Най­ди­те угол ADB. Ответ дайте в гра­ду­сах.

Ответ: 52
Аналоги к этому заданию:

Задание 866

В тре­уголь­ни­ке ABC AD — бис­сек­три­са, угол C равен 50°, угол CAD равен 28°. Най­ди­те угол B. Ответ дайте в гра­ду­сах.

Ответ: 74
Аналоги к этому заданию:

Задание 865

В тре­уголь­ни­ке ABC угол A равен 30°, CH — вы­со­та, угол BCH равен 22°. Най­ди­те угол ACB. Ответ дайте в гра­ду­сах.

Ответ: 38
Аналоги к этому заданию:

Задание 864

В тре­уголь­ни­ке ABC угол A равен 40°, внеш­ний угол при вер­ши­не B равен 102°. Най­ди­те угол C. Ответ дайте в гра­ду­сах.

Ответ: 62
Аналоги к этому заданию:

Задание 863

У тре­уголь­ни­ка со сто­ро­на­ми 9 и 6 про­ве­де­ны вы­со­ты к этим сто­ро­нам. Вы­со­та, про­ве­ден­ная к пер­вой сто­ро­не, равна 4. Чему равна вы­со­та, про­ве­ден­ная ко вто­рой сто­ро­не?

Ответ: 6
Аналоги к этому заданию:

Задание 860

В тре­уголь­ни­ке ABC AC = BCAB = 4, вы­со­та CH равна  $$2\sqrt{3}$$ . Най­ди­те угол С. Ответ дайте в гра­ду­сах.

 

Ответ: 60
Аналоги к этому заданию:

Задание 859

В рав­но­сто­рон­нем тре­уголь­ни­ке ABC вы­со­та CH равна  $$2\sqrt{3}$$ . Най­ди­те сто­ро­ны этого тре­уголь­ни­ка.

 

Ответ: 4
Аналоги к этому заданию:

Задание 857

Боль­ший угол рав­но­бед­рен­но­го тре­уголь­ни­ка равен 98°. Най­ди­те мень­ший угол. Ответ дайте в гра­ду­сах.

 

Ответ: 41
Аналоги к этому заданию:

Задание 856

В тре­уголь­ни­ке ABC AC = BC. Внеш­ний угол при вер­ши­не B равен 122°. Най­ди­те угол C. Ответ дайте в гра­ду­сах.

 

Ответ: 64
Аналоги к этому заданию:

Задание 855

В тре­уголь­ни­ке ABC AC = BC, угол C равен 52°. Най­ди­те внеш­ний угол CBD. Ответ дайте в гра­ду­сах.

 

Ответ: 116
Аналоги к этому заданию:

Задание 854

В тре­уголь­ни­ке ABC угол C равен 118°, AC = BC. Най­ди­те угол A. Ответ дайте в гра­ду­сах.

 

Ответ: 31
Аналоги к этому заданию:

Задание 853

В тре­уголь­ни­ке ABC угол A равен 38°, AC = BC. Най­ди­те угол C. Ответ дайте в гра­ду­сах.

 

Ответ: 104
Аналоги к этому заданию:

Задание 852

Угол при вер­ши­не, про­ти­во­ле­жа­щей ос­но­ва­нию рав­но­бед­рен­но­го тре­уголь­ни­ка, равен 30°. Най­ди­те бо­ко­вую сто­ро­ну тре­уголь­ни­ка, если его пло­щадь равна 25.

 

Ответ: 10
Аналоги к этому заданию:

Задание 851

Бо­ко­вая сто­ро­на рав­но­бед­рен­но­го тре­уголь­ни­ка равна 5, а ос­но­ва­ние равно 6. Най­ди­те пло­щадь этого тре­уголь­ни­ка.

 

Ответ: 12
Аналоги к этому заданию:

Задание 850

Угол при вер­ши­не, про­ти­во­ле­жа­щей ос­но­ва­нию рав­но­бед­рен­но­го тре­уголь­ни­ка, равен 30°. Бо­ко­вая сто­ро­на тре­уголь­ни­ка равна 10. Най­ди­те пло­щадь этого тре­уголь­ни­ка.

 

Ответ: 25
Аналоги к этому заданию:

Задание 849

В тре­уголь­ни­ке ABC угол C равен 90°, CH  — вы­со­та, BH=12,  $$\tan A=\frac{2}{3}$$ . Най­ди­те AH.

 

Ответ: 27
Аналоги к этому заданию:

Задание 848

В тре­уголь­ни­ке ABC угол C равен 90°, CH  — вы­со­та, AH=27,  $$\tan A=\frac{2}{3}$$ . Най­ди­те BH.

 

Ответ: 12
Аналоги к этому заданию:

Задание 847

В ту­по­уголь­ном тре­уголь­ни­ке  ABC AC = BC, вы­со­та AH равна 4, CH = 8.  Най­ди­те  tg ACB .

 

Ответ: -0,5
Аналоги к этому заданию:

Задание 846

В ту­по­уголь­ном тре­уголь­ни­ке  ABC AC = BC, вы­со­та AH равна 24, CH = 7. Най­ди­те  cos ACB .

 

Ответ: -0,28
Аналоги к этому заданию:

Задание 845

В ту­по­уголь­ном тре­уголь­ни­ке  ABC AC = BC, вы­со­та AH равна 7, CH = 24. Най­ди­те  sin ACB .

 

Ответ: 0,28
Аналоги к этому заданию:

Задание 844

В ту­по­уголь­ном тре­уголь­ни­ке ABC $$AC=BC=\sqrt{17}$$ , AH – вы­со­та, CH = 4. Най­ди­те  tg ACB .

 

Ответ: -0,25
Аналоги к этому заданию:

Задание 843

В ту­по­уголь­ном тре­уголь­ни­ке ABC AC = BC=8AH – вы­со­та CH = 4. Най­ди­те  cos ACB .

 

Ответ: -0,5
Аналоги к этому заданию:

Задание 842

В ту­по­уголь­ном тре­уголь­ни­ке ABC $$AC = BC=4\sqrt{5}$$ , AH – вы­со­та равна 4.Най­ди­те  tg ACB .

 

Ответ: -0.5
Аналоги к этому заданию:

Задание 841

В ту­по­уголь­ном тре­уголь­ни­ке ABC AC = BC=25AH – вы­со­та равна 20. Най­ди­те  cos ACB .

 

Ответ: -0,6
Аналоги к этому заданию:

Задание 840

В ту­по­уголь­ном тре­уголь­ни­ке ABC AC = BC=8AH – вы­со­та равна 4. Най­ди­те  sin ACB .

 

Ответ: 0,5
Аналоги к этому заданию:

Задание 839

В тре­уголь­ни­ке ABC AC =BCAH – вы­со­та, AB = 7, $$\tan BAC=\frac{4\sqrt{33}}{33}$$ . Най­ди­те вы­со­ту BH

 

Ответ: 4
Аналоги к этому заданию:

Задание 838

В тре­уголь­ни­ке ABC AC =BCAH – вы­со­та, AB = 8, $$\tan BAC=\frac{4\sqrt{33}}{33}$$ . Най­ди­те вы­со­ту AH.

 

Ответ: 4
Аналоги к этому заданию:

Задание 837

В тре­уголь­ни­ке ABC AC =BCAH – вы­со­та, AB = 8,  cos BAC = 0.5 . Най­ди­те BH.

 

Ответ: 4
Аналоги к этому заданию:

Задание 836

В тре­уголь­ни­ке ABC AC =BCAH – вы­со­та, AB = 5,  $$\cos \angle BAC=\frac{7}{25}$$. Най­ди­те вы­со­ту AH

 

Ответ: 4,8
Аналоги к этому заданию:

Задание 835

В тре­уголь­ни­ке ABC AC =BCAH – вы­со­та, AB = 5. Най­ди­те BH.

 

Ответ: 4.8
Аналоги к этому заданию:

Задание 834

В тре­уголь­ни­ке ABC AC = BCAB = 8,  sin BAC = 0.5  Най­ди­те вы­со­ту AH.

 

Ответ: 4
Аналоги к этому заданию:

Задание 833

В тре­уголь­ни­ке ABC AC = BC, AB= 8,  $$\tan A=\frac{33}{4\sqrt{33}}$$. Найдите AC.

 

Ответ: 7
Аналоги к этому заданию:

Задание 832

В тре­уголь­ни­ке ABC AC = BC = 7,  $$\tan A=\frac{33}{4\sqrt{33}}$$. Найдите AB.

 

Ответ: 8
Аналоги к этому заданию:

Задание 831

В тре­уголь­ни­ке ABC AC = BCAB = 8,  cos A = 0.5  Най­ди­те AC.

 

Ответ: 8
Аналоги к этому заданию:

Задание 830

В тре­уголь­ни­ке ABC AC = BC = 8,  cos A = 0.5.  Най­ди­те АВ.

 

Ответ: 8
Аналоги к этому заданию:

Задание 829

В тре­уголь­ни­ке ABC AC = BCAB = 9,6,  $$\sin A=\frac{7}{25}$$ Най­ди­те AC.

 

Ответ: 5
Аналоги к этому заданию:

Задание 828

В тре­уголь­ни­ке ABC AC = BC = 5,  $$\sin A=\frac{7}{25}$$. Най­ди­те АВ.

 

Ответ: 9,6
Аналоги к этому заданию:

Задание 827

Угол между бис­сек­три­сой и ме­ди­а­ной пря­мо­уголь­но­го тре­уголь­ни­ка, про­ве­ден­ны­ми из вер­ши­ны пря­мо­го угла, равен 14°. Най­ди­те мень­ший угол этого тре­уголь­ни­ка. Ответ дайте в гра­ду­сах.

 

Ответ: 31
Аналоги к этому заданию:

Задание 826

Ост­рые углы пря­мо­уголь­но­го тре­уголь­ни­ка равны 24° и 66°. Най­ди­те угол между бис­сек­три­сой и ме­ди­а­ной, про­ве­ден­ны­ми из вер­ши­ны пря­мо­го угла. Ответ дайте в гра­ду­сах.

 

 

Ответ: 21
Аналоги к этому заданию:

Задание 825

В пря­мо­уголь­ном тре­уголь­ни­ке угол между вы­со­той и ме­ди­а­ной, про­ве­ден­ны­ми из вер­ши­ны пря­мо­го угла, равен 40°. Най­ди­те боль­ший из ост­рых углов этого тре­уголь­ни­ка. Ответ дайте в гра­ду­сах.

 

Ответ: 65
Аналоги к этому заданию:

Задание 824

Ост­рые углы пря­мо­уголь­но­го тре­уголь­ни­ка равны 24° и 66°. Най­ди­те угол между вы­со­той и ме­ди­а­ной, про­ве­ден­ны­ми из вер­ши­ны пря­мо­го угла. Ответ дайте в гра­ду­сах.

 

Ответ: 42
Аналоги к этому заданию:

Задание 823

В пря­мо­уголь­ном тре­уголь­ни­ке угол между вы­со­той и бис­сек­три­сой, про­ве­ден­ны­ми из вер­ши­ны пря­мо­го угла, равен 21°. Най­ди­те мень­ший угол дан­но­го тре­уголь­ни­ка. Ответ дайте в гра­ду­сах.

 

Ответ: 24
Аналоги к этому заданию:

Задание 822

Один из углов пря­мо­уголь­но­го тре­уголь­ни­ка равен 29°. Най­ди­те угол между вы­со­той и бис­сек­три­сой, про­ведёнными из вер­ши­ны пря­мо­го угла. Ответ дайте в гра­ду­сах.

 

Ответ: 16
Аналоги к этому заданию:

Задание 821

Най­ди­те ост­рый угол между бис­сек­три­са­ми ост­рых углов пря­мо­уголь­но­го тре­уголь­ни­ка. Ответ дайте в гра­ду­сах.

 

Ответ: 45
Аналоги к этому заданию:

Задание 820

Ост­рый угол пря­мо­уголь­но­го тре­уголь­ни­ка равен 32°. Най­ди­те ост­рый угол, об­ра­зо­ван­ный бис­сек­три­са­ми этого и пря­мо­го углов тре­уголь­ни­ка. Ответ дайте в гра­ду­сах.

Ответ: 61
Аналоги к этому заданию:

Задание 819

В тре­уголь­ни­ке ABC угол ACB равен 90°, угол B равен 58°, CD — ме­ди­а­на. Най­ди­те угол ACD. Ответ дайте в гра­ду­сах.

Ответ: 32
Аналоги к этому заданию:

Задание 818

Пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка равна 24. Один из его ка­те­тов на 2 боль­ше дру­го­го. Най­ди­те мень­ший катет.

 

Ответ: 6
Аналоги к этому заданию:

Задание 817

Най­ди­те пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка, если его катет и ги­по­те­ну­за равны со­от­вет­ствен­но 6 и 10.

 

Ответ: 24
Аналоги к этому заданию:

Задание 816

В тре­уголь­ни­ке ABC угол C равен 90°, CH – вы­со­та, AH = 12,  $$\cos A=\frac{2}{3}$$. Най­ди­те AB.

 

Ответ: 27
Аналоги к этому заданию:

Задание 815

В тре­уголь­ни­ке ABC угол C равен 90°, CH – вы­со­та, BH = 12,  $$\sin A=\frac{2}{3}$$. Най­ди­те AB.

 

Ответ: 27
Аналоги к этому заданию:

Задание 814

В тре­уголь­ни­ке ABC угол C равен 90°, вы­со­та CH равна 8, BH = 4. Най­ди­те  tg A .

 

Ответ: 0,5
Аналоги к этому заданию:

Задание 813

В тре­уголь­ни­ке ABC угол C равен 90°, вы­со­та CH равна 7BH = 24. Най­ди­те  cos A .

 

Ответ: 0,28
Аналоги к этому заданию:

Задание 812

В тре­уголь­ни­ке ABC угол C равен 90°, вы­со­та CH равна 24, BH = 7. Най­ди­те  cos A .

 

Ответ: 0,28
Аналоги к этому заданию:

Задание 811

В тре­уголь­ни­ке ABC угол C равен 90°, вы­со­та CH равна 4,  $$BC=\sqrt{17}$$. Най­ди­те  tg A .

 

Ответ: 0,25
Аналоги к этому заданию:

Задание 810

В тре­уголь­ни­ке ABC угол C равен 90°, вы­со­та CH равна 4, BC = 8. Най­ди­те  cos A .

 

Ответ: 0,5
Аналоги к этому заданию:

Задание 809

В тре­уголь­ни­ке ABC угол C равен 90°, вы­со­та CH равна 20, BC = 25. Най­ди­те  sin A .

 

Ответ: 0.6
Аналоги к этому заданию:

Задание 808

В тре­уголь­ни­ке ABC угол C равен 90°, CH – вы­со­та,  $$BC=4\sqrt{5}$$, BH = 4. Най­ди­те  tg A .

 

Ответ: 0,5
Аналоги к этому заданию:

Задание 807

В тре­уголь­ни­ке ABC угол C равен 90°, CH — вы­со­та, BC = 25, BH = 20. Най­ди­те  cos A .

 

Ответ: 0,6
Аналоги к этому заданию:

Задание 806

В тре­уголь­ни­ке ABC угол C равен 90°, CH – вы­со­та, AC = 3,  $$\cos A=\frac{1}{6}$$. Най­ди­те BH.

 

Ответ: 17,5
Аналоги к этому заданию:

Задание 805

В тре­уголь­ни­ке ABC угол C равен 90°, CH  — вы­со­та, BC = 8, BH = 4. Най­ди­те  sin A .

 

Ответ: 0,5
Аналоги к этому заданию:

Задание 804

В тре­уголь­ни­ке АВС угол С равен 90°, BC = 8,  $$\cos A=0,5$$ . Най­ди­те СН.

 

Ответ: 4
Аналоги к этому заданию:

Задание 803

В тре­уголь­ни­ке АВС угол С равен 90°, СН — вы­со­та, BC = 5 ,  $$\cos A=\frac{7}{25}$$. Най­ди­те ВН.

 

Ответ: 4.8
Аналоги к этому заданию:

Задание 802

В тре­уголь­ни­ке ABC угол C равен 90°, СН — вы­со­та, BC = 3,  $$\cos A=\frac{\sqrt{35}}{6}$$. Най­ди­те АН.

 

Ответ: 17,5
Аналоги к этому заданию:

Задание 801

В тре­уголь­ни­ке АВС угол С равен 90°, BC = 5,  $$\sin A=\frac{7}{25}$$. Най­ди­те вы­со­ту СН.

 

Ответ: 4,8
Аналоги к этому заданию:

Задание 800

В тре­уголь­ни­ке ABC угол C равен 90°, CH — вы­со­та, BC  = 8,  $$\sin A=0,5$$. Най­ди­те BH.

 

Ответ: 4
Аналоги к этому заданию:

Задание 799

В тре­уголь­ни­ке АВС угол С равен 90°, CH — вы­со­та, BC = 3,  $$\sin A=\frac{1}{6}$$. Най­ди­те АН.

 

Ответ: 17,5
Аналоги к этому заданию:

Задание 797

В тре­уголь­ни­ке АВС угол С равен 90°, СН — вы­со­та, AB = 13,  $$\tan A=5$$. Най­ди­те ВН.

 

Ответ: 12,5
Аналоги к этому заданию:

Задание 796

В тре­уголь­ни­ке ABC угол C равен 90°, CH – вы­со­та, AB = 13,  $$\tan A=\frac{1}{5}$$. Най­ди­те AH

 

Ответ: 12,5
Аналоги к этому заданию:

Задание 795

В тре­уголь­ни­ке ABC угол C равен 90°, AC = 24, BC = 7. Най­ди­те  sin A.

 

Ответ: 0,28
Аналоги к этому заданию:

Задание 793

В тре­уголь­ни­ке ABC угол C равен 90°,   $$\tan A=\frac{33}{4\sqrt{33}}$$, АС = 4. Най­ди­те АВ.

 

Ответ: 7
Аналоги к этому заданию:

Задание 791

В тре­уголь­ни­ке ABC угол C равен 90°, AC = 2,  $$\sin A=\frac{\sqrt{17}}{17}$$ . Най­ди­те BC.

 

Ответ: 0,5
Аналоги к этому заданию:

Задание 790

В тре­уголь­ни­ке ABC угол C равен 90°, AC=4,8, $$\sin A=\frac{7}{25}$$. Най­ди­те AB.

 

Ответ: 5