Перейти к основному содержанию

ОГЭ

ОГЭ / Расчеты по формулам

Аналоги к этому заданию:

Задание 6636

Закон Менделеева–Клапейрона можно записать в виде PV=νRT, где P — давление (в паскалях), V — объём (в м3 ), ν — количество вещества (в молях), T — температура (в градусах Кельвина), а R — универсальная газовая постоянная, равная 8,31 Дж/(К моль). Пользуясь этой формулой, найдите количество вещества ν (в молях), если T=700 К, P=20941,2 Па, V=9,5 м3 .

Ответ: 34,2
Скрыть

$$v=\frac{PV}{RT}\Leftrightarrow$$ $$v=\frac{20941,2*9,5}{8,31*700}=$$$$\frac{209412*95}{831*700}=$$$$\frac{252*95}{700}=\frac{36*95}{100}=$$$$\frac{3420}{100}=34,2$$

Аналоги к этому заданию:

Задание 5834

Сумма углов правильного выпуклого многоугольника вычисляется по формуле $$\sum =(n-2)\pi$$ где n — количество его углов. Пользуясь этой формулой, найдите n, если $$\sum=6\pi$$.

Ответ:
Аналоги к этому заданию:

Задание 5833

Радиус окружности, опи­сан­ной около треугольника, можно вы­чис­лить по фор­му­ле $$R=\frac{a}{2\sin \alpha}$$, где a — сторона, а α — про­ти­во­ле­жа­щий ей угол треугольника. Поль­зу­ясь этой формулой, най­ди­те R, если a = 8 и $$\sin \alpha=\frac{1}{5}$$.

Ответ:
Аналоги к этому заданию:

Задание 5832

Теорему ко­си­ну­сов можно за­пи­сать в виде $$\cos \alpha=\frac{a^{2}+b^{2}-c^{2}}{2ab}$$, где ab и c — сто­ро­ны треугольника, а $$\alpha$$ — угол между сто­ро­на­ми и b. Поль­зу­ясь этой формулой, най­ди­те ве­ли­чи­ну $$\cos \alpha$$ , если a = 7, b=10 и c = 11.

Ответ:
Аналоги к этому заданию:

Задание 5831

Площадь пря­мо­уголь­ни­ка вы­чис­ля­ет­ся по фор­му­ле $$S=\frac{d^{2}\sin \alpha}{2}$$, где d — диагональ, α — угол между диагоналями. Поль­зу­ясь этой формулой, най­ди­те S , если d = 10 и $$\sin \alpha=\frac{3}{5}$$

Ответ:
Аналоги к этому заданию:

Задание 5830

Найдите h из ра­вен­ства E=mgh, g=9,8, m=5, а E=4,9

Ответ:
Аналоги к этому заданию:

Задание 5829

Если $$p_{1}, p_{2}, p_{3}$$ — простые числа, то сумма всех делителей числа $$p_{1}*p_{2}*p_{3}$$ равна $$(p_{1}+1)(p_{2}+1)(p_{3}+1)$$. Найдите сумму делителей числа 114.

Ответ:
Аналоги к этому заданию:

Задание 5828

Известно, что $$1^{2}+2^{2}+3^{2}+...+n^{2}=\frac{n(n+1)(2n+1)}{6}$$. Най­ди­те сумму $$1^{2}+2^{2}+3^{2}+...+30^{2}$$.

Ответ:
Аналоги к этому заданию:

Задание 5827

Среднее квад­ра­ти­че­ское трёх чисел a,b и c вы­чис­ля­ет­ся по фор­му­ле $$q=\sqrt{\frac{a^{2}+b^{2}+c^{2}}{3}}$$. Най­ди­те сред­нее квад­ра­тич­ное чисел $$\sqrt{2}, 3$$ и 17.

Ответ:
Аналоги к этому заданию:

Задание 5826

Площадь по­верх­но­сти пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с рёбрами a,b и c можно найти по фор­му­ле $$S=2(ab+ac+bc)$$. Най­ди­те пло­щадь по­верх­но­сти пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с рёбрами 5,6 и 20.

Ответ:
Аналоги к этому заданию:

Задание 5825

Длина ме­ди­а­ны $$m_{c}$$, проведённой к сто­ро­не тре­уголь­ни­ка со сто­ро­на­ми a,b и c, вы­чис­ля­ет­ся по фор­му­ле $$m_{c}=\frac{\sqrt{2a^{2}+2b^{2}-c^{2}}}{2}$$. Тре­уголь­ник имеет сто­ро­ны $$\sqrt{11}$$, 5 и 6. Най­ди­те длину медианы, проведённой к сто­ро­не длины 6.

Ответ:
Аналоги к этому заданию:

Задание 5824

Среднее гар­мо­ни­че­ское трёх чисел a,b и c вы­чис­ля­ет­ся по фор­му­ле $$h=(\frac{a^{-1}+b^{-1}+c^{-1}}{3})^{-1}$$. Най­ди­те сред­нее гар­мо­ни­че­ское чисел $$\frac{1}{3}; \frac{1}{4}$$ и $$\frac{1}{8}$$.

Ответ:
Аналоги к этому заданию:

Задание 5823

Длина бис­сек­три­сы $$l_{c}$$, про­ве­ден­ной к сто­ро­не тре­уголь­ни­ка со сто­ро­на­ми a,b и c, вы­чис­ля­ет­ся по фор­му­ле $$l_{c}=\sqrt{ab(1-\frac{c^{2}}{(a+b)^{2}})}$$. Тре­уголь­ник имеет сто­ро­ны 9,18 и 21. Най­ди­те длину биссектрисы, проведённой к сто­ро­не длины 21.

Ответ:
Аналоги к этому заданию:

Задание 5822

Площадь тре­уголь­ни­ка со сто­ро­на­ми a,b,c можно найти по фор­му­ле Ге­ро­на $$S=\sqrt{p(p-a)(p-b)(p-c)}$$, где $$p=\frac{a+b+c}{2}$$. Най­ди­те пло­щадь тре­уголь­ни­ка со сто­ро­на­ми 11,13,20.

Ответ:
Аналоги к этому заданию:

Задание 5821

Площадь тре­уголь­ни­ка можно вы­чис­лить по фор­му­ле $$S=\frac{(a+b+c)r}{2}$$, где  a,b,c — длины сто­рон треугольника, r — ра­ди­ус впи­сан­ной окружности. Вы­чис­ли­те длину сто­ро­ны  c, если  S=24,a=8,b=6,r=2.

Ответ:
Аналоги к этому заданию:

Задание 5820

Площадь тре­уголь­ни­ка можно вы­чис­лить по фор­му­ле $$S=\frac{bc\sin \alpha}{2}$$, где b и c — сто­ро­ны треугольника, $$\alpha$$ — угол между этими сторонами. Поль­зу­ясь этой формулой, най­ди­те площадь треугольника, если $$\alpha=30^{\circ}$$, c=5, b=6.

Ответ:
Аналоги к этому заданию:

Задание 5745

Количество теп­ло­ты (в джоулях), по­лу­чен­ное од­но­род­ным телом при нагревании, вы­чис­ля­ет­ся по фор­му­ле $$Q=cm(t_{2}-t_{1}$$ где c — удель­ная теплоёмкость (в Дж/кг*К), m — масса тела (в кг), t1 — на­чаль­ная тем­пе­ра­ту­ра тела (в кельвинах), а t2 — ко­неч­ная тем­пе­ра­ту­ра тела (в кельвинах). Поль­зу­ясь этой формулой, най­ди­те Q если t2 = 608 К, c=600 Дж/кг*К, m = 3 кг и t1 = 603 К.

Ответ:
Аналоги к этому заданию:

Задание 5744

Площадь треугольника можно вычислить по формуле $$S=\frac{abc}{4R}$$, где ab и c — стороны треугольника, а R — радиус окружности, описанной около этого треугольника. Пользуясь этой формулой, найдите b, если a = 9, с = 10, S = 36 и R = $$\frac{85}{8}$$.

Ответ:
Аналоги к этому заданию:

Задание 5743

Кинетическая энер­гия тела (в джоулях) вы­чис­ля­ет­ся по фор­му­ле $$E=\frac{mv^{2}}{2}$$ , где m — масса тела (в килограммах), а v — его ско­рость (в м/с). Поль­зу­ясь этой формулой, най­ди­те E (в джоулях), если v = 3 м/с и m =14 кг.

Ответ:
Аналоги к этому заданию:

Задание 5742

Работа по­сто­ян­но­го тока (в джоулях) вы­чис­ля­ет­ся по фор­му­ле $$A=\frac{U^{2}t}{R}$$, где U — на­пря­же­ние (в вольтах), R — со­про­тив­ле­ние (в омах), t — время (в секундах). Поль­зу­ясь этой формулой, най­ди­те A (в джоулях), если t = 18 c, U = 7 В и R = 14 Ом.

Ответ:
Аналоги к этому заданию:

Задание 5741

Закон Гука можно за­пи­сать в виде F = kx, где F — сила (в ньютонах), с ко­то­рой сжи­ма­ют пружину, x — аб­со­лют­ное удли­не­ние (сжатие) пру­жи­ны (в метрах), а k — ко­эф­фи­ци­ент упругости. Поль­зу­ясь этой формулой, най­ди­те x(в метрах), если F = 38 Н и k = 2 Н/м.

Ответ:
Аналоги к этому заданию:

Задание 2289

Закон Мен­де­ле­е­ва-Кла­пей­ро­на можно за­пи­сать в виде PV = νRT, где P — дав­ле­ние (в пас­ка­лях), V — объём (в м3), ν — ко­ли­че­ство ве­ще­ства (в молях), T — тем­пе­ра­ту­ра (в гра­ду­сах Кель­ви­на), а R — уни­вер­саль­ная га­зо­вая по­сто­ян­ная, рав­ная 8,31 Дж/(К⋅моль). Поль­зу­ясь этой фор­му­лой, най­ди­те тем­пе­ра­ту­ру T (в гра­ду­сах Кель­ви­на), если ν = 68,2 моль, P = 37 782,8 Па, V = 6 м3.

Ответ: 400
Скрыть

Выразим температуру из данной формулы: $$PV=\upsilon RT \Leftrightarrow$$$$T=\frac{PV}{\upsilon R}$$. Подставим имеющиеся значения в данную формулу $$T=\frac{37782,8*6}{68,2*8,31}=$$$$\frac{377828*6*100}{682*831}=$$$$\frac{554*6*100}{831}=400$$

Аналоги к этому заданию:

Задание 2288

Пло­щадь четырёхуголь­ни­ка можно вы­чис­лить по фор­му­ле $$S=\frac{d_{1}d_{2}\sin \alpha }{2}$$, где d1 и d2 — длины диа­го­на­лей четырёхуголь­ни­ка, $$\alpha$$ — угол между диа­го­на­ля­ми. Поль­зу­ясь этой фор­му­лой, най­ди­те длину диа­го­на­ли d1, если d2=7, $$\sin \alpha=\frac{2}{7}$$, S=4.

Ответ: 4
Аналоги к этому заданию:

Задание 2287

Закон Джо­у­ля–Ленца можно за­пи­сать в виде Q = I2Rt, где Q — ко­ли­че­ство теп­ло­ты (в джо­у­лях), I — сила тока (в ам­пе­рах), R — со­про­тив­ле­ние цепи (в омах), а t — время (в се­кун­дах). Поль­зу­ясь этой фор­му­лой, най­ди­те время t (в се­кун­дах), если Q = 2187 Дж, I = 9 A, R = 3 Ом.

Ответ: 9
Аналоги к этому заданию:

Задание 2286

Закон все­мир­но­го тя­го­те­ния можно за­пи­сать в виде $$F=\gamma \frac{m_{1}m_{2}}{r^{2}}$$, где F — сила при­тя­же­ния между те­ла­ми (в нью­то­нах), m1 и m2 — массы тел (в ки­ло­грам­мах), r  — рас­сто­я­ние между цен­тра­ми масс (в мет­рах), а  $$\gamma$$ — гра­ви­та­ци­он­ная по­сто­ян­ная, рав­ная 6.67 · 10−11 H·м2/кг2. Поль­зу­ясь фор­му­лой, най­ди­те массу тела m1 (в ки­ло­грам­мах), если F=33,35 Н, m2=5·108 кг, а r=2 м.

Ответ: 4000
Аналоги к этому заданию:

Задание 2285

Закон Ку­ло­на можно за­пи­сать в виде $$F=k\frac{q_{1}q_{2}}{r^{2}}$$, где — сила вза­и­мо­дей­ствия за­ря­дов (в нью­то­нах), q1 и q2 — ве­ли­чи­ны за­ря­дов (в ку­ло­нах), k — ко­эф­фи­ци­ент про­пор­ци­о­наль­но­сти (в Н·м2/Кл2 ), а r  — рас­сто­я­ние между за­ря­да­ми (в мет­рах). Поль­зу­ясь фор­му­лой, най­ди­те ве­ли­чи­ну за­ря­да q1 (в ку­ло­нах), если k=9·10Н·м2/Кл2q2=0,004 Кл, r=3000 м, а F=0,016 Н.

Ответ: 0,004
Аналоги к этому заданию:

Задание 2284

Ав­то­мо­биль про­ехал 200 ки­ло­мет­ров и из­рас­хо­до­вал при этом a лит­ров бен­зи­на. Сколь­ко лит­ров бен­зи­на по­тре­бу­ет­ся, чтобы про­ехать 37 ки­ло­мет­ров при таких же усло­ви­ях езды? За­пи­ши­те со­от­вет­ству­ю­щее вы­ра­же­ние.

Ответ: 0,185a|0,185a
Аналоги к этому заданию:

Задание 2283

Мощ­ность по­сто­ян­но­го тока (в ват­тах) вы­чис­ля­ет­ся по фор­му­ле P = I2R, где I — сила тока (в ам­пе­рах), R — со­про­тив­ле­ние (в омах). Поль­зу­ясь этой фор­му­лой, най­ди­те со­про­тив­ле­ние R (в омах), если мощ­ность со­став­ля­ет 150 ватт, а сила тока равна 5 ам­пе­рам.

Ответ: 6
Аналоги к этому заданию:

Задание 2282

Пол­ную ме­ха­ни­че­скую энер­гию тела (в джо­у­лях) можно вы­чис­лить по фор­му­ле $$E=\frac{mv^{2}}{2}+mgh$$, где m — масса тела (в ки­ло­грам­мах), v — его ско­рость (в м/с), h — вы­со­та по­ло­же­ния цен­тра масс тела над про­из­воль­но вы­бран­ным ну­ле­вым уров­нем (в мет­рах), а g — уско­ре­ние сво­бод­но­го па­де­ния (в м/с2). Поль­зу­ясь этой фор­му­лой, най­ди­те h (в мет­рах), если E=250 Дж, v=5 м/с, m=4 кг, g=10 м/с2.

Ответ: 5
Аналоги к этому заданию:

Задание 2281

Из за­ко­на все­мир­но­го тя­го­те­ния $$F=G\frac{mM}{r^{2}}$$ вы­ра­зи­те массу m и най­ди­те её ве­ли­чи­ну (в ки­ло­грам­мах), если F=13,4, H,r=5 м, M=5*109 кг и гра­ви­та­ци­он­ная по­сто­ян­ная G=6,7*10-11 м3/ кг·с. 

Ответ: 1000
Аналоги к этому заданию:

Задание 2280

Цен­тро­стре­ми­тель­ное уско­ре­ние при дви­же­нии по окруж­но­сти (в м/c2 ) можно вы­чис­лить по фор­му­ле $$a=\omega^{2}R$$ где $$\omega$$ — уг­ло­вая ско­рость (в с−1), а R — ра­ди­ус окруж­но­сти. Поль­зу­ясь этой фор­му­лой, най­ди­те рас­сто­я­ние R (в мет­рах), если уг­ло­вая ско­рость равна 3 с−1, а цен­тро­стре­ми­тель­ное уско­ре­ние равно 45 м/c2.

Ответ: 5
Аналоги к этому заданию:

Задание 2279

Чтобы пе­ре­ве­сти зна­че­ние тем­пе­ра­ту­ры по шкале Цель­сия (t °C) в шкалу Фа­рен­гей­та (t °F), поль­зу­ют­ся фор­му­лой F = 1,8C + 32 , где C — гра­ду­сы Цель­сия, F — гра­ду­сы Фа­рен­гей­та. Какая тем­пе­ра­ту­ра по шкале Цель­сия со­от­вет­ству­ет 6° по шкале Фа­рен­гей­та? Ответ округ­ли­те до де­ся­тых.

Ответ: -14,4
Аналоги к этому заданию:

Задание 2278

Пло­щадь лю­бо­го вы­пук­ло­го че­ты­рех­уголь­ни­ка можно вы­чис­лять по фор­му­ле $$S=\frac{1}{2}d_{1}d_{2}\sin\alpha $$, где d1, d2 — длины его диа­го­на­лей, а $$\alpha $$ угол между ними. Вы­чис­ли­те $$\sin\alpha $$ , если S=21, d1=7, d2=15.

Ответ: 0,4
Аналоги к этому заданию:

Задание 2277

Объём пи­ра­ми­ды вы­чис­ля­ют по фор­му­ле $$V=\frac{1}{3}Sh$$, где S — пло­щадь ос­но­ва­ния пи­ра­ми­ды, h — её вы­со­та. Объём пи­ра­ми­ды равен 40, пло­щадь ос­но­ва­ния 15. Чему равна вы­со­та пи­ра­ми­ды?

Ответ: 8
Аналоги к этому заданию:

Задание 2276

Ра­ди­ус впи­сан­ной в пря­мо­уголь­ный тре­уголь­ник окруж­но­сти можно найти по фор­му­ле $$r=\frac{a+b-c}{2}$$, где a и b  — ка­те­ты, а c — ги­по­те­ну­за тре­уголь­ни­ка. Поль­зу­ясь этой фор­му­лой, най­ди­те b, если r=1,2 ; c=6.8 и a=6.

Ответ: 3,2
Аналоги к этому заданию:

Задание 2275

Пло­щадь тра­пе­ции (в м2) можно вы­чис­лить по фор­му­ле $$S=\frac{a+b}{2}h$$, где a,b — ос­но­ва­ния тра­пе­ции, h — вы­со­та (в мет­рах). Поль­зу­ясь этой фор­му­лой, най­ди­те вы­со­ту h, если ос­но­ва­ния тра­пе­ции равны 5 м и 7 м, а её пло­щадь 24 м2.

Ответ: 4
Аналоги к этому заданию:

Задание 2274

Пло­щадь тре­уголь­ни­ка S (в м2) можно вы­чис­лить по фор­му­ле $$S=\frac{1}{2}h$$, где a — сто­ро­на тре­уголь­ни­ка, h — вы­со­та, про­ве­ден­ная к этой сто­ро­не (в мет­рах). Поль­зу­ясь этой фор­му­лой, най­ди­те сто­ро­ну a, если пло­щадь тре­уголь­ни­ка равна 28 м2, а вы­со­та h равна 14 м.

Ответ: 4
Аналоги к этому заданию:

Задание 2273

Пло­щадь ромба S (в м2) можно вы­чис­лить по фор­му­ле $$S=\frac{1}{2}d_{1}d_{2}$$, где $$d_{1},d_{2}$$ — диа­го­на­ли ромба (в мет­рах). Поль­зу­ясь этой фор­му­лой, най­ди­те диа­го­наль $$d_{1}$$, если диа­го­наль $$d_{2}$$ равна 30 м, а пло­щадь ромба 120 м2.

Ответ: 8
Аналоги к этому заданию:

Задание 2272

Длину окруж­но­сти l можно вы­чис­лить по фор­му­ле $$l=2\pi R$$, где R  — ра­ди­ус окруж­но­сти (в мет­рах). Поль­зу­ясь этой фор­му­лой, най­ди­те ра­ди­ус окруж­но­сти, если её длина равна 78 м. (Счи­тать $$\pi =3$$).

Ответ: 13
Аналоги к этому заданию:

Задание 2271

За 5 минут пе­ше­ход прошёл a мет­ров. За сколь­ко минут он пройдёт 120 мет­ров, если будет идти с той же ско­ро­стью? За­пи­ши­те со­от­вет­ству­ю­щее вы­ра­же­ние.

Ответ: 600/а|600/a|600:a|600:a
Скрыть

Воспользуемся формулой нахождения времени: $$t=\frac{S}{v}$$. Найдем скорость: $$v=\frac{a}{5}$$ метров в минуту, тогда $$t=\frac{120}{\frac{a}{5}}=\frac{600}{a}$$ минут

Аналоги к этому заданию:

Задание 2269

Длину бис­сек­три­сы тре­уголь­ни­ка, про­ведённой к сто­ро­не a, можно вы­чис­лить по фор­му­ле $$l_{a}=\frac{2bc \cos\frac{\alpha}{2}}{b+c}$$. Вы­чис­ли­те $$\cos\frac{\alpha}{2}$$,  если $$b=1$$, $$c=3$$, $$l_{a}=1,2$$.

Ответ: 0,8
Скрыть

Выразим $$\cos\frac{\alpha}{2}$$ из данной формулы: $$\cos\frac{\alpha}{2}=\frac{l_{a}(b+c)}{2bc}$$. Найдем значение $$\cos\frac{\alpha}{2}=\frac{1,2(1+3)}{2*1*3}=0,8$$

Аналоги к этому заданию:

Задание 2268

Ра­ди­ус опи­сан­ной около тре­уголь­ни­ка окруж­но­сти можно найти по фор­му­ле $$R=\frac{a}{2\sin\alpha}$$, где a — сто­ро­на тре­уголь­ни­ка, $$\alpha$$ — про­ти­во­ле­жа­щий этой сто­ро­не угол, а R — ра­ди­ус опи­сан­ной около этого тре­уголь­ни­ка окруж­но­сти. Поль­зу­ясь этой фор­му­лой, най­ди­те $$\sin\alpha$$, если $$a=0,6$$, а $$R=0,75$$.

Ответ: 0,4
Скрыть

Выразим $$\sin\alpha$$ из данной формулы: $$\sin\alpha=\frac{2R}{a}$$. Подставим имеющиеся значения: $$\sin\alpha=\frac{2*0,75}{0,6}=0,4$$

Аналоги к этому заданию:

Задание 2267

Пе­ри­од ко­ле­ба­ния ма­те­ма­ти­че­ско­го ма­ят­ни­ка Т (в се­кун­дах) при­бли­жен­но можно вы­чис­лить по фор­му­ле $$T=2\sqrt{l}$$, где l — длина нити (в мет­рах). Поль­зу­ясь этой фор­му­лой, най­ди­те длину нити ма­ят­ни­ка (в мет­рах), пе­ри­од ко­ле­ба­ний ко­то­ро­го со­став­ля­ет 3 се­кун­ды.

Ответ: 2,25
Скрыть

Выразим длину нити из данной формулы: $$l=(\frac{T}{2})^{2}$$. Подставим имеющиеся значения: $$l=(\frac{3}{2})^{2}=2,25$$

Аналоги к этому заданию:

Задание 2266

Из фор­му­лы цен­тро­стре­ми­тель­но­го уско­ре­ния a = ω2R най­ди­те R (в мет­рах), если ω = 4 с−1 и a = 64 м/с2.

Ответ: 4
Скрыть

Выразим из данной формулы R: $$R=\frac{a\omega ^{2}}{\omega ^{2}}=$$$$\frac{64}{4^{2}}=4$$

Аналоги к этому заданию:

Задание 2265

Рас­сто­я­ние s (в мет­рах) до места удара мол­нии можно при­ближённо вы­чис­лить по фор­му­ле s = 330t, где t — ко­ли­че­ство се­кунд, про­шед­ших между вспыш­кой мол­нии и уда­ром грома. Опре­де­ли­те, на каком рас­сто­я­нии от места удара мол­нии на­хо­дит­ся на­блю­да­тель, если t = 10 с. Ответ дайте в ки­ло­мет­рах, округ­лив его до целых.

Ответ: 3
Скрыть

Найдем расстояние в метрах: $$S=330*10=3300$$ метров. Тогда в километрах данное расстояние равно $$\frac{3300}{1000}=3,3$$ км. Если округлить до целого, то получим $$3,3 \approx 3$$

Аналоги к этому заданию:

Задание 2264

Зная длину сво­е­го шага, че­ло­век может при­ближённо под­счи­тать прой­ден­ное им рас­сто­я­ние s по фор­му­ле s = nl, где n — число шагов, l — длина шага. Какое рас­сто­я­ние прошёл че­ло­век, если l = 80 см, n = 1600? Ответ вы­ра­зи­те в ки­ло­мет­рах.

Ответ: 1,28
Скрыть

Найдем расстояние, выраженное в сантиметрах: $$S=80*1600=128000$$ см. Выразим данное расстояние в километрах: $$\frac{128000}{100*1000}=1,28$$ км

Аналоги к этому заданию:

Задание 2263

В фирме «Чи­стая вода» сто­и­мость (в руб­лях) ко­лод­ца из же­ле­зо­бе­тон­ных колец рас­счи­ты­ва­ет­ся по фор­му­ле $$C=6500+4000*n$$, где n — число колец, уста­нов­лен­ных при рытье ко­лод­ца. Поль­зу­ясь этой фор­му­лой, рас­счи­тай­те сто­и­мость ко­лод­ца из 11 колец.

Ответ: 50500
Скрыть

Стоимость 11 колец составит: $$C=6500+4000*11=50500$$ рублей

Аналоги к этому заданию:

Задание 2262

Пло­щадь па­рал­ле­ло­грам­ма S (в м2) можно вы­чис­лить по фор­му­ле $$S=a*b*\sin\alpha $$, где a,b — сто­ро­ны па­рал­ле­ло­грам­ма (в мет­рах). Поль­зу­ясь этой фор­му­лой, най­ди­те пло­щадь па­рал­ле­ло­грам­ма, если его сто­ро­ны 10 м и 12 м и $$\sin\alpha=0,5$$.

Ответ: 60
Скрыть

Найдем площадь параллелограмма: $$S=10*12*0,5=60$$ м2

Аналоги к этому заданию:

Задание 2261

В фирме «Эх, про­ка­чу!» сто­и­мость по­езд­ки на такси (в руб­лях) рас­счи­ты­ва­ет­ся по фор­му­ле $$C=150+11(t-5)$$, где  t — дли­тель­ность по­езд­ки, вы­ра­жен­ная в ми­ну­тах $$(t>5)$$. Поль­зу­ясь этой фор­му­лой, рас­счи­тай­те сто­и­мость 8-ми­нут­ной по­езд­ки.

Ответ: 183
Скрыть

Найдем стоимость 8-минутной поездки $$C=150+11(8-5)=183$$ рублей

Аналоги к этому заданию:

Задание 1372

Сред­нее гео­мет­ри­че­ское трёх чисел a, b и c вы­чис­ля­ет­ся по фор­му­ле $$g=\sqrt[3]{abc}$$. Вы­чис­ли­те сред­нее гео­мет­ри­че­ское чисел 12, 18, 27.

Ответ: 18