Перейти к основному содержанию

ОГЭ

Окружность, круг и их элементы

Касательная, хорда, секущая, радиус

Задание 1909

Ра­ди­ус OB окруж­но­сти с цен­тром в точке O пе­ре­се­ка­ет хорду AC в точке D и пер­пен­ди­ку­ля­рен ей. Най­ди­те длину хорды AC, если BD = 1 см, а ра­ди­ус окруж­но­сти равен 5 см.

Ответ: 6
Скрыть

   1) $$OD=AB-BD=4$$

   2) Треугольник OAD - прямоугольный, тогда по теореме Пифагора: $$AD=\sqrt{5^{2}-4^{2}}=3$$

   3) OA=AC, OD - общая, тогда прямоугольные треугольники AOD и ODC равны, следовательно, AD=DC=3, и AC=6

Задание 1910

Най­ди­те ве­ли­чи­ну (в гра­ду­сах) впи­сан­но­го угла α, опи­ра­ю­ще­го­ся на хорду  AB, рав­ную ра­ди­у­су окруж­но­сти.

Ответ: 30
Скрыть

   1) Треугольник OAB - равносторонний, тогда $$\angle AOB = 60^{\circ}=\smile AB$$

   2) $$\angle ADB=\angle \alpha=\frac{1}{2}\smile AB=30^{\circ}$$ (по свойству вписанного угла)

Задание 1911

К окруж­но­сти с цен­тром в точке О про­ве­де­ны ка­са­тель­ная AB и се­ку­щая AO. Най­ди­те ра­ди­ус окруж­но­сти, если AB = 12 см, AO = 13 см.

Ответ: 5
Скрыть

   1) По свойству радиуса и касательной $$OB\perp AB$$, тогда треугольник OAB - прямоугольный

   2) По теореме Пифагора $$OB=\sqrt{13^{2}-12^{2}}=5$$

Задание 1912

В тре­уголь­ни­ке ABC угол C равен 90°, AC = 30 , $$BC=5\sqrt{13}$$. Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около этого тре­уголь­ни­ка.

Ответ: 17,5
Скрыть

    1) По теореме Пифагора $$AB=\sqrt{30^{2}+(5\sqrt{13})^{2}}=35$$

    2) По свойству прямоугольного треугольника, радиус описанной окружности равен половине гипотенузы, то есть $$R=\frac{35}{2}=17,5$$

Задание 1913

Длина хорды окруж­но­сти равна 72, а рас­сто­я­ние от цен­тра окруж­но­сти до этой хорды равно 27. Най­ди­те диа­метр окруж­но­сти.

Ответ: 90
Скрыть

   1)OA=OC (радиусы), AB - перпендикуляр (так как расстояние), тогда треугольники AOB и OBC прямоугольные и равные по катету и гипотенузе

   2)AB=BC=0,5AC=36, тогда по теореме Пифагора из треугольника AOB: $$AO=\sqrt{36^{2}+27^{2}}=45$$, следовательно, диаметр составит $$2*45=90$$

Задание 1914

Вер­ши­ны тре­уголь­ни­ка делят опи­сан­ную около него окруж­ность на три дуги, длины ко­то­рых от­но­сят­ся как 3:4:11. Най­ди­те ра­ди­ус окруж­но­сти, если мень­шая из сто­рон равна 14.

Ответ: 14
Скрыть

Пусть меньший угол K, тогда по свойству треугольника меньшая сторона AM. Углы треугольника для окружности являются вписанными, следовательно, равны половинам дуг, на которые опираются, а значит и относятся так же , как и дуги.
Пусть угол К равен 3х, тогда M=4x и A=11x. По свойству углов треугольника: $$3x+4x+11x=180\Leftrightarrow$$$$x=10$$, тогда угол К составляет 30 градусов, а меньшая дуга MA составляет 60 градусов. 
Угол MOA является центральным, следовательно $$\angle MOA=\smile MA=60^{\circ}$$, тогда треугольник MOA не только равнобедренный (OM=OA - радиусы), но и равносторонний, следовательно, MA=14

Задание 1915

Пря­мая ка­са­ет­ся окруж­но­сти в точке K. Точка O — центр окруж­но­сти. Хорда KM об­ра­зу­ет с ка­са­тель­ной угол, рав­ный 83°. Най­ди­те ве­ли­чи­ну угла OMK. Ответ дайте в гра­ду­сах.

Ответ: 7
Скрыть

Треугольник OMK - равнобедренный (OM=OK - радиусы), тогда $$\angle OMK=\angle OKM$$

По свойству касательной и радиуса OK и касательная - перпендикулярны, тогда $$\angle OKM=90-83=7^{\circ}$$, тогда и угол OMK те же 7 градусов

Задание 1917

От­рез­ки AB и CD яв­ля­ют­ся хор­да­ми окруж­но­сти. Най­ди­те рас­сто­я­ние от цен­тра окруж­но­сти до хорды CD, если AB = 18, CD = 24, а рас­сто­я­ние от цен­тра окруж­но­сти до хорды AB равно 12.

Ответ: 9
Скрыть

OE перпендикулряно AB, следовательно, треугольники AOE и OEB равны (так как OA=OB-радиусы) по катету и гипотенузе. Тогда AE=EB=0,5AB=9.
По теореме Пифагора из треугольника OEB: $$OB=\sqrt{12^{2}+9^{2}}=15$$, следовательно, OD=15
Из треугольника OFD по теореме Пифагора: $$OF=\sqrt{OD^{2}-FD^{2}}$$, FD=0,5CD=12. Тогда: $$OF=\sqrt{15^{2}-12^{2}}=9$$

Задание 1918

На окруж­но­сти с цен­тром O от­ме­че­ны точки A и B так, что ∠AOB = 66°. Длина мень­шей дуги AB равна 99. Най­ди­те длину боль­шей дуги.

Ответ: 441
Скрыть

Если острый угол AOB составляет 66 градуов, то развернутый составляет $$360-66=294^{\circ}$$

Пусть длина большей дуги равна х, тогда:

$$66^{\circ}- 99$$

$$294^{\circ}- x$$

$$x=\frac{294*99}{66}=441$$

Задание 2481

Радиус окружности с центром в точке O равен 85, длина хорды AB равна 80 (см. рисунок). Найдите расстояние от хорды AB до параллельной ей касательной k.   

 

Ответ: 160
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
$$OA=OM=85$$ $$AB=80$$ $$\Rightarrow AL=BL=40$$ $$OL=\sqrt{OA^{2}-AC^{2}}=\sqrt{85^{2}-40^{2}}=75$$ $$ML=MO+OL=85+75=160$$  

 

Задание 2662

Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный 18°. Найдите величину угла OMK. Ответ дайте в градусах.

Ответ: $$72^{\circ}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) ОМ - радиус $$\Rightarrow$$ МК - диаметр $$\Rightarrow$$ $$\smile LM=180^{\circ}$$

2) $$\angle DKM=18^{\circ}$$ $$\Rightarrow$$ $$\smile KM=18\cdot 2=36^{\circ}$$

3) $$\smile LK=\smile LM-\smile KM=180^{\circ}-36^{\circ}=144^{\circ}$$

4) $$\angle OMK=\frac{\smile LM}{2}=72^{\circ}$$

 

Задание 2886

Длина хорды окружности равна 130, а расстояние от центра окружности до этой хорды равно 72. Найдите диаметр окружности.

Ответ: 194
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Введем следующие обозначения:

AH=HB=0.5AB=65 (так как AOB - равнобедренный и OH - высота)

$$OB=\sqrt{OH^2+HB^2}=97$$

OB - радиус, значит диаметр будет 97*2=194

Задание 3010

Длина хорды окружности равна 24, а расстояние от центра окружности до этой хорды равно 5. Найдите диаметр окружности.

 

Ответ: 26
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$r=\sqrt{12^{2}+5^{2}}=13$$ $$d=2r=2\cdot13=26$$

Задание 3058

Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Проведем радиусы в точки касания и получим два равных прямоугольных треугольника. Значит ОА - биссектриса угла А. Значит она делит угол пополам, и получаем в треугольнике угол в 30 градусов. А катет (в нашем случае это радиус окружности), лежащий напротив угла в 30 градусов, равен половине гипотенузы, то есть половине ОА или 3

Задание 3181

Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 50. Найдите величину угла MOK. Ответ дайте в градусах.

Ответ: 100
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Радиус, проведенный в точку касания, перпендикулярен касательной, значит ∠OKM = 90 - 50 = 40. Треугольник OMK равнобедренный ( так как OK ; OM - радиусы ). Значит ∠OMK = ∠OKM = 40 ∠MOK = 180 - ∠OMK - ∠OKM = 180 - 80 = 100

Задание 3305

Касательные в точках A и B к окружности с центром O пересекаются под углом 72º. Найдите угол ABO. Ответ дайте в градусах.

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3511

Най­ди­те хорду, на ко­то­рую опи­ра­ет­ся угол 30°, впи­сан­ный в окруж­ность ра­ди­у­са 3.

Ответ: 3

Задание 3513

Хорда AB делит окруж­ность на две части, гра­дус­ные ве­ли­чи­ны ко­то­рых от­но­сят­ся как 5:7. Под каким углом видна эта хорда из точки C, при­над­ле­жа­щей мень­шей дуге окруж­но­сти? Ответ дайте в гра­ду­сах.

Ответ: 105

Задание 3514

Хорда AB стя­ги­ва­ет дугу окруж­но­сти в 92°. Най­ди­те угол ABC между этой хор­дой и ка­са­тель­ной к окруж­но­сти, про­ве­ден­ной через точку B. Ответ дайте в гра­ду­сах.

Ответ: 46

Задание 3515

Угол между хор­дой AB и ка­са­тель­ной BC к окруж­но­сти равен 32°. Най­ди­те ве­ли­чи­ну мень­шей дуги, стя­ги­ва­е­мой хор­дой AB. Ответ дайте в гра­ду­сах.

Ответ: 64

Задание 3516

Через концы AB дуги окруж­но­сти в 62° про­ве­де­ны ка­са­тель­ные AC и BC. Най­ди­те угол ACB. Ответ дайте в гра­ду­сах.

Ответ: 118

Задание 3517

Ка­са­тель­ные CA и CB к окруж­но­сти об­ра­зу­ют угол ACB, рав­ный 122°. Най­ди­те ве­ли­чи­ну мень­шей дуги AB, стя­ги­ва­е­мой точ­ка­ми ка­са­ния. Ответ дайте в гра­ду­сах.

Ответ: 58

Задание 3518

Най­ди­те угол ACO, если его сто­ро­на CA ка­са­ет­ся окруж­но­сти, дуга АВ — равна 64°. Ответ дайте в гра­ду­сах.

Ответ: 26

Задание 3519

Угол ACO равен 28°, где O — центр окруж­но­сти. Его сто­ро­на CA ка­са­ет­ся окруж­но­сти. Най­ди­те ве­ли­чи­ну мень­шей дуги AB окруж­но­сти, за­клю­чен­ной внут­ри этого угла. Ответ дайте в гра­ду­сах.

Ответ: 62

Задание 3520

Най­ди­те угол ACO, если его сто­ро­на CA ка­са­ет­ся окруж­но­сти, O — центр окруж­но­сти, а боль­шая дуга AD окруж­но­сти, за­клю­чен­ная внут­ри этого угла, равна 116°. Ответ дайте в гра­ду­сах.

Ответ: 26

Задание 3521

Угол ACO равен 24°. Его сто­ро­на CA ка­са­ет­ся окруж­но­сти. Най­ди­те гра­дус­ную ве­ли­чи­ну боль­шей дуги AD окруж­но­сти, за­клю­чен­ной внут­ри этого угла. Ответ дайте в гра­ду­сах.

Ответ: 114

Задание 4644

Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 80. Найдите величину угла OMK. Ответ дайте в градусах.

Ответ: 10
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Треугольник OMK - равнобедренный, так как OK=OM - радиусы, значит угол OMK равен углу OKM Угол OKM = 90 - 80 = 10

Задание 5164

Касательные в точках A и B к окружности с центром O пересекаются под углом $$68^{\circ}$$. Найдите угол ABO. Ответ дайте в градусах.

Ответ: 34
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\angle AOB=180-68=112^{\circ}$$; $$\angle ABO=\frac{180-112}{2}=34^{\circ}$$

Задание 5700

Радиус круга равен 1. Най­ди­те его площадь, деленную на π.

Ответ:

Задание 5701

Найдите пло­щадь кругового сектора, если ра­ди­ус круга равен 3, а угол сек­то­ра равен 120°. В от­ве­те укажите площадь, деленную на π.

Ответ:

Задание 5702

Найдите пло­щадь кругового сектора, если длина огра­ни­чи­ва­ю­щей его дуги равна 6π, а угол сек­то­ра равен 120°. В от­ве­те укажите площадь, деленную на π.

Ответ:

Задание 5703

Отрезок AB = 40 ка­са­ет­ся окруж­но­сти ра­ди­у­са 75 с цен­тром O в точке B. Окруж­ность пе­ре­се­ка­ет от­ре­зок AO в точке D. Най­ди­те AD.

Ответ:

Задание 5704

На от­рез­ке AB вы­бра­на точка C так, что AC = 75 и BC = 10. По­стро­е­на окружность с цен­тром A, про­хо­дя­щая через C. Най­ди­те длину от­рез­ка касательной, проведённой из точки B к этой окружности.

Ответ:

Задание 5706

Сторона AC тре­уголь­ни­ка ABC про­хо­дит через центр опи­сан­ной около него окружности. Най­ди­те ∠C , если ∠A = 44°. Ответ дайте в градусах.

Ответ:

Задание 5707

Окружность радиуса 39 впи­са­на в квадрат. Най­ди­те пло­щадь квадрата.

Ответ:

Задание 5708

Из точки А про­ве­де­ны две ка­са­тель­ные к окруж­но­сти с цен­тром в точке О. Най­ди­те ра­ди­ус окружности, если угол между ка­са­тель­ны­ми равен 60°, а рас­сто­я­ние от точки А до точки Оравно 8.

Ответ:

Задание 5709

Окружность с цен­тром на сто­ро­не AC тре­уголь­ни­ка ABC про­хо­дит через вер­ши­ну C и ка­са­ет­ся пря­мой AB в точке B. Най­ди­те AC, если диа­метр окруж­но­сти равен 7,5, а AB = 2.

Ответ:

Задание 5710

Касательные в точках A и B к окружности с центром O пересекаются под углом 76°. Найдите угол ABO. Ответ дайте в градусах.

Ответ:

Задание 6110

Прямая касается окружности в точке M . Точка O — центр окружности. Хорда MN образует с касательной угол, равный 22°. Найдите величину угла ONM. Ответ дайте в градусах

Ответ: 68
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

  1. OM перпендикулярен касательной (свойство радиуса, проведенного в точку качсания)
  2. ON=OM (радиусы), тогда $$\angle ONM=\angle OMN$$
  3. $$\angle OMN=90-22=68$$
 

Задание 6206

Длина хорды окружности равна 24, а расстояние от центра окружности до этой хорды равно 5. Найдите диаметр окружности.

Ответ: 26
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

  1. $$CB=\frac{1}{2}CD=\frac{24}{2}=12$$
  2. $$AB\perp CD$$, тогда из $$\Delta ABC:$$ $$AC=\sqrt{AB^{2}+CB^{2}}=\sqrt{2^{2}+5^{2}}=13=r$$
  3. Тогда $$d=2r=2*13=26$$

Задание 6348

Длина хорды окружности равна 12, а расстояние от центра окружности до этой хорды равно 8. Найдите диаметр окружности.

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$AH=\frac{1}{2}AB=6$$

$$OA=\sqrt{OH^{2}+AH^{2}}=$$$$\sqrt{6^{2}+8^{2}}=10$$

$$d=2*OA=20$$

Задание 6396

Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 16.

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     AO-биссектриса $$\angle A\Rightarrow$$ $$\angle OAB=30$$

     $$OB\perp AB$$(свойство радиуса в точку касания )$$\Rightarrow OB=OA* \sin 30=16\frac{1}{2}=8$$

Задание 6442

Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 35. Найдите величину угла MOK. Ответ дайте в градусах

Ответ: 70
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\angle OKM=\angle OMK$$($$\Delta OMK$$ - равнобедренный ) $$\angle OKM=90-35=55$$ $$\angle MOK=180-2*55=70$$

Задание 6591

Касательные в точках A и B к окружности с центром O пересекаются под углом 96. Найдите угол ABO. Ответ дайте в градусах.

Ответ: 48
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

  1. $$\angle AOB=180-\angle C=84\Rightarrow$$ $$\angle OAB+\angle ABO=96$$
  2. $$OA=OB$$(радиусы)$$\Rightarrow$$ $$\angle ABO=\frac{96}{2}=48$$

Задание 6640

Периметр треугольника равен 56, одна из сторон равна 19, а радиус вписанной в него окружности равен 5. Найдите площадь этого треугольника.

Ответ: 140
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Воспользуемся формулой площади треугольника через его полу периметр и радиус вписанной окружности: $$S=p*r$$; $$p=\frac{56}{2}=28$$. Тогда: $$S=28*5=140$$

Задание 6641

Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 10

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1)$$OM\perp OA$$(свойство радиуса, проведенного в точку касания)

2) $$\Delta OAM=\Delta OAN$$(по гипотенузе и катету)$$\Rightarrow \angle OAM=30$$

3) $$OM=OA\sin\angle OAM=10*\frac{1}{2}=5$$

Задание 7155

Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 70. Найдите величину угла OMK. Ответ дайте в градусах.

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$\angle K=90$$ (по свойству радиус в точку касания) $$\Rightarrow$$ $$\angle OKM=90-70=20$$

2) $$OK=OM$$ – радиусы $$\Rightarrow$$ $$\Delta OMK$$ - равнобедренный и $$\angle OMK=\angle OKM=20$$

Задание 7660

Отрезок AB = 32 касается окружности радиуса 24 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.

Ответ: 16
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8469

Отрезок AB=18 касается окружности радиуса 80 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8573

В угол C величиной 18o вписана окружность, которая касается сторон угла в точках A и B, точка O – центр окружности. Найдите градусную меру угла AOB .

Ответ: 162
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8626

Касательные в точках A и B к окружности с центром в точке пересекаются под углом 66. Найдите угол ABO. Ответ дайте в градусах.

Ответ: 33
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8966

Дана окружность с центром в точке O. Центральный угол AOB опирается на хорду AB длиной 7. При этом угол OAB равен 60 . Найдите диаметр окружности.

Ответ: 14
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9188

На окружности с центром О отмечены точки А и В так, что $$\angle AOB=45^{\circ}$$. Длина меньшей дуги АВ равна 91. Найдите длину большей дуги АВ.

Ответ: 637
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9579

На отрезке AB выбрана точка так, что AC=21 и BC=8. Построена окружность с центром в точке A , проходящая через точку C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9730

Отрезок AB=25 касается окружности радиуса 60 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9826

На стороне BC прямоугольника ABCD, у которого AB=70 и AD=94, отмечена точка E так, что $$\angle$$EAB=45. Найдите ED.

Ответ: 74
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10322

Из точки A проведены две касательные к окружности с центром в точке O. Найдите расстояние от точки A до точки O, если угол между касательными равен 60o, а радиус окружности равен 8.

Ответ: 16
 

Задание 11059

На отрезке $$AB$$ выбрана точка $$C$$ так, что $$AC=60$$, $$BC=15$$. Построена окружность с центром $$A$$, проходящая через $$C$$. Найдите длину отрезка касательной, проведённой из точки $$B$$ к этой окружности.

Ответ: 30
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть Пусть M - точка касания, тогда: $$BM^2=BC\cdot BA\to BM=\sqrt{15\cdot 60}=15\cdot 2=30.$$
 

Задание 11252

Касательные в точках A и B к окружности с центром O пересекаются под углом 42o. Найдите градусную меру угла ABO.

Ответ: 21
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11294

Отрезки АС и BD — диаметры окружности с центром О. Угол АСВ равен 63°. Найдите угол AOD. Ответ дайте в градусах.

Ответ: 74
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11315

В окружности с центром О отрезки АС и BD диаметры. Угол AOD равен 108°. Найдите угол АСВ. Ответ дайте в градусах.

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11509

На отрезке AB выбрана точка C так, что AC=30 и BC=20. Построена окружность с центром A, проходящая через точку C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.

Ответ: 40
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11532

В угол C величиной 18o вписана окружность, которая касается сторон угла в точках A и B . Точка O – центр окружности. Найдите градусную меру угла AOB .

Ответ: 162
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11596

Радиус OB окружности с центром в точке O пересекает хорду MN в её середине – точке K . Найдите длину хорды MN , если KB=1, а радиус окружности равен 13.

Ответ: 10
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11620

На окружности отмечены точки A и B так, что меньшая дуга AB равна 56o. Прямая BC касается окружности в точке так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.

Ответ: 28
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11974

Касательные в точках А и В к окружности с центром О пересекаются под углом 22°. Найдите угол АВО. Ответ дайте в градусах.

Ответ: 11
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11995

Касательные в точках А и В к окружности с центром О пересекаются под углом 82$${}^\circ$$. Найдите угол АВО. Ответ дайте в градусах.

Ответ: 41
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12058

Через точку А, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке К. Другая прямая пересекает окружность в точках В и С, причём АВ=2, ВС=6. Найдите АК.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12079

Через точку А, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке К. Другая прямая пересекает окружность в точках В и С, причём АВ = 2, AК = 4. Найдите АС.

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12932

Касательные в точках A и B к окружности с центром O пересекаются под углом $$72^{\circ}$$. Найдите угол ABO. Ответ дайте в градусах.

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13064

Касательные в точках А и В к окружности с центром в точке О пересекаются под углом 88°. Найдите угол АВО. Ответ дайте в градусах.

Ответ: 44
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13087

Касательные в точках А и В к окружности с центром в точке О пересекаются под углом 56°. Найдите угол АВО. Ответ дайте в градусах.

Ответ: 28
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13131

Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный 79. Найдите величину угла OMK. Ответ дайте в градусах.

Ответ: 11
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13153

Через точку А, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке К. Другая прямая пересекает окружность в точках В и С, причём АВ = 4, АС = 64. Найдите АК.

Ответ: 16
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13175

Через точку А, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке К. Другая прямая пересекает окружность в точках В и С, причём АВ = 4, ВС = 12. Найдите АК.

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13265

Хорды АС и BD окружности пересекаются в точке Р, BP = 9, СР = 15, DP = 20. Найдите АР.

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13286

Хорды АС и BD окружности пересекаются в точке P, ВР = 12, СР = 6, ВР = 13. Найдите АР.

Ответ: 26
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13350

Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CD , если AB=40, CD=42, а расстояние от центра окружности до хорды AB равно 21.

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13623

В окружности с центром О отрезки АС и BD — диаметры. Угол AOD равен 108°. Найдите угол АСВ. Ответ дайте в градусах.

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13645

Отрезок AB=40 касается окружности радиуса 30 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13753

Радиус OB окружности с центром в точке O пересекает хорду AC в точке D и перпендикулярен ей. Найдите длину хорды  AC, если BD=1, а радиус окружности равен 5.

Ответ: 6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13835

Радиус OB окружности с центром в точке O пересекает хорду AC в точке D и перпендикулярен ей. Найдите длину хорды AC, если BD=1, а радиус окружности равен 5.

Ответ: 6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13856

Касательные в точках A и B к окружности с центром O пересекаются под углом 72o. Найдите угол ABO. Ответ дайте в градусах.

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!