Перейти к основному содержанию

ОГЭ

ОГЭ / (C2) Текстовые задачи

 
Аналоги к этому заданию:

Задание 10003

Свежие фрукты содержат 88 % воды, а высушенные — 30 %. Сколько требуется свежих фруктов для приготовления 72 кг высушенных фруктов?

Ответ: 420
 
Аналоги к этому заданию:

Задание 9976

Два автомобиля одновременно отправляются в 560-километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает к финишу на 1 ч раньше второго. Найдите скорость первого автомобиля (в км/ч).

Ответ: 80
 
Аналоги к этому заданию:

Задание 9922

Катер прошёл от одной станции к другой, расстояние между которыми по реке равно 48 км, сделал стоянку на 20 минут и вернулся обратно через $$5\frac{1}{3}$$ часа после начала поездки. Найдите скорость (в км/ч) течения реки, если известно, что скорость катера в стоячей воде равна 20 км/ч.

Ответ: 4
Аналоги к этому заданию:

Задание 8715

Плиточник должен уложить 120 м2 плитки. Если он будет укладывать на 8 м2 в день больше, чем запланировал, то закончит работу на 4 дня раньше. Сколько квадратных метров плитки в день планирует укладывать плиточник?

Ответ: 12
Аналоги к этому заданию:

Задание 6645

Поезд, двигаясь равномерно со скоростью 141 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям со скоростью 6 км/ч, за 8 секунд. Найдите длину поезда в метрах.

Ответ: 300
Скрыть

Пусть пешеход стоит, тогда скорость поезда относительно него : $$141-6=135$$ км\ч.
Переведем секунды в часы: 6 c =$$\frac{8}{3600}$$ часа =$$\frac{1}{450}$$ часа
Найдем длину по формуле расстояния: $$S=v*t=135*\frac{1}{450}=0,3$$ км = 300 метров

Аналоги к этому заданию:

Задание 2432

Ве­ло­си­пе­дист вы­ехал с по­сто­ян­ной ско­ро­стью из го­ро­да А в город В, рас­сто­я­ние между ко­то­ры­ми равно 100 км. От­дох­нув, он от­пра­вил­ся об­рат­но в А, уве­ли­чив ско­рость на 15 км/ч. По пути он сде­лал оста­нов­ку на 6 часов, в ре­зуль­та­те чего за­тра­тил на об­рат­ный путь столь­ко же вре­ме­ни, сколь­ко на путь из А в В. Най­ди­те ско­рость ве­ло­си­пе­ди­ста на пути из А в В.

Ответ: 10
Скрыть

Пусть х км/ч - скорость велосипедиста в одну сторону, тогда х+15 км/ч - его скорость в обратную сторону. Время из А в В выражается как $$\frac{100}{x}$$ часов, время на обратный путь $$\frac{100}{x+15}$$ часов. Время движения в обратную сторону меньше времени движения из А в В на 6 часов (время остановки), тогда:
$$\frac{100}{x}-\frac{100}{x+15}=6|*\frac{x(x+15)}{2}\Leftrightarrow$$$$50(x+15)-50x=3x^{2}+45x\Leftrightarrow$$$$3x^{2}+15x-750=0|:3\Leftrightarrow$$$$x^{2}+5x-150=0\Rightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=-5\\x_{1}*x_{2}=-150\end{matrix}\right.\Rightarrow$$$$\left[\begin{matrix}x_{1}=-15\\x_{2}=10\end{matrix}\right.$$ - скорость не может быть отрицательной, следовательно, скорость из А в В составляла 10 км/ч

Аналоги к этому заданию:

Задание 2430

Два че­ло­ве­ка од­но­вре­мен­но от­прав­ля­ют­ся из од­но­го и того же места по одной до­ро­ге на про­гул­ку до опуш­ки леса, на­хо­дя­щей­ся в 4 км от места от­прав­ле­ния. Один идёт со ско­ро­стью 2,7 км/ч, а дру­гой — со ско­ро­стью 4,5 км/ч. Дойдя до опуш­ки, вто­рой с той же ско­ро­стью воз­вра­ща­ет­ся об­рат­но. На каком рас­сто­я­нии от точки от­прав­ле­ния про­изойдёт их встре­ча?

Ответ: 3
Скрыть

Пусть х км - расстояние от конечного пункта, на котором встретятся люди. Тогда первый пройдет 4-х км и затратит на это $$\frac{4-x}{2,7}$$ час, а второй пройдет 4+х км и затратит на это $$\frac{4+x}{4,5}$$ часа. Вышли они одновременно, остановок не делали, следовательно, их время равно:
$$\frac{4-x}{2,7}=\frac{4+x}{4,5}|*0,9\Leftrightarrow$$$$5(4-x)=3(4+x)\Leftrightarrow$$$$20-5x=12+3x\Leftrightarrow$$$$8=8x\Leftrightarrow$$$$x=1$$ км. Тогда от точки отправление будет $$4-1=3$$ км.

Аналоги к этому заданию:

Задание 2429

До­ро­га между пунк­та­ми A и В со­сто­ит из подъёма и спус­ка, а её длина равна 14 км. Ту­рист прошёл путь из А в В за 4 часа, из ко­то­рых спуск занял 2 часа. С какой ско­ро­стью ту­рист шёл на спус­ке, если его ско­рость на подъёме мень­ше его ско­ро­сти на спус­ке на 3 км/ч?

Ответ: 5
Скрыть

Пусть x км/ч - скорость на спуске, тогда х-3 км/ч - скорость на подъеме. Пусть у км - длина подъема, тогда 14-у км - длина спуска. Получаем время на подъеме: $$\frac{y}{x-3}=2$$ часов, время на спуске: $$\frac{14-y}{x}=2$$ часов. Выразим из первого у через х:
$$\frac{y}{x-3}=2\Leftrightarrow$$$$y=2x-6$$. Подставим во второе уравнение:
$$\frac{14-2x+6}{x}=2\Leftrightarrow$$$$20-2x=2x\Leftrightarrow$$$$x=5$$ км/ч - скорость на спуске.

Аналоги к этому заданию:

Задание 2427

Первую по­ло­ви­ну трас­сы ав­то­мо­биль про­ехал со ско­ро­стью 55 км/ч, а вто­рую — со ско­ро­стью 70 км/ч. Най­ди­те сред­нюю ско­рость ав­то­мо­би­ля на про­тя­же­нии всего пути.

Ответ: 61,6
Скрыть

Пусть 2у км - длина всей трассы, тогда время на первую половину $$t_{1}=\frac{y}{55}$$ часов, а время на вторую $$t_{2}=\frac{y}{70}$$ часов, тогда общее время $$t=\frac{y}{55}+\frac{y}{70}=\frac{14y+11y}{5*11*14}=\frac{5y}{11*14}$$ часов. Следовательно, средняя скорость составит: $$\frac{2y}{\frac{5y}{11*14}}=61,6$$ км/ч

Аналоги к этому заданию:

Задание 2426

Пер­вые 300 км ав­то­мо­биль ехал со ско­ро­стью 60 км/ч, сле­ду­ю­щие 300 км — со ско­ро­стью 100 км/ч, а по­след­ние 300 км — со ско­ро­стью 75 км/ч. Най­ди­те сред­нюю ско­рость ав­то­мо­би­ля на про­тя­же­нии всего пути.

Ответ: 75
Скрыть

Время, потраченное на первые 300 км: $$\frac{300}{60}=5$$ часов
На следующие 300: $$\frac{300}{100}=3$$ часа
На последние 300: $$\frac{300}{75}=4$$ часа
Итого пройдено 900 км, а потрачено 12 часов, следовательно, средняя скорость составляет: $$\frac{900}{12}=75$$ км/ч

Аналоги к этому заданию:

Задание 2425

Два бе­гу­на од­но­вре­мен­но стар­то­ва­ли в одном на­прав­ле­нии из од­но­го и того же места кру­го­вой трас­сы в беге на не­сколь­ко кру­гов. Спу­стя один час, когда од­но­му из них оста­ва­лось 1 км до окон­ча­ния пер­во­го круга, ему со­об­щи­ли, что вто­рой бегун прошёл пер­вый круг 20 минут назад. Най­ди­те ско­рость пер­во­го бе­гу­на, если из­вест­но, что она на 8 км/ч мень­ше ско­ро­сти вто­ро­го.

Ответ: 13
Скрыть

Пусть х км/ч - скорость первого, тогда х+8 км/ч - скорость второго. Пусть у км - один круг, тогда:
за час первый не дошел до конца круга 1 км, следовательно, $$1*x=y-1$$
второй прошел круг за 20 минут до часа, то есть за 40 минут ($$\frac{2}{3}$$ часа), следовательно, $$\frac{2}{3}*(x+8)=y$$. Подставим из второго уравнения в первое выражение вместо у:
$$x=\frac{2}{3}(x+8)-1|*3\Leftrightarrow$$$$3x=2x+16-3\Leftrightarrow$$$$x=13$$ км/ч - скорость первого

Аналоги к этому заданию:

Задание 2424

Пер­вые 5 часов ав­то­мо­биль ехал со ско­ро­стью 60 км/ч, сле­ду­ю­щие 3 часа — со ско­ро­стью 100 км/ч, а по­след­ние 4 часа — со ско­ро­стью 75 км/ч. Най­ди­те сред­нюю ско­рость ав­то­мо­би­ля на про­тя­же­нии всего пути.

Ответ: 75
Скрыть

За первые 5 часов прошел: $$5*60=300$$ км
За следующие 3 часа прошел: $$3*100=300$$ км
За оставшиеся 4 часа прошел: $$4*75=300$$ км
Тогда общий путь составил 900 км, а общее время 12 часов, следовательно, средняя скорость составила: $$\frac{900}{12}=75$$ км/ч

Аналоги к этому заданию:

Задание 2423

Из го­ро­дов А и В нав­стре­чу друг другу од­но­вре­мен­но вы­еха­ли мо­то­цик­лист и ве­ло­си­пе­дист. Мо­то­цик­лист при­е­хал в В на 40 минут рань­ше, чем ве­ло­си­пе­дист при­е­хал в А, а встре­ти­лись они через 15 минут после вы­ез­да. Сколь­ко часов за­тра­тил на путь из В в А ве­ло­си­пе­дист?

Ответ: 1
Скрыть

Пусть х частей расстояния/час - скорость велосипедиста, y - мотоциклиста, все расстояние примем за 1. Так как они встретились через 15 минут ($$\frac{15}{60}=\frac{1}{4}$$ часа), то $$\frac{1}{x+y}=\frac{1}{4}(*1)$$. Время, которое тратит мотоциклист на весь путь из А в В равно $$t_{1}=\frac{1}{y}$$ часов, велосипедист $$t_{2}=\frac{1}{x}$$ часов, и они различаются на 40 минут ($$\frac{2}{3}$$ часа), тогда: $$\frac{1}{x}-\frac{1}{y}=\frac{2}{3}(*2)$$.
Выразим в первом уравнении у через х:
$$\frac{1}{x+y}=\frac{1}{4}\Leftrightarrow$$$$x+y=4\Leftrightarrow$$$$y=4-x$$. Подставим во второе:
$$\frac{1}{x}-\frac{1}{4-x}=\frac{2}{3}|*3x(4-x)\Leftrightarrow$$$$12-3x-3x=8x-2x^{2}\Leftrightarrow$$$$2x^{2}-14x+12=0|:2\Leftrightarrow$$$$x^{2}-7x+6=0\Rightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=7\\x_{1}*x_{2}=6\end{matrix}\right.\Rightarrow$$$$\left[\begin{matrix}x_{1}=6\\x_{2}=1\end{matrix}\right.$$
При х=6 $$y=4-6=-2$$ - число отрицательное, не подходит
При х=1 $$y=4-1=3$$ - подходит, следовательно, скорость велосипедиста составляла 1 часть расстояния в час, то есть за час он преодолел все расстояние

Аналоги к этому заданию:

Задание 2422

Из А в В од­но­вре­мен­но вы­еха­ли два ав­то­мо­би­ли­ста. Пер­вый про­ехал с по­сто­ян­ной ско­ро­стью весь путь. Вто­рой про­ехал первую по­ло­ви­ну пути со ско­ро­стью, мень­шей ско­ро­сти пер­во­го ав­то­мо­би­ли­ста на 11 км/ч, а вто­рую по­ло­ви­ну пути про­ехал со ско­ро­стью 66 км/ч, в ре­зуль­та­те чего при­был в В од­но­вре­мен­но с пер­вым ав­то­мо­би­ли­стом. Най­ди­те ско­рость пер­во­го ав­то­мо­би­ли­ста, если из­вест­но, что она боль­ше 40 км/ч.

Ответ: 44
Скрыть

Пусть х км/ч - скорость первого, тогда х-11 км/ч - скорость второго на первой половине пути. Примем все расстояние за S км. Тогда, $$t_{1}=\frac{S}{x}$$ часов - время первого, $$t_{2}=\frac{0,5S}{x-11}+\frac{0,5S}{66}$$ часов - время второго. Велосипедисты прибыли одновременно, следовательно:
$$\frac{S}{x}=\frac{0,5S}{x-11}+\frac{0,5S}{66}|:S\Leftrightarrow$$$$\frac{1}{x}=\frac{0,5}{x-11}+\frac{0,5}{66}|*66x(x-11)\Leftrightarrow$$$$66(x-11)=33x+0,5x(x-11)|*2\Leftrightarrow$$$$132x-132*11=66x+x^{2}-11x\Leftrightarrow$$$$x^{2}-77x+1452=0\Rightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=77\\x_{1}*x_{2}=1452\end{matrix}\right.\Rightarrow$$$$\left[\begin{matrix}x_{1}=33\\x_{2}=44\end{matrix}\right.$$, скорость должна быть более 40 км/ч, то есть 44 км/ч

Аналоги к этому заданию:

Задание 2421

Пер­вый ве­ло­си­пе­дист вы­ехал из посёлка по шоссе со ско­ро­стью 18 км/ч. Через час после него со ско­ро­стью 16 км/ч из того же посёлка в том же на­прав­ле­нии вы­ехал вто­рой ве­ло­си­пе­дист, а ещё через час — тре­тий. Най­ди­те ско­рость тре­тье­го ве­ло­си­пе­ди­ста, если сна­ча­ла он до­гнал вто­ро­го, а через 4 часа после этого до­гнал пер­во­го.

Ответ: 24 км/ч
Скрыть

Пусть х км/ч - скорость третьего. К моменту выезда третьего первый проехал $$18*2=36$$ км, следовательно, третий его догонит через $$t_{1}=\frac{36}{x-18}$$ часов. Второй проехал $$16*1=16$$ км, тогда третий его догонит через $$t_{2}=\frac{16}{x-16}$$ часов. При этом разница во времени составляет 4 часа, то есть:
$$\frac{36}{x-18}-\frac{16}{x-16}=4|*\frac{(x-18)(x-16)}{4}\Leftrightarrow$$$$9(x-16)-4(x-18)=(x-16)(x-18)\Leftrightarrow$$$$9x-144-4x+72=x^{2}-34x+288\Leftrightarrow$$$$x^{2}-39x+360=0\Rightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=39\\x_{1}*x_{2}=360\end{matrix}\right.\Rightarrow$$$$\left[\begin{matrix}x_{1}=24\\x_{2}=15\end{matrix}\right.$$Скорость не может быть 15 км/ч, так как он не смог бы догонять первых двух велосипедистов, следовательно, она составляла 24 км/ч

Аналоги к этому заданию:

Задание 2420

Два ве­ло­си­пе­ди­ста од­но­вре­мен­но от­прав­ля­ют­ся в 60-ки­ло­мет­ро­вый про­бег. Пер­вый едет со ско­ро­стью на 10 км/ч боль­шей, чем вто­рой, и при­бы­ва­ет к фи­ни­шу на 3 часа рань­ше вто­ро­го. Най­ди­те ско­рость ве­ло­си­пе­ди­ста, при­шед­ше­го к фи­ни­шу вто­рым.

Ответ: 10
Скрыть

Путь х км/ч - скорость второго, тогда х+10 км/ч - скорость первого, тогда, время первого $$t_{1}=\frac{60}{x+10}$$ часов, $$t_{2}=\frac{60}{x}$$ часов - время второго. При этом второй ехал на 3 часа дольше, то есть :
$$\frac{60}{x}-\frac{60}{x+10}=3|*\frac{x(x+10)}{3}\Leftrightarrow$$$$20x+200-20x=x^{2}+10x\Leftrightarrow$$$$x^{2}+10x-200=0\Rightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=-10\\x_{1}*x_{2}=-200 \end{matrix}\right.\Leftrightarrow$$$$\left[\begin{matrix}x_{1}=-20\\x_{2}=10\end{matrix}\right.$$. Скорость не может быть отрицательной, следовательно, скорость второго составляла 10 км/ч.

Аналоги к этому заданию:

Задание 2419

Из двух го­ро­дов од­но­вре­мен­но нав­стре­чу друг другу от­пра­ви­лись два ве­ло­си­пе­ди­ста. Про­ехав не­ко­то­рую часть пути, пер­вый ве­ло­си­пе­дист сде­лал оста­нов­ку на 30 минут, а затем про­дол­жил дви­же­ние до встре­чи со вто­рым ве­ло­си­пе­ди­стом. Рас­сто­я­ние между го­ро­да­ми со­став­ля­ет 144 км, ско­рость пер­во­го ве­ло­си­пе­ди­ста равна 24 км/ч, ско­рость вто­ро­го — 28 км/ч. Опре­де­ли­те рас­сто­я­ние от го­ро­да, из ко­то­ро­го вы­ехал вто­рой ве­ло­си­пе­дист, до места встре­чи.

Ответ: 84 км
Скрыть

Пусть t часов - время, через которые встретились велосипедисты с момента выезда, тогда время движения второго и есть t, а время движения первого $$t-\frac{1}{2}$$ часа. Тогда первый пройдет расстояние $$s_{1}=24*(t-\frac{1}{2})$$ км, а второй пройдет $$s_{2}=28t$$ км, что в сумме даст общее расстояние в 144 км:
$$24t-12+28t=144\Leftrightarrow$$$$52t=156\Leftrightarrow$$$$t=3$$ часа двигался второй. Тогда расстояние, им пройденное, составит $$3*28=84$$ км

Аналоги к этому заданию:

Задание 2418

Поезд, дви­га­ясь рав­но­мер­но со ско­ро­стью 63 км/ч, про­ез­жа­ет мимо иду­ще­го в том же на­прав­ле­нии па­рал­лель­но путям со ско­ро­стью 3 км/ч пе­ше­хо­да за 57 се­кунд. Най­ди­те длину по­ез­да в мет­рах.

Ответ: 950 м
Скрыть

Когда два объекта двигаются друг за другом, то можно рассмотреть ситуацию, когда тот, которого догоняют, стоит на месте, а тот, который догоняет, двигается относительно первого со скоростью, равной разности их первоначальных скоростей, то есть человек стоит, а поезд двигается относительно него со скоростью $$63-3=60$$ км/ч. Представим время в часах 57 секунд составляют $$\frac{57}{3600}$$ часа. Тогда длина состава и есть пройденное им расстояние $$S=60*\frac{57}{3600}=0,95$$ км, что в метрах составляет $$0,95*1000=950$$ метров

Аналоги к этому заданию:

Задание 2417

Из пунк­та А в пункт В, рас­сто­я­ние между ко­то­ры­ми 13 км, вышел пе­ше­ход. Од­но­вре­мен­но с ним из В в А вы­ехал ве­ло­си­пе­дист. Ве­ло­си­пе­дист ехал со ско­ро­стью, на 11 км/ч боль­шей ско­ро­сти пе­ше­хо­да, и сде­лал в пути по­лу­ча­со­вую оста­нов­ку. Най­ди­те ско­рость пе­ше­хо­да, если из­вест­но, что они встре­ти­лись в 8 км от пунк­та В.

Ответ: 5 км/ч
Скрыть

Пусть х км/ч - скорость пешехода, тогда х+11 км/ч - скорость велосипедиста. Так как встретились в 8 км от В, то расстояние от А составляло $$13-8=5$$км, тогда время движения пешехода $$t_{1}=\frac{5}{x}$$ часов, время движения велосипедиста $$t_{2}=\frac{8}{x+11}$$. Так как выехал одновременно, но сделал получасовую остановку велосипедист, то время его движения будет на эти полчаса меньше, то есть:
$$\frac{5}{x}-\frac{8}{x+11}=\frac{1}{2}|*2x(x+11)\Leftrightarrow$$$$10(x+11)-16x=x^{2}+11x\Leftrightarrow$$$$x^{2}+17x-110=0\Leftrightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=-17\\x_{1}*x_{2}=-110 \end{matrix}\right.\Leftrightarrow$$$$\left[\begin{matrix}x_{1}=-22\\x_{2}=5\end{matrix}\right.$$. Скорость не может быть отрицательной, следовательно, скорость пешехода составляла 5 км/ч

Аналоги к этому заданию:

Задание 2416

Же­лез­но­до­рож­ный со­став дли­ной в 1 км прошёл бы мимо стол­ба за 1 мин., а через тун­нель (от входа ло­ко­мо­ти­ва до вы­хо­да по­след­не­го ва­го­на) при той же ско­ро­сти — за 3 мин. Ка­ко­ва длина тун­не­ля (в км)?

Ответ: 2
Скрыть

Так как состав прошел мимо столба за одну минуту (по факту он проходит свою же длину), то его скорость можно вычислить как $$1*60=60$$ км/ч (умножили длину на количество минут в часе). Проходя же через туннель поезд проезжает сначала длину туннеля, затем свою собственную. Пусть длина туннеля х км, тогда выразим время, как отношения расстояния к скорости: $$\frac{x+1}{60}=\frac{3}{60}|*60\Leftrightarrow$$$$x+1=3\Leftrightarrow$$$$x=2$$км.

Аналоги к этому заданию:

Задание 2415

Рас­сто­я­ние между го­ро­да­ми А и В равно 750 км. Из го­ро­да А в город В со ско­ро­стью 50 км/ч вы­ехал пер­вый ав­то­мо­биль, а через три часа после этого нав­стре­чу ему из го­ро­да В вы­ехал со ско­ро­стью 70 км/ч вто­рой ав­то­мо­биль. На каком рас­сто­я­нии от го­ро­да А ав­то­мо­би­ли встре­тят­ся?

Ответ: 400 км
Скрыть

За три часа первый пройдет $$3*50=150$$км, следовательно, между автомобилями останется $$750-150=600$$км. Тогда, встретятся они через $$\frac{600}{70+50}=5$$ часов. То есть автомобиль из А в дороге будет $$3+5=8$$ часов, и пройдет $$8*50=400$$ км

Аналоги к этому заданию:

Задание 2413

Рас­сто­я­ние между го­ро­да­ми А и В равно 375 км. Город С на­хо­дит­ся между го­ро­да­ми А и В. Из го­ро­да А в город В вы­ехал ав­то­мо­биль, а через 1 час 30 минут сле­дом за ним со ско­ро­стью 75 км/ч вы­ехал мо­то­цик­лист, до­гнал ав­то­мо­биль в го­ро­де С и по­вер­нул об­рат­но. Когда он вер­нул­ся в А, ав­то­мо­биль при­был в В. Най­ди­те рас­сто­я­ние от А до С.

Ответ: 225 км
Скрыть

Пусть х км/ч - скорость автомобиля, у км - расстояние до пункта С, следовательно, расстояние от С до В 375-у км. Так как объекты двигаются друг за другом и встречаются в пункте С, то $$\frac{y}{x}-\frac{y}{75}=1,5$$ часа (разница во времени составляет те самые 1,5 часа). Так как от С в В автомобиль и из С в А мотоцикл прибыли одновременно, то $$\frac{y}{75}=\frac{375-y}{x}$$.

Выразим в первом уравнении у через х: $$\frac{y}{x}-\frac{y}{75}=1,5\Leftrightarrow$$$$y(\frac{1}{x}-\frac{1}{75})=\frac{3}{2}\Leftrightarrow$$$$y*\frac{75-x}{75x}=\frac{3}{2}\Leftrightarrow$$$$y=\frac{225x}{150-2x}$$

Подставим во второе: $$\frac{\frac{225x}{150-2x}}{75}=\frac{375-\frac{225x}{150-2x}}{x}\Leftrightarrow$$$$\frac{225x}{(150-2x)75}=\frac{375(150-2x)-225}{x(150-2x)}|*\frac{150-2x}{75}\Leftrightarrow$$$$\frac{3x}{75}=\frac{5(150-2x)-3x}{x}\Leftrightarrow$$$$3x^{2}=(750-13x)75|:3\Leftrightarrow$$$$x^{2}+325x-18750=0\Leftrightarrow$$$$D=105625+75000=180625=425^{2}\Rightarrow$$$$x_{1}=\frac{-325+425}{2}=50 ,x_{2}<0$$, следовательно, скорость автомобиля составляла 50 км/ч, тогда $$y=\frac{225*50}{150-2*50}=225$$км

Аналоги к этому заданию:

Задание 2412

Из пунк­тов А и В, рас­сто­я­ние между ко­то­ры­ми 19 км, вышли од­но­вре­мен­но нав­стре­чу друг другу два пе­ше­хо­да и встре­ти­лись в 9 км от А. Най­ди­те ско­рость пе­ше­хо­да, шед­ше­го из А, если из­вест­но, что он шёл со ско­ро­стью, на 1 км/ч боль­шей, чем пе­ше­ход, шед­ший из В, и сде­лал в пути по­лу­ча­со­вую оста­нов­ку.

Ответ: 6
Скрыть

Пусть х км/ч - скорость пешехода, шедшего из А, х-1 км/ч - скорость пешехода, шедшего из В. Так как они встретились в 9 км от А, то из В прошел 10 км. То есть время из А $$t_{1}=\frac{9}{x}$$ часов, время из В $$t_{2}=\frac{10}{x-1}$$ часов. Так как из А делал остановку на полчаса и вышли они одновременно, то время движения из В на полчаса больше, то есть:
$$\frac{10}{x-1}-\frac{9}{x}=\frac{1}{2}|*2x(x-1)\Leftrightarrow$$$$20x-18x+18=x^{2}-x\Leftrightarrow$$$$x^{2}-3x-18=0\Leftrightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=3\\x_{1}*x_{2}=-18 \end{matrix}\right.\Leftrightarrow$$$$ \left[\begin{matrix}x_{1}=6\\x_{2}=-3\end{matrix}\right.$$. Скорость не может быть отрицательной, следовательно, она составляла 6 км/ч

Аналоги к этому заданию:

Задание 2411

Кро­лик утвер­жда­ет, что вчера Винни-Пух съел не менее 9 ба­но­чек мёда, Пя­та­чок — что не менее 8 ба­но­чек, ослик Иа — что не менее 7. Сколь­ко ба­но­чек мёда съел вчера Винни-Пух, если из трех этих утвер­жде­ний ис­тин­но толь­ко одно?

Ответ: 7
Скрыть

Пусть верно утверждение, что не менее 9, но тогда выполняется утверждения и не менее 8 и 7, но нарушается утверждения истинности одного.
Пусть верно утверждения, что не менее 8, тогда так же выполняется, что не менее 7, и нарушается истинность только одного из трех.
Получаем, что истинно третье утверждение, и не должно выполняться второе и первое, то есть должно быть не менее 7, но менее 8 баночек. Получаем 7 штук

Аналоги к этому заданию:

Задание 2410

Най­ди­те целое число, если из двух сле­ду­ю­щих утвер­жде­ний верно толь­ко одно:

1) $$a<34$$;

2) $$a<35$$.

Ответ: 34
Скрыть

Проверим данные утверждения. Если верно утверждение под номером 1, то мы можем взять любой целое меньше 34, но тогда оно будет меньше и 35, и не выполняется условие верности только одного утверждения.
Если же верно второе, то мы можем взять такое число, которое будет строго меньше, чем 35, но не больше 34, собственно, это число и есть 34 (первое условие не выполняется в силу строгости неравенства)

Аналоги к этому заданию:

Задание 2409

Най­ди­те целое число, если из двух сле­ду­ю­щих утвер­жде­ний верно толь­ко одно:

1) $$a> -17$$;

2) $$a> -18$$.

Ответ: -17
Скрыть

Проверим данные утверждения. Если верно утверждение под номером 1, то мы можем взять любой целое больше -17, но тогда оно будет больше и -18, и не выполняется условие верности только одного утверждения.
Если же верно второе, то мы можем взять такое число, которое будет строго больше, чем -18, но не больше -17, собственно, это число и есть -17 (первое условие не выполняется в силу строгости неравенства)

Аналоги к этому заданию:

Задание 2408

Из пяти сле­ду­ю­щих утвер­жде­ний о ре­зуль­та­тах матча хок­кей­ных ко­манд "Транс­пор­тир" и "Ли­ней­ка" че­ты­ре ис­тин­ны, а одно — ложно. Опре­де­ли­те, с каким сче­том за­кон­чил­ся матч, и ука­жи­те по­бе­ди­те­ля (если матч за­вер­шил­ся по­бе­дой одной из ко­манд). Ответ обос­нуй­те.

  1. Вы­иг­рал "Транс­пор­тир".
  2. Всего в матче было за­бро­ше­но менее 10 шайб.
  3. Матч за­кон­чил­ся вни­чью.
  4. Всего в матче было за­бро­ше­но более 8 шайб.
  5. "Ли­ней­ка" за­бро­си­ла более 3 шайб.
Ответ: 5:4 в пользу "Транспортира"
Скрыть

Одно из утверждений b, c или d является однозначно ложным, так как если закинули менее 10, но более 8 шайб, то количество, в таком случае, составляет 9, но тогда сыграть вничью не получилось бы, следовательно, одна из команд выиграла. Пусть верен пункт а, тогда осталось проверить подлинность пункта е при выполнении b и d. Если "Линейка" забросила более 3 шайб, но при этом проиграла, то она могла забросить только 4 шайбы. То есть получаем, что "Транспортир" выиграл со счетом 5:4 и тогда неверным будет утверждение под пунктом с

Аналоги к этому заданию:

Задание 2403

Игорь и Паша кра­сят забор за 20 часов. Паша и Во­ло­дя кра­сят этот же забор за 24 часа, а Во­ло­дя и Игорь — за 30 часов. За сколь­ко часов маль­чи­ки по­кра­сят забор, ра­бо­тая втроём?

Ответ: 16
Скрыть

Пусть х частей забора в час - производительность Игоря, у - Паши, z - Володи. Весь забор примем за 1. Тогда:
$$\left\{\begin{matrix}\frac{1}{x+y}=20\\ \frac{1}{y+z}=24\\ \frac{1}{x+z}=30\end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix}x+y=\frac{1}{20}\\ y+z=\frac{1}{24}\\x+z=\frac{1}{30}\end{matrix}\right.$$
Сложим все три уравнения, получим:
$$2x+2y+2z=\frac{1}{20}+\frac{1}{24}+\frac{1}{30}\Leftrightarrow$$$$2(x+y+z)=\frac{6+5+4}{120}|:2\Leftrightarrow$$$$x+y+z=\frac{1}{16}$$. То есть, работая вместе, они за час выполняют 1/16 всей работы, следовательно, всю работу они выполняют за 16 часов

Аналоги к этому заданию:

Задание 2402

Три бри­га­ды из­го­то­ви­ли вме­сте 266 де­та­лей. Из­вест­но, что вто­рая бри­га­да из­го­то­ви­ла де­та­лей в 4 раза боль­ше, чем пер­вая и на 5 де­та­лей мень­ше, чем тре­тья. На сколь­ко де­та­лей боль­ше из­го­то­ви­ла тре­тья бри­га­да, чем пер­вая.

Ответ: 92
Скрыть

Пусть х - количество деталей, которое изготовила третья, тогда х-5 деталей изготовила вторая, и $$\frac{x-5}{4}$$ деталей изготовила первая. В сумме было изготовлено 266 деталей, то есть: $$x+x-5+\frac{x-5}{4}=266|*4\Leftrightarrow$$$$8x-20+x-5=1064\Leftrightarrow$$$$9x=1089|:9\Leftrightarrow$$$$x=121$$ деталей изготовила третья.
Тогда первая изготовила $$\frac{121-5}{4}=29$$ деталей
Тогда разница между третьей и первой $$121-29=92$$ детали

Аналоги к этому заданию:

Задание 2401

Пер­вый ра­бо­чий за час де­ла­ет на 10 де­та­лей боль­ше, чем вто­рой, и вы­пол­ня­ет заказ, со­сто­я­щий из 60 де­та­лей, на 3 часа быст­рее, чем вто­рой ра­бо­чий, вы­пол­ня­ю­щий такой же заказ. Сколь­ко де­та­лей в час де­ла­ет вто­рой ра­бо­чий?

Ответ: 10
Скрыть

Пусть х деталей в час делает второй рабочий, тогда первый делает в час х+10 деталей. Время на выполнения 60 деталей для первого $$t_{1}=\frac{60}{x+10}$$, время для второго $$t_{2}=\frac{60}{x}$$. Второй работает на 3 часа дольше, то есть:
$$\frac{60}{x}-\frac{60}{x+10}=3|*\frac{x(x+10)}{3}\Leftrightarrow$$$$20x+200-20x=x^{2}+10x\Leftrightarrow$$$$x^{2}+10x-200=0\Leftrightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=-10\\x_{1}*x_{2}=-200\end{matrix}\right.\Leftrightarrow$$$$\left[\begin{matrix}x_{1}=-20\\x_{2}=10 \end{matrix}\right.$$
Работа не может быть отрицательной, то есть второй выполняет 10 деталей в час.

Аналоги к этому заданию:

Задание 2399

Пер­вая труба про­пус­ка­ет на 2 литра воды в ми­ну­ту мень­ше, чем вто­рая. Сколь­ко лит­ров воды в ми­ну­ту про­пус­ка­ет вто­рая труба, если ре­зер­ву­ар объёмом 130 лит­ров она за­пол­ня­ет на 4 ми­ну­ты быст­рее, чем пер­вая труба за­пол­ня­ет ре­зер­ву­ар объёмом 136 лит­ров?

Ответ: 10 литров в минуту
Скрыть

Пусть x л/мин - скорость наполнения первой, тогда х-2 л/мин - скорость второй. Время наполнения резервуара в 130 литров второй трубой : $$t_{2}=\frac{130}{x}$$ минут, время наполнения 136 литров первой трубой $$t_{1}=\frac{136}{x-2}$$. Так как первая наполняет дольше на 4 минуты, то:

$$\frac{136}{x-2}-\frac{130}{x}=4|*\frac{x(x-2)}{2}\Leftrightarrow$$$$68x-65x+130=2x^{2}-4x\Leftrightarrow$$$$2x^{2}-7x-130=0\Rightarrow$$$$D=49+1040=1089=33^{2}\Rightarrow$$$$x_{1}=\frac{7+33}{4}=10, x_{2}<0$$, следовательно, скорость второй составляет 10 л/мин.

Аналоги к этому заданию:

Задание 2398

Две трубы на­пол­ня­ют бас­сейн за 8 часов 45 минут, а одна пер­вая труба на­пол­ня­ет бас­сейн за 21 часов. За сколь­ко часов на­пол­ня­ет бас­сейн одна вто­рая труба?

Ответ: 15
Скрыть

Пусть х частей бассейна/час - производительность первой, у - производительность второй, объем бассейна примем за 1. Тогда $$\frac{1}{x+y}=8\frac{45}{60}$$ - вместе наполняют бассейн за 8 часов 45 минут (в часах), время наполнения первым $$t_{1}=\frac{1}{x}=21$$, надо найти время второго $$t_{2}=\frac{1}{y}$$:
выразим из второго уравнения х: $$x=\frac{1}{21}$$ и подставим в первое:
$$\frac{1}{x+y}=\frac{35}{4}\Leftrightarrow$$$$\frac{1}{\frac{1}{21}+y}=\frac{35}{4}\Leftrightarrow$$$$\frac{35}{21}+35y=4\Leftrightarrow$$$$35y=\frac{7}{3}|:35\Leftrightarrow$$$$y=\frac{1}{15}$$. Тогда $$t_{2}=\frac{1}{\frac{1}{15}}=15$$ часов

Аналоги к этому заданию:

Задание 2397

Дима и Саша вы­пол­ня­ют оди­на­ко­вый тест. Дима от­ве­ча­ет за час на 12 во­про­сов теста, а Саша — на 22. Они од­но­вре­мен­но на­ча­ли от­ве­чать на во­про­сы теста, и Дима за­кон­чил свой тест позже Саши на 75 минут. Сколь­ко во­про­сов со­дер­жит тест?

Ответ: 33
Скрыть

Пусть х - количество вопросов в тесте. Тогда время Димы $$t_{1}=\frac{x}{12}$$ часов ; время Саши $$t_{2}=\frac{x}{22}$$ часов. Время Димы больше на 75 минут или $$\frac{75}{60}=\frac{5}{4}$$ часов: $$t_{1}-t_{2}=\frac{5}{4}$$. В итоге получаем:

$$\frac{x}{12}|*11-\frac{x}{22}|*6=\frac{5}{4}\Leftrightarrow$$$$\frac{11x-6x}{6*11*2}=\frac{5}{4}|*\frac{6*11*2}{5}\Leftrightarrow$$$$x=33$$. То есть количество вопросов в тесте составляет 33

Аналоги к этому заданию:

Задание 2396

Чтобы на­ка­чать в бак 117 л воды, тре­бу­ет­ся на 5 минут боль­ше вре­ме­ни, чем на то, чтобы вы­ка­чать из него 96 л воды. За одну ми­ну­ту можно вы­ка­чать на 3 л воды боль­ше, чем на­ка­чать. Сколь­ко лит­ров воды на­ка­чи­ва­ет­ся в бак за ми­ну­ту?

Ответ: 9
Скрыть

Пусть х л/мин накачивает, тогда х+3 л/мин выкачивает. Время накачки $$t_{1}=\frac{117}{x}$$; время выкачивания $$t_{2}=\frac{96}{x+3}$$. При этом накачивает на 5 часов дольше, то есть: $$t_{1}-t_{2}=5$$, тогда:

$$\frac{117}{x}-\frac{96}{x+3}=5|*x(x+3)\Leftrightarrow$$$$117x+351-96x=5x^{2}+15x\Leftrightarrow$$$$5x^{2}-6x-351=0\Rightarrow$$$$D=36+7020=7056=84^{2}\Rightarrow$$$$x_{1}=\frac{6+84}{10}=9, x_{2}<0$$, то есть накачивает по 9 л/мин.

Аналоги к этому заданию:

Задание 2395

На из­го­тов­ле­ние 231 де­та­ли уче­ник тра­тит на 11 часов боль­ше, чем ма­стер на из­го­тов­ле­ние 462 таких же де­та­лей. Из­вест­но, что уче­ник за час де­ла­ет на 4 де­та­ли мень­ше, чем ма­стер. Сколь­ко де­та­лей в час де­ла­ет уче­ник?

Ответ: 3
Скрыть

Пусть х - число деталей, которые делает ученик в час, тогда х+4 - число деталей, которые делает мастер за час. Получаем, что время мастера $$t_{1}=\frac{462}{x+4}$$, время ученика $$t_{2}=\frac{231}{x}$$. Ученик тратит больше на 11 часов, следовательно: $$t_{2}-t_{1}=11$$, тогда:

$$\frac{231}{x}-\frac{462}{x+4}=11|*\frac{x(x+4)}{11}\Leftrightarrow$$$$21(x+4)-42x=x^{2}+4x\Leftrightarrow$$$$x^{2}+25x-84=0\Leftrightarrow$$$$D=625+336=961=31^{2}\Rightarrow$$$$x_{1}=\frac{-25+31}{2}=3, x_{3}<0$$.

То есть ученик делает по 3 детали в час.

Аналоги к этому заданию:

Задание 2394

Два опе­ра­то­ра, ра­бо­тая вме­сте, могут на­брать текст га­зе­ты объ­яв­ле­ний за 8 ч. Если пер­вый опе­ра­тор будет ра­бо­тать 3 ч, а вто­рой 12 ч, то они вы­пол­нят толь­ко 75% всей ра­бо­ты. За какое время может на­брать весь текст каж­дый опе­ра­тор, ра­бо­тая от­дель­но?

Ответ: первый оператор за 12 ч, второй оператор за 24 ч.
Скрыть

Пусть х (частей работы/час) - производительность перового рабочего, у - производительность второго, весь объем работы обозначим за 1. Тогда :
$$\frac{1}{x+y}=8$$ - работая вместе выполняют за 8 часов всю работу, $$3x+12y=0,75*1$$ - работая по 3 и 12 часов, выполняют 75% от всей работы. Выразим во втором уравнении х через у: $$3x=0,75-12y|:3\Leftrightarrow$$$$x=0,25-4y$$. Подставим в первое уравнение: $$\frac{1}{x+y}=8\Leftrightarrow$$$$x+y=\frac{1}{8}\Leftrightarrow$$$$\frac{1}{4}-4y+y=\frac{1}{8}\Leftrightarrow$$$$\frac{1}{8}=3y|:3\Leftrightarrow$$$$y=\frac{1}{24}$$. Тогда $$x=\frac{1}{4}-4*\frac{1}{24}=\frac{1}{12}$$, следовательно, время первого $$t_{1}=\frac{1}{\frac{1}{12}}=12$$ часа, а время второго $$t_{2}=\frac{1}{\frac{1}{24}}=24$$ часа

Аналоги к этому заданию:

Задание 2391

Све­жие фрук­ты со­дер­жат 88 % воды, а вы­су­шен­ные — 30 %. Сколь­ко тре­бу­ет­ся све­жих фрук­тов для при­го­тов­ле­ния 6 кг вы­су­шен­ных фрук­тов?

Ответ: 35 кг
Скрыть

В сушенных 30% воды, следовательно, 70% (х) - сухой массы, тогда:
6 кг - 100%
x кг - 70%
$$x=\frac{70*6}{100}$$ кг - сухая масса, именно она перешла из свежих фруктов, но, с учетом того, что воды в них 88%, то сухая масса составляет 12%, тогда:
$$x=\frac{70*6}{100}$$ ru - 12%
y кг - 100%
$$y=\frac{\frac{70*6}{100}*100}{12}=35$$ кг - масса свежих фркутов

Аналоги к этому заданию:

Задание 2390

Име­ют­ся два со­су­да, со­дер­жа­щие 30 кг и 20 кг рас­тво­ра кис­ло­ты раз­лич­ной кон­цен­тра­ции. Если их слить вме­сте, то по­лу­чим рас­твор, со­дер­жа­щий 81% кис­ло­ты. Если же слить рав­ные массы этих рас­тво­ров, то по­лу­чен­ный рас­твор будет со­дер­жать 83% кис­ло­ты. Сколь­ко ки­ло­грам­мов кис­ло­ты со­дер­жит­ся во вто­ром рас­тво­ре?

Ответ: 18,6
Скрыть

Пусть х (в долях) - концентрация первого, тогда 30х кг - масса кислоты в нем. Пусть у - концентрация второго, тогда 20у кг - масса кислоты в нем. В первом случае масса нового 50 кг, а кислоты в нем 0,81*50 кг, во втором - 60 кг (взяли по 30 кг), а кислоты в нем 0,83*60 кг. Тогда:
$$\left\{\begin{matrix}30x+20y=0,81*50\\ 30x+30y=0,83*60\end{matrix}\right.$$
Вычтем из второго уравнения первое: $$10y=49,8-40,5=9,3|:10\Leftrightarrow$$$$y=0,93$$ - концентрация второго. Тогда кислоты в нем: $$0,93*20=18,6$$ кг.

Аналоги к этому заданию:

Задание 2388

Сме­ша­ли не­ко­то­рое ко­ли­че­ство 10-про­цент­но­го рас­тво­ра­ не­ко­то­ро­го ве­ще­ства с таким же ко­ли­че­ством 12-про­цент­но­го рас­тво­ра ­это­го же ве­ще­ства. Сколь­ко про­цен­тов со­став­ля­ет кон­цен­тра­ция по­лу­чив­ше­го­ся рас­тво­ра?

Ответ: 11%
Скрыть

Пусть х - масса первого раствора, тогда х - масса второго раствора тоже, тогда вещества в них 0,1х и 0,12х, то есть мы получили третий раствор массой х+х=2х, вещества в котором 0,1х+0,12х=0,22х. Следовательно, концентрация полученного раствора: $$\frac{0,22x}{2x}*100=11$$%

Аналоги к этому заданию:

Задание 2387

Све­жие фрук­ты со­дер­жат 80% воды, а вы­су­шен­ные — 28%. Сколь­ко сухих фрук­тов по­лу­чит­ся из 288 кг све­жих фрук­тов?

Ответ: 80
Скрыть

Если в свежих фруктах содержится 80% воды, тогда 20% - сухая масса, которая переходит в сушеные фрукты. Тогда:
228 кг - 100%
x кг - 20%
$$x=\frac{228*20}{100}$$ кг - сухой массы.
В сухофруктах 28% воды, следовательно, 72% сухой массы, тогда:
$$x=\frac{228*20}{100}$$ кг - 72%
у - 100%
$$y=\frac{\frac{228*20}{100}*100}{72}=80$$ кг - масса сухофруктов

Аналоги к этому заданию:

Задание 2386

Пер­вый сплав со­дер­жит 5% меди, вто­рой — 13% меди. Масса вто­ро­го спла­ва боль­ше массы пер­во­го на 4 кг. Из этих двух спла­вов по­лу­чи­ли тре­тий сплав, со­дер­жа­щий 10% меди. Най­ди­те массу тре­тье­го спла­ва.

Ответ: 16 кг
Скрыть

Пусть х кг - масса первого сплава, тогда 0,05х кг - масса меди в нем. Следовательно, х+4 кг - масса второго, 0,13(х+4) кг - масса меди в нем. Тогда масса третьего х+х+4=2х+4 кг, а меди в нем 0,1(2х+4) кг. При этом данная масса получается путем сложения меди с двух первоначальных сплавов: $$0,05x+0,13(x+4)=0,1(2x+4)\Leftrightarrow$$$$0,05x+0,13x+0,52=0,2x+0,4\Leftrightarrow$$$$0,02x=0,12|:0,2\Leftrightarrow$$$$x=6$$. Тогда масса третьего сплава: $$2*6+4=16$$ кг.

Аналоги к этому заданию:

Задание 2385

На пост главы ад­ми­ни­стра­ции го­ро­да пре­тен­до­ва­ло три кан­ди­да­та: Жу­равлёв, Зай­цев, Ива­нов. Во время вы­бо­ров за Ива­но­ва было от­да­но в 2 раза боль­ше го­ло­сов, чем за Жу­равлёва, а за Зай­це­ва — в 3 раза боль­ше, чем за Жу­равлёва и Ива­но­ва вме­сте. Сколь­ко про­цен­тов го­ло­сов было от­да­но за по­бе­ди­те­ля?

Ответ: 75%
Скрыть

Пусть х - количество голосов за Журавлева, тогда - за Иванова, и 3(х+2х)=9х - за Зайцева. Следовательно, всего голосов x+2x+9x=12x. Тогда, процент победителя: $$\frac{9x}{12x}*100=75$$%

Аналоги к этому заданию:

Задание 2384

При сме­ши­ва­нии пер­во­го рас­тво­ра кис­ло­ты, кон­цен­тра­ция ко­то­ро­го 20%, и вто­ро­го рас­тво­ра этой же кис­ло­ты, кон­цен­тра­ция ко­то­ро­го 50%, по­лу­чи­ли рас­твор, со­дер­жа­щий 30% кис­ло­ты. В каком от­но­ше­нии были взяты пер­вый и вто­рой рас­тво­ры?

Ответ: $$\frac{2}{1}$$
Скрыть

Пусть х - масса первого, тогда кислоты в нем 0,2х, у - масса второго, кислоты в нем 0,5у. Тогда получаем третий раствор массой х+у, кислоты в котором 0,3(х+у). При этом данная масса получается путем сложения масс кислоы в первичных сплавах:
$$0,2x+0,5y=0,3(x+y)\Leftrightarrow$$$$0,5y-0,3y=0,3x-0,2x\Leftrightarrow$$$$0,2y=0,1x|:0,1\Leftrightarrow$$$$x=2y$$.Следовательно, масса первого в два раза больше массы второго, то есть отношение масс 2:1.

Аналоги к этому заданию:

Задание 2383

Име­ет­ся два спла­ва с раз­ным со­дер­жа­ни­ем меди: в пер­вом со­дер­жит­ся 60%, а во вто­ром — 45% меди. В каком от­но­ше­нии надо взять пер­вый и вто­рой спла­вы, чтобы по­лу­чить из них новый сплав, со­дер­жа­щий 55% меди?

Ответ: $$\frac{2}{1}$$
Скрыть

Пусть х - масса первого, тогда меди в нем 0,6х, у - масса второго, меди в нем 0,45у. Тогда получаем третий сплав массой х+у, меди в котором 0,55(х+у). При этом данная масса получается путем сложения масс меди в первичных сплавах:

$$0,6x+0,45y=0,55(x+y)\Leftrightarrow$$$$0,6x-0,55x=0,55y-0,45y\Leftrightarrow$$$$0,05x=0,1y|:0,05\Leftrightarrow$$$$x=2y$$. Следовательно, масса первого в два раза больше массы второго, то есть отношение масс 2:1.

Аналоги к этому заданию:

Задание 2382

Сме­шав 60%−ый и 30%−ый рас­тво­ры кис­ло­ты и до­ба­вив 5 кг чи­стой воды, по­лу­чи­ли 20%−ый рас­твор кис­ло­ты. Если бы вме­сто 5 кг воды до­ба­ви­ли 5 кг 90%−го рас­тво­ра той же кис­ло­ты, то по­лу­чи­ли бы 70%−ый рас­твор кис­ло­ты. Сколь­ко ки­ло­грам­мов 60%−го рас­тво­ра ис­поль­зо­ва­ли для по­лу­че­ния смеси?

Ответ: 2 кг
Скрыть

Пусть х кг - масса первого раствора, тогда кислоты в нем 0,6х кг. Пусть у кг - масса второго раствора, тогда кислоты в нем 0,3у кг. Сначала добавили 5 кг воды, то есть получили x+y+5 кг раствора, кислоты в котором 0,2(x+y+5) кг. При этом данная масса равна сумме масс кислоты в первоначальных растворах. Аналогично, добавив 5 кг 90%-го раствора, получим раствор массой x+y+5 кг, кислоты в котором 0,7(x+y+5), но данная кислоты уже соответствует массе кислоты в первых двух растворах и массе кислоты в 5 кг добавленного 90%-го. Получим систему уравнений:

$$\left\{\begin{matrix}0,6x+0,3y=0,2(x+y+5)\\0,6x+0,3y+0,9*5=0,7(x+y+5)\end{matrix}\right.$$

Вычтем из второго уравнения первое, получим:

$$4,5=0,5(x+y+5)|:0,5\Leftrightarrow$$$$9=x+y+5\Leftrightarrow$$$$x=4-y(1*)$$. Подставим полученное выражение вместо х в первое уравнение, умножив его первоначально на 10:

$$6(4-y)+3y=2(4-y)+2y+10\Leftrightarrow$$$$24-3y-18=0\Leftrightarrow$$$$y=2$$

Подставим полученный у в (1*): $$x=4-2=2$$, то есть масса 60%-го составляла 2 кг.

Аналоги к этому заданию:

Задание 2381

От при­ста­ни А к при­ста­ни В, рас­сто­я­ние между ко­то­ры­ми равно 70 км, от­пра­вил­ся с по­сто­ян­ной ско­ро­стью пер­вый теп­ло­ход, а через 1 час после этого сле­дом за ним, со ско­ро­стью, на 8 км/ч боль­шей, от­пра­вил­ся вто­рой. Най­ди­те ско­рость пер­во­го теп­ло­хо­да, если в пункт В оба теп­ло­хо­да при­бы­ли од­но­вре­мен­но.

Ответ: 20
Скрыть

Пусть х км/ч - скорость первого, тогда х+8 км/ч - скорость второго. Время первого $$t_{1}=\frac{70}{x}$$ часов, время второго $$t_{2}=\frac{70}{x+8}$$ часов. При этом первый плыл на час дольше, тогда:

$$t_{1}-t_{2}=1\Leftrightarrow$$$$\frac{70}{x}-\frac{70}{x+8}=1|*(x^{2}+64)\Leftrightarrow$$$$70x+560-70x=x^{2}+8x\Leftrightarrow$$$$x^{2}+8x-560=0\Rightarrow$$
$$\left\{\begin{matrix}x_{1}+x_{2}=-8\\x_{1}*x_{2}=-560\end{matrix}\right.\Leftrightarrow $$$$\left[\begin{matrix}x_{1}=-28\\x_{2}=20\end{matrix}\right.$$

Скорость не может быть отрицательной, следовательно, она составляла 20 км/ч

Аналоги к этому заданию:

Задание 2380

Баржа про­шла по те­че­нию реки 40 км и, по­вер­нув об­рат­но, про­шла ещё 30 км, за­тра­тив на весь путь 5 часов. Най­ди­те соб­ствен­ную ско­рость баржи, если ско­рость те­че­ния реки равна 5 км/ч.

Ответ: 15
Скрыть

Пусть х км/ч - собственная скорость баржи, тогда время движения по течению $$t_{1}=\frac{40}{x+5}$$ часов, время движения против течения $$t_{2}=\frac{30}{x-5}$$. Тогда:
$$\frac{40}{x+5}+\frac{30}{x-5}=5|*\frac{x^{2}-25}{5}\Leftrightarrow$$$$8(x-5)+6(x+5)=x^{2}-25\Leftrightarrow$$$$x^{2}-14x-15=0\Leftrightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=14\\x_{1}*x_{2}=-15\end{matrix}\right.\Leftrightarrow $$$$\left[\begin{matrix}x_{1}=15\\x_{2}=-1 \end{matrix}\right.$$
Скорость не может быть отрицательной, следовательно, она составляет 15 км/ч

Аналоги к этому заданию:

Задание 2379

Теп­ло­ход про­хо­дит по те­че­нию реки до пунк­та на­зна­че­ния 165 км и после сто­ян­ки воз­вра­ща­ет­ся в пункт от­прав­ле­ния. Най­ди­те ско­рость теп­ло­хо­да в не­по­движ­ной воде, если ско­рость те­че­ния равна 4 км/ч, сто­ян­ка длит­ся 5 часов, а в пункт от­прав­ле­ния теп­ло­ход воз­вра­ща­ет­ся через 18 часов после от­плы­тия из него.

Ответ: 26
Скрыть

Пусть х км/ч - скорость теплохода в стоячей воде. Тогда время по течению: $$t_{1}=\frac{165}{x+4}$$ часов, время против течения $$t_{2}=\frac{165}{x-4}$$ часов. Время движения найдем как разницу общего времени и стоянки: $$18-5=13$$ часов. Тогда:

$$\frac{165}{x+4}+\frac{165}{x-4}=13|*(x^{2}-16)\Leftrightarrow$$$$13x^{2}-330x-208=0\Rightarrow$$$$D=108900+10816=346^{2}\Rightarrow$$$$x_{1}=\frac{330+346}{26}=26, x_{2}<0$$. Тогда собственная скорость теплохода составляет 26 км/ч

Аналоги к этому заданию:

Задание 2378

Мо­тор­ная лодка про­шла от одной при­ста­ни до дру­гой, рас­сто­я­ние между ко­то­ры­ми по реке равно 16 км, сде­ла­ла сто­ян­ку на 40 мин и вер­ну­лась об­рат­но через $$3\frac{2}{3}$$ ч после на­ча­ла по­езд­ки. Най­ди­те ско­рость те­че­ния реки, если из­вест­но, что ско­рость мо­тор­ной лодки в сто­я­чей воде равна 12 км/ч.

Ответ: 4 км/ч.
Скрыть

Пусть х км/ч - скорость течения, тогда время по течению $$t_{1}=\frac{16}{12+x}$$ часов, время против течения $$t_{2}=\frac{16}{12-x}$$ часов. Время движения в пути вычислим как разницу общего и стоянки: $$3\frac{2}{3}-\frac{2}{3}=3$$ часа. Следовательно:
$$\frac{16}{12+x}+\frac{16}{12-x}=3|*144-x^{2}\Leftrightarrow$$$$16*12-16x+16*12+16x=3(144-x^{2})|:3\Leftrightarrow$$$$128=144-x^{2}\Leftrightarrow$$$$x=\pm 4$$, скорость не может быть отрицательной, следовательно, скорость течения составляет 4 км/ч.

Аналоги к этому заданию:

Задание 2377

Катер прошёл от одной при­ста­ни до дру­гой, рас­сто­я­ние между ко­то­ры­ми по реке равно 48 км, сде­лал сто­ян­ку на 20 мин и вер­нул­ся об­рат­но через $$5\frac{1}{3}$$ ч после на­ча­ла по­езд­ки. Най­ди­те ско­рость те­че­ния реки, если из­вест­но, что ско­рость ка­те­ра в сто­я­чей воде равна 20 км/ч.

Ответ: 4 км/ч.
Скрыть

Пусть х км/ч - скорость течения реки, тогда время по течению $$t_{1}=\frac{48}{20+x}$$ часов, время против течения $$t_{2}=\frac{48}{20-x}$$ часов. Время движения за вычетом времени стоянки составляет: $$5\frac{1}{3}-\frac{1}{3}=5$$ часов. Следовательно:
$$\frac{48}{20+x}+\frac{48}{20-x}=5|*(20-x)(20+x)\Leftrightarrow$$$$48*20-48x+48*20+48x=5(400-x^{2})\Leftrightarrow$$$$384=400-x^{2}\Leftrightarrow$$$$x^{2}=16\Leftrightarrow$$$$x=\pm 4$$, но скорость отрицательной быть не может, следовательно, скорость течения составляет 4 км/ч.

Аналоги к этому заданию:

Задание 2375

Ту­ри­сты про­плы­ли на лодке от ла­ге­ря не­ко­то­рое рас­сто­я­ние вверх по те­че­нию реки, затем при­ча­ли­ли к бе­ре­гу и, по­гу­ляв 2 часа, вер­ну­лись об­рат­но через 6 часов от на­ча­ла пу­те­ше­ствия. На какое рас­сто­я­ние от ла­ге­ря они от­плы­ли, если ско­рость те­че­ния реки равна 3 км/ч, а соб­ствен­ная ско­рость лодки 6 км/ч?

Ответ: 9 км.
Скрыть

Пусть S км - расстояние от лагеря до берега, тогда время по течению: $$t_{1}=\frac{S}{6+3}$$ часов, время против течения: $$t_{2}=\frac{S}{6-3}$$ часов. При этом время в пути составляет: $$6-2=4$$ часа, тогда:
$$\frac{S}{9}+\frac{S}{3}=4|*9\Leftrightarrow$$$$S+3S=36\Leftrightarrow$$$$4S=36|:4\Leftrightarrow$$$$S=9$$ км

Аналоги к этому заданию:

Задание 2374

Ры­бо­лов в 5 часов утра на мо­тор­ной лодке от­пра­вил­ся от при­ста­ни про­тив те­че­ния реки, через не­ко­то­рое время бро­сил якорь, 2 часа ловил рыбу и вер­нул­ся об­рат­но в 10 часов утра того же дня. На какое рас­сто­я­ние от при­ста­ни он от­да­лил­ся, если ско­рость реки равна 2 км/ч, а соб­ствен­ная ско­рость лодки 6 км/ч?

Ответ: 8 км.
Скрыть

Пусть S км - расстояние в одну сторону, тогда время по течению: $$t_{1}=\frac{S}{6+2}$$ ; время против течения: $$t_{2}=\frac{S}{6-2}$$. Общее время движения составляет: $$10-5-2=3$$ часа. Тогда:
$$\frac{S}{8}+\frac{S}{4}=6\Leftrightarrow$$$$\frac{3S}{8}=3|*\frac{8}{3}\Leftrightarrow$$$$S=8$$ км.

Аналоги к этому заданию:

Задание 2373

При­ста­ни А и В рас­по­ло­же­ны на реке, ско­рость те­че­ния ко­то­рой на этом участ­ке равна 3 км/ч. Лодка про­хо­дит туда и об­рат­но без оста­но­вок со сред­ней ско­ро­стью 8 км/ч. Най­ди­те соб­ствен­ную ско­рость лодки.

Ответ: 9 км/ч.
Скрыть

Пусть х км/ч - собственная скорость лодки, S км - расстояние от А до В, тогда:
время по течению: $$t_{1}=\frac{S}{x+3}$$
время против течения: $$t_{2}=\frac{S}{x-3}$$
Средняя скорость в таком случае составляет: $$\frac{2S}{\frac{S}{x+3}+\frac{S}{x-3}}=8\Leftrightarrow$$$$\frac{2S}{\frac{Sx-3S+Sx+3S}{x^{2}-9}}=8\Leftrightarrow$$$$\frac{2S(x^{2}-9)}{2Sx}=8\Leftrightarrow$$$$x^{2}-9=8x\Leftrightarrow$$$$x^{2}-8x-9=0\Leftrightarrow$$$$\left[\begin{matrix}x_{1}+x_{2}=8\\x_{1}*x_{2}=-9 \end{matrix}\right.\Leftrightarrow \left[\begin{matrix}x_{1}=9\\x_{2}=-1 \end{matrix}\right.$$
Скорость лодки не может быть отрицательной, потому она составит 9 км/ч

Аналоги к этому заданию:

Задание 2372

Мо­тор­ная лодка про­шла 36 км по те­че­нию реки и вер­ну­лась об­рат­но, по­тра­тив на весь путь 5 часов. Ско­рость те­че­ния реки равна 3 км/ч. Най­ди­те ско­рость лодки в не­по­движ­ной воде.

Ответ: 15 км/ч.
Скрыть

Пусть х км/ч - собственная скорость лодки, тогда х+3 км/ч - скорость лодки по течению и $$t_{1}=\frac{36}{x+3}$$ часов - время лодки по течению; х-3 км/ч - скорость лодки против течения и $$t_{2}=\frac{36}{x-3}$$ часов - время против течения. Суммарное время движения составляет 5 часов, то есть: $$t_{1}+t_{2}=5$$, получаем:

$$\frac{36}{x+3}+\frac{36}{x-3}=5|*(x-3)(x+3)\Leftrightarrow$$$$36x-108+36x+108=5x^{2}-45\Leftrightarrow$$$$5x^{2}-72x-45=0\Rightarrow$$$$D=5184+900=6084=78^{2}\Rightarrow$$$$x_{1}=\frac{72+78}{10}=15, x_{2}<0$$, то есть собственная скорость лодки составляла 15 км/ч

Аналоги к этому заданию:

Задание 2371

Рас­сто­я­ние между при­ста­ня­ми А и В равно 80 км. Из А в В по те­че­нию реки от­пра­вил­ся плот, а через 2 часа вслед за ним от­пра­ви­лась яхта, ко­то­рая, при­быв в пункт В, тот­час по­вер­ну­ла об­рат­но и воз­вра­ти­лась в А. К этому вре­ме­ни плот про­шел 22 км. Най­ди­те ско­рость яхты в не­по­движ­ной воде, если ско­рость те­че­ния реки равна 2 км/ч. Ответ дайте в км/ч.

Ответ: 18 км/ч.
Скрыть

Пусть х км/ч - собственная скорость яхты, плот двигается со скоростью течения, тогда время плота $$t_{1}=\frac{22}{2}=11$$ часов. Лодка плыла на 2 часа меньше, то есть $$11-2=9$$ часов, при этом данное время складывается из времени по течению: $$t_{2}=\frac{80}{x+2}$$ и времени движения против течения $$t_{3}=\frac{80}{x-2}$$.

Получаем: $$\frac{80}{x+2}+\frac{80}{x-2}=9|*(x+2)(x-2)\Leftrightarrow$$$$80x-160+80x+160=9x^{2}-36\Leftrightarrow$$$$9x^{2}-160x-36=0\Rightarrow$$$$D=25600+1296=164^{2}\Rightarrow$$$$x_{1}=\frac{160+164}{18}=18 , x_{2}<0$$, то есть собственная скорость лодки 18 км/ч

Аналоги к этому заданию:

Задание 2370

Из пунк­та А в пункт В, рас­по­ло­жен­ный ниже по те­че­нию реки, от­пра­вил­ся плот. Од­но­вре­мен­но нав­стре­чу ему из пунк­та В вышел катер. Встре­тив плот, катер сразу по­вер­нул и по­плыл назад. Какую часть пути от А до В прой­дет плот к мо­мен­ту воз­вра­ще­ния ка­те­ра в пункт В, если ско­рость ка­те­ра в сто­я­чей воде вчет­ве­ро боль­ше ско­ро­сти те­че­ния реки?

Ответ: плот пройдет $$\frac{2}{5}$$ всего пути.
Скрыть

Пусть расстояние от А до В равно 1, х частей расстояния/час - скорость течения (она же и скорость плота), тогда 4х - собственная скорость катера. Получаем, что из В в А катер плыл против течения со скоростью 4х-х=3х, из А в В по течению со скоростью 4х+х=5х. Для нахождения времени встречи объектов, двигавшихся навстречу, скорости складываются, то есть: $$t_{1}=\frac{1}{x+3x}=\frac{1}{4x}$$, тогда расстояние из А до места встречи: $$S_{1}=x*\frac{1}{4x}=\frac{1}{4}$$. Тогда расстояние от В до места встречи: $$S_{2}=1-S_{1}=\frac{3}{4}$$. Тогда, время, за которое катер вернется обратно в В: $$t_{2}=\frac{\frac{3}{4}}{5x}=\frac{3}{20x}$$, тогда расстояние, которое за это время пройдет плот: $$S_{3}=x*\frac{3}{20x}=\frac{3}{20}$$. Тогда общее расстояние, пройденное плотом, $$S_{1}+S_{3}=\frac{1}{4}+\frac{3}{20}=\frac{2}{5}$$, то есть плот пройдет $$\frac{2}{5}$$ всего пути за все время