Перейти к основному содержанию

ОГЭ

ОГЭ / (C2) Текстовые задачи

Задание 2370

Из пунк­та А в пункт В, рас­по­ло­жен­ный ниже по те­че­нию реки, от­пра­вил­ся плот. Од­но­вре­мен­но нав­стре­чу ему из пунк­та В вышел катер. Встре­тив плот, катер сразу по­вер­нул и по­плыл назад. Какую часть пути от А до В прой­дет плот к мо­мен­ту воз­вра­ще­ния ка­те­ра в пункт В, если ско­рость ка­те­ра в сто­я­чей воде вчет­ве­ро боль­ше ско­ро­сти те­че­ния реки?

Ответ: плот пройдет $$\frac{2}{5}$$ всего пути.
Скрыть

Пусть расстояние от А до В равно 1, х частей расстояния/час - скорость течения (она же и скорость плота), тогда 4х - собственная скорость катера. Получаем, что из В в А катер плыл против течения со скоростью 4х-х=3х, из А в В по течению со скоростью 4х+х=5х. Для нахождения времени встречи объектов, двигавшихся навстречу, скорости складываются, то есть: $$t_{1}=\frac{1}{x+3x}=\frac{1}{4x}$$, тогда расстояние из А до места встречи: $$S_{1}=x*\frac{1}{4x}=\frac{1}{4}$$. Тогда расстояние от В до места встречи: $$S_{2}=1-S_{1}=\frac{3}{4}$$. Тогда, время, за которое катер вернется обратно в В: $$t_{2}=\frac{\frac{3}{4}}{5x}=\frac{3}{20x}$$, тогда расстояние, которое за это время пройдет плот: $$S_{3}=x*\frac{3}{20x}=\frac{3}{20}$$. Тогда общее расстояние, пройденное плотом, $$S_{1}+S_{3}=\frac{1}{4}+\frac{3}{20}=\frac{2}{5}$$, то есть плот пройдет $$\frac{2}{5}$$ всего пути за все время

Задание 2371

Рас­сто­я­ние между при­ста­ня­ми А и В равно 80 км. Из А в В по те­че­нию реки от­пра­вил­ся плот, а через 2 часа вслед за ним от­пра­ви­лась яхта, ко­то­рая, при­быв в пункт В, тот­час по­вер­ну­ла об­рат­но и воз­вра­ти­лась в А. К этому вре­ме­ни плот про­шел 22 км. Най­ди­те ско­рость яхты в не­по­движ­ной воде, если ско­рость те­че­ния реки равна 2 км/ч. Ответ дайте в км/ч.

Ответ: 18 км/ч.
Скрыть

Пусть х км/ч - собственная скорость яхты, плот двигается со скоростью течения, тогда время плота $$t_{1}=\frac{22}{2}=11$$ часов. Лодка плыла на 2 часа меньше, то есть $$11-2=9$$ часов, при этом данное время складывается из времени по течению: $$t_{2}=\frac{80}{x+2}$$ и времени движения против течения $$t_{3}=\frac{80}{x-2}$$.

Получаем: $$\frac{80}{x+2}+\frac{80}{x-2}=9|*(x+2)(x-2)\Leftrightarrow$$$$80x-160+80x+160=9x^{2}-36\Leftrightarrow$$$$9x^{2}-160x-36=0\Rightarrow$$$$D=25600+1296=164^{2}\Rightarrow$$$$x_{1}=\frac{160+164}{18}=18 , x_{2}<0$$, то есть собственная скорость лодки 18 км/ч

Задание 2372

Мо­тор­ная лодка про­шла 36 км по те­че­нию реки и вер­ну­лась об­рат­но, по­тра­тив на весь путь 5 часов. Ско­рость те­че­ния реки равна 3 км/ч. Най­ди­те ско­рость лодки в не­по­движ­ной воде.

Ответ: 15 км/ч.
Скрыть

Пусть х км/ч - собственная скорость лодки, тогда х+3 км/ч - скорость лодки по течению и $$t_{1}=\frac{36}{x+3}$$ часов - время лодки по течению; х-3 км/ч - скорость лодки против течения и $$t_{2}=\frac{36}{x-3}$$ часов - время против течения. Суммарное время движения составляет 5 часов, то есть: $$t_{1}+t_{2}=5$$, получаем:

$$\frac{36}{x+3}+\frac{36}{x-3}=5|*(x-3)(x+3)\Leftrightarrow$$$$36x-108+36x+108=5x^{2}-45\Leftrightarrow$$$$5x^{2}-72x-45=0\Rightarrow$$$$D=5184+900=6084=78^{2}\Rightarrow$$$$x_{1}=\frac{72+78}{10}=15, x_{2}<0$$, то есть собственная скорость лодки составляла 15 км/ч

Задание 2373

При­ста­ни А и В рас­по­ло­же­ны на реке, ско­рость те­че­ния ко­то­рой на этом участ­ке равна 3 км/ч. Лодка про­хо­дит туда и об­рат­но без оста­но­вок со сред­ней ско­ро­стью 8 км/ч. Най­ди­те соб­ствен­ную ско­рость лодки.

Ответ: 9 км/ч.
Скрыть

Пусть х км/ч - собственная скорость лодки, S км - расстояние от А до В, тогда:
время по течению: $$t_{1}=\frac{S}{x+3}$$
время против течения: $$t_{2}=\frac{S}{x-3}$$
Средняя скорость в таком случае составляет: $$\frac{2S}{\frac{S}{x+3}+\frac{S}{x-3}}=8\Leftrightarrow$$$$\frac{2S}{\frac{Sx-3S+Sx+3S}{x^{2}-9}}=8\Leftrightarrow$$$$\frac{2S(x^{2}-9)}{2Sx}=8\Leftrightarrow$$$$x^{2}-9=8x\Leftrightarrow$$$$x^{2}-8x-9=0\Leftrightarrow$$$$\left[\begin{matrix}x_{1}+x_{2}=8\\x_{1}*x_{2}=-9 \end{matrix}\right.\Leftrightarrow \left[\begin{matrix}x_{1}=9\\x_{2}=-1 \end{matrix}\right.$$
Скорость лодки не может быть отрицательной, потому она составит 9 км/ч

Задание 2374

Ры­бо­лов в 5 часов утра на мо­тор­ной лодке от­пра­вил­ся от при­ста­ни про­тив те­че­ния реки, через не­ко­то­рое время бро­сил якорь, 2 часа ловил рыбу и вер­нул­ся об­рат­но в 10 часов утра того же дня. На какое рас­сто­я­ние от при­ста­ни он от­да­лил­ся, если ско­рость реки равна 2 км/ч, а соб­ствен­ная ско­рость лодки 6 км/ч?

Ответ: 8 км.
Скрыть

Пусть S км - расстояние в одну сторону, тогда время по течению: $$t_{1}=\frac{S}{6+2}$$ ; время против течения: $$t_{2}=\frac{S}{6-2}$$. Общее время движения составляет: $$10-5-2=3$$ часа. Тогда:
$$\frac{S}{8}+\frac{S}{4}=6\Leftrightarrow$$$$\frac{3S}{8}=3|*\frac{8}{3}\Leftrightarrow$$$$S=8$$ км.

Задание 2375

Ту­ри­сты про­плы­ли на лодке от ла­ге­ря не­ко­то­рое рас­сто­я­ние вверх по те­че­нию реки, затем при­ча­ли­ли к бе­ре­гу и, по­гу­ляв 2 часа, вер­ну­лись об­рат­но через 6 часов от на­ча­ла пу­те­ше­ствия. На какое рас­сто­я­ние от ла­ге­ря они от­плы­ли, если ско­рость те­че­ния реки равна 3 км/ч, а соб­ствен­ная ско­рость лодки 6 км/ч?

Ответ: 9 км.
Скрыть

Пусть S км - расстояние от лагеря до берега, тогда время по течению: $$t_{1}=\frac{S}{6+3}$$ часов, время против течения: $$t_{2}=\frac{S}{6-3}$$ часов. При этом время в пути составляет: $$6-2=4$$ часа, тогда:
$$\frac{S}{9}+\frac{S}{3}=4|*9\Leftrightarrow$$$$S+3S=36\Leftrightarrow$$$$4S=36|:4\Leftrightarrow$$$$S=9$$ км

Задание 2377

Катер прошёл от одной при­ста­ни до дру­гой, рас­сто­я­ние между ко­то­ры­ми по реке равно 48 км, сде­лал сто­ян­ку на 20 мин и вер­нул­ся об­рат­но через $$5\frac{1}{3}$$ ч после на­ча­ла по­езд­ки. Най­ди­те ско­рость те­че­ния реки, если из­вест­но, что ско­рость ка­те­ра в сто­я­чей воде равна 20 км/ч.

Ответ: 4 км/ч.
Скрыть

Пусть х км/ч - скорость течения реки, тогда время по течению $$t_{1}=\frac{48}{20+x}$$ часов, время против течения $$t_{2}=\frac{48}{20-x}$$ часов. Время движения за вычетом времени стоянки составляет: $$5\frac{1}{3}-\frac{1}{3}=5$$ часов. Следовательно:
$$\frac{48}{20+x}+\frac{48}{20-x}=5|*(20-x)(20+x)\Leftrightarrow$$$$48*20-48x+48*20+48x=5(400-x^{2})\Leftrightarrow$$$$384=400-x^{2}\Leftrightarrow$$$$x^{2}=16\Leftrightarrow$$$$x=\pm 4$$, но скорость отрицательной быть не может, следовательно, скорость течения составляет 4 км/ч.

Задание 2378

Мо­тор­ная лодка про­шла от одной при­ста­ни до дру­гой, рас­сто­я­ние между ко­то­ры­ми по реке равно 16 км, сде­ла­ла сто­ян­ку на 40 мин и вер­ну­лась об­рат­но через $$3\frac{2}{3}$$ ч после на­ча­ла по­езд­ки. Най­ди­те ско­рость те­че­ния реки, если из­вест­но, что ско­рость мо­тор­ной лодки в сто­я­чей воде равна 12 км/ч.

Ответ: 4 км/ч.
Скрыть

Пусть х км/ч - скорость течения, тогда время по течению $$t_{1}=\frac{16}{12+x}$$ часов, время против течения $$t_{2}=\frac{16}{12-x}$$ часов. Время движения в пути вычислим как разницу общего и стоянки: $$3\frac{2}{3}-\frac{2}{3}=3$$ часа. Следовательно:
$$\frac{16}{12+x}+\frac{16}{12-x}=3|*144-x^{2}\Leftrightarrow$$$$16*12-16x+16*12+16x=3(144-x^{2})|:3\Leftrightarrow$$$$128=144-x^{2}\Leftrightarrow$$$$x=\pm 4$$, скорость не может быть отрицательной, следовательно, скорость течения составляет 4 км/ч.

Задание 2379

Теп­ло­ход про­хо­дит по те­че­нию реки до пунк­та на­зна­че­ния 165 км и после сто­ян­ки воз­вра­ща­ет­ся в пункт от­прав­ле­ния. Най­ди­те ско­рость теп­ло­хо­да в не­по­движ­ной воде, если ско­рость те­че­ния равна 4 км/ч, сто­ян­ка длит­ся 5 часов, а в пункт от­прав­ле­ния теп­ло­ход воз­вра­ща­ет­ся через 18 часов после от­плы­тия из него.

Ответ: 26
Скрыть

Пусть х км/ч - скорость теплохода в стоячей воде. Тогда время по течению: $$t_{1}=\frac{165}{x+4}$$ часов, время против течения $$t_{2}=\frac{165}{x-4}$$ часов. Время движения найдем как разницу общего времени и стоянки: $$18-5=13$$ часов. Тогда:

$$\frac{165}{x+4}+\frac{165}{x-4}=13|*(x^{2}-16)\Leftrightarrow$$$$13x^{2}-330x-208=0\Rightarrow$$$$D=108900+10816=346^{2}\Rightarrow$$$$x_{1}=\frac{330+346}{26}=26, x_{2}<0$$. Тогда собственная скорость теплохода составляет 26 км/ч

Задание 2380

Баржа про­шла по те­че­нию реки 40 км и, по­вер­нув об­рат­но, про­шла ещё 30 км, за­тра­тив на весь путь 5 часов. Най­ди­те соб­ствен­ную ско­рость баржи, если ско­рость те­че­ния реки равна 5 км/ч.

Ответ: 15
Скрыть

Пусть х км/ч - собственная скорость баржи, тогда время движения по течению $$t_{1}=\frac{40}{x+5}$$ часов, время движения против течения $$t_{2}=\frac{30}{x-5}$$. Тогда:
$$\frac{40}{x+5}+\frac{30}{x-5}=5|*\frac{x^{2}-25}{5}\Leftrightarrow$$$$8(x-5)+6(x+5)=x^{2}-25\Leftrightarrow$$$$x^{2}-14x-15=0\Leftrightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=14\\x_{1}*x_{2}=-15\end{matrix}\right.\Leftrightarrow $$$$\left[\begin{matrix}x_{1}=15\\x_{2}=-1 \end{matrix}\right.$$
Скорость не может быть отрицательной, следовательно, она составляет 15 км/ч

Задание 2381

От при­ста­ни А к при­ста­ни В, рас­сто­я­ние между ко­то­ры­ми равно 70 км, от­пра­вил­ся с по­сто­ян­ной ско­ро­стью пер­вый теп­ло­ход, а через 1 час после этого сле­дом за ним, со ско­ро­стью, на 8 км/ч боль­шей, от­пра­вил­ся вто­рой. Най­ди­те ско­рость пер­во­го теп­ло­хо­да, если в пункт В оба теп­ло­хо­да при­бы­ли од­но­вре­мен­но.

Ответ: 20
Скрыть

Пусть х км/ч - скорость первого, тогда х+8 км/ч - скорость второго. Время первого $$t_{1}=\frac{70}{x}$$ часов, время второго $$t_{2}=\frac{70}{x+8}$$ часов. При этом первый плыл на час дольше, тогда:

$$t_{1}-t_{2}=1\Leftrightarrow$$$$\frac{70}{x}-\frac{70}{x+8}=1|*(x^{2}+64)\Leftrightarrow$$$$70x+560-70x=x^{2}+8x\Leftrightarrow$$$$x^{2}+8x-560=0\Rightarrow$$
$$\left\{\begin{matrix}x_{1}+x_{2}=-8\\x_{1}*x_{2}=-560\end{matrix}\right.\Leftrightarrow $$$$\left[\begin{matrix}x_{1}=-28\\x_{2}=20\end{matrix}\right.$$

Скорость не может быть отрицательной, следовательно, она составляла 20 км/ч

Задание 2382

Сме­шав 60%−ый и 30%−ый рас­тво­ры кис­ло­ты и до­ба­вив 5 кг чи­стой воды, по­лу­чи­ли 20%−ый рас­твор кис­ло­ты. Если бы вме­сто 5 кг воды до­ба­ви­ли 5 кг 90%−го рас­тво­ра той же кис­ло­ты, то по­лу­чи­ли бы 70%−ый рас­твор кис­ло­ты. Сколь­ко ки­ло­грам­мов 60%−го рас­тво­ра ис­поль­зо­ва­ли для по­лу­че­ния смеси?

Ответ: 2 кг
Скрыть

Пусть х кг - масса первого раствора, тогда кислоты в нем 0,6х кг. Пусть у кг - масса второго раствора, тогда кислоты в нем 0,3у кг. Сначала добавили 5 кг воды, то есть получили x+y+5 кг раствора, кислоты в котором 0,2(x+y+5) кг. При этом данная масса равна сумме масс кислоты в первоначальных растворах. Аналогично, добавив 5 кг 90%-го раствора, получим раствор массой x+y+5 кг, кислоты в котором 0,7(x+y+5), но данная кислоты уже соответствует массе кислоты в первых двух растворах и массе кислоты в 5 кг добавленного 90%-го. Получим систему уравнений:

$$\left\{\begin{matrix}0,6x+0,3y=0,2(x+y+5)\\0,6x+0,3y+0,9*5=0,7(x+y+5)\end{matrix}\right.$$

Вычтем из второго уравнения первое, получим:

$$4,5=0,5(x+y+5)|:0,5\Leftrightarrow$$$$9=x+y+5\Leftrightarrow$$$$x=4-y(1*)$$. Подставим полученное выражение вместо х в первое уравнение, умножив его первоначально на 10:

$$6(4-y)+3y=2(4-y)+2y+10\Leftrightarrow$$$$24-3y-18=0\Leftrightarrow$$$$y=2$$

Подставим полученный у в (1*): $$x=4-2=2$$, то есть масса 60%-го составляла 2 кг.

Задание 2383

Име­ет­ся два спла­ва с раз­ным со­дер­жа­ни­ем меди: в пер­вом со­дер­жит­ся 60%, а во вто­ром — 45% меди. В каком от­но­ше­нии надо взять пер­вый и вто­рой спла­вы, чтобы по­лу­чить из них новый сплав, со­дер­жа­щий 55% меди?

Ответ: $$\frac{2}{1}$$
Скрыть

Пусть х - масса первого, тогда меди в нем 0,6х, у - масса второго, меди в нем 0,45у. Тогда получаем третий сплав массой х+у, меди в котором 0,55(х+у). При этом данная масса получается путем сложения масс меди в первичных сплавах:

$$0,6x+0,45y=0,55(x+y)\Leftrightarrow$$$$0,6x-0,55x=0,55y-0,45y\Leftrightarrow$$$$0,05x=0,1y|:0,05\Leftrightarrow$$$$x=2y$$. Следовательно, масса первого в два раза больше массы второго, то есть отношение масс 2:1.

Задание 2384

При сме­ши­ва­нии пер­во­го рас­тво­ра кис­ло­ты, кон­цен­тра­ция ко­то­ро­го 20%, и вто­ро­го рас­тво­ра этой же кис­ло­ты, кон­цен­тра­ция ко­то­ро­го 50%, по­лу­чи­ли рас­твор, со­дер­жа­щий 30% кис­ло­ты. В каком от­но­ше­нии были взяты пер­вый и вто­рой рас­тво­ры?

Ответ: $$\frac{2}{1}$$
Скрыть

Пусть х - масса первого, тогда кислоты в нем 0,2х, у - масса второго, кислоты в нем 0,5у. Тогда получаем третий раствор массой х+у, кислоты в котором 0,3(х+у). При этом данная масса получается путем сложения масс кислоы в первичных сплавах:
$$0,2x+0,5y=0,3(x+y)\Leftrightarrow$$$$0,5y-0,3y=0,3x-0,2x\Leftrightarrow$$$$0,2y=0,1x|:0,1\Leftrightarrow$$$$x=2y$$.Следовательно, масса первого в два раза больше массы второго, то есть отношение масс 2:1.

Задание 2385

На пост главы ад­ми­ни­стра­ции го­ро­да пре­тен­до­ва­ло три кан­ди­да­та: Жу­равлёв, Зай­цев, Ива­нов. Во время вы­бо­ров за Ива­но­ва было от­да­но в 2 раза боль­ше го­ло­сов, чем за Жу­равлёва, а за Зай­це­ва — в 3 раза боль­ше, чем за Жу­равлёва и Ива­но­ва вме­сте. Сколь­ко про­цен­тов го­ло­сов было от­да­но за по­бе­ди­те­ля?

Ответ: 75%
Скрыть

Пусть х - количество голосов за Журавлева, тогда - за Иванова, и 3(х+2х)=9х - за Зайцева. Следовательно, всего голосов x+2x+9x=12x. Тогда, процент победителя: $$\frac{9x}{12x}*100=75$$%

Задание 2386

Пер­вый сплав со­дер­жит 5% меди, вто­рой — 13% меди. Масса вто­ро­го спла­ва боль­ше массы пер­во­го на 4 кг. Из этих двух спла­вов по­лу­чи­ли тре­тий сплав, со­дер­жа­щий 10% меди. Най­ди­те массу тре­тье­го спла­ва.

Ответ: 16 кг
Скрыть

Пусть х кг - масса первого сплава, тогда 0,05х кг - масса меди в нем. Следовательно, х+4 кг - масса второго, 0,13(х+4) кг - масса меди в нем. Тогда масса третьего х+х+4=2х+4 кг, а меди в нем 0,1(2х+4) кг. При этом данная масса получается путем сложения меди с двух первоначальных сплавов: $$0,05x+0,13(x+4)=0,1(2x+4)\Leftrightarrow$$$$0,05x+0,13x+0,52=0,2x+0,4\Leftrightarrow$$$$0,02x=0,12|:0,2\Leftrightarrow$$$$x=6$$. Тогда масса третьего сплава: $$2*6+4=16$$ кг.

Задание 2387

Све­жие фрук­ты со­дер­жат 80% воды, а вы­су­шен­ные — 28%. Сколь­ко сухих фрук­тов по­лу­чит­ся из 288 кг све­жих фрук­тов?

Ответ: 80
Скрыть

Если в свежих фруктах содержится 80% воды, тогда 20% - сухая масса, которая переходит в сушеные фрукты. Тогда:
228 кг - 100%
x кг - 20%
$$x=\frac{228*20}{100}$$ кг - сухой массы.
В сухофруктах 28% воды, следовательно, 72% сухой массы, тогда:
$$x=\frac{228*20}{100}$$ кг - 72%
у - 100%
$$y=\frac{\frac{228*20}{100}*100}{72}=80$$ кг - масса сухофруктов

Задание 2388

Сме­ша­ли не­ко­то­рое ко­ли­че­ство 10-про­цент­но­го рас­тво­ра­ не­ко­то­ро­го ве­ще­ства с таким же ко­ли­че­ством 12-про­цент­но­го рас­тво­ра ­это­го же ве­ще­ства. Сколь­ко про­цен­тов со­став­ля­ет кон­цен­тра­ция по­лу­чив­ше­го­ся рас­тво­ра?

Ответ: 11%
Скрыть

Пусть х - масса первого раствора, тогда х - масса второго раствора тоже, тогда вещества в них 0,1х и 0,12х, то есть мы получили третий раствор массой х+х=2х, вещества в котором 0,1х+0,12х=0,22х. Следовательно, концентрация полученного раствора: $$\frac{0,22x}{2x}*100=11$$%

Задание 2390

Име­ют­ся два со­су­да, со­дер­жа­щие 30 кг и 20 кг рас­тво­ра кис­ло­ты раз­лич­ной кон­цен­тра­ции. Если их слить вме­сте, то по­лу­чим рас­твор, со­дер­жа­щий 81% кис­ло­ты. Если же слить рав­ные массы этих рас­тво­ров, то по­лу­чен­ный рас­твор будет со­дер­жать 83% кис­ло­ты. Сколь­ко ки­ло­грам­мов кис­ло­ты со­дер­жит­ся во вто­ром рас­тво­ре?

Ответ: 18,6
Скрыть

Пусть х (в долях) - концентрация первого, тогда 30х кг - масса кислоты в нем. Пусть у - концентрация второго, тогда 20у кг - масса кислоты в нем. В первом случае масса нового 50 кг, а кислоты в нем 0,81*50 кг, во втором - 60 кг (взяли по 30 кг), а кислоты в нем 0,83*60 кг. Тогда:
$$\left\{\begin{matrix}30x+20y=0,81*50\\ 30x+30y=0,83*60\end{matrix}\right.$$
Вычтем из второго уравнения первое: $$10y=49,8-40,5=9,3|:10\Leftrightarrow$$$$y=0,93$$ - концентрация второго. Тогда кислоты в нем: $$0,93*20=18,6$$ кг.

Задание 2391

Све­жие фрук­ты со­дер­жат 88 % воды, а вы­су­шен­ные — 30 %. Сколь­ко тре­бу­ет­ся све­жих фрук­тов для при­го­тов­ле­ния 6 кг вы­су­шен­ных фрук­тов?

Ответ: 35 кг
Скрыть

В сушенных 30% воды, следовательно, 70% (х) - сухой массы, тогда:
6 кг - 100%
x кг - 70%
$$x=\frac{70*6}{100}$$ кг - сухая масса, именно она перешла из свежих фруктов, но, с учетом того, что воды в них 88%, то сухая масса составляет 12%, тогда:
$$x=\frac{70*6}{100}$$ ru - 12%
y кг - 100%
$$y=\frac{\frac{70*6}{100}*100}{12}=35$$ кг - масса свежих фркутов

Задание 2394

Два опе­ра­то­ра, ра­бо­тая вме­сте, могут на­брать текст га­зе­ты объ­яв­ле­ний за 8 ч. Если пер­вый опе­ра­тор будет ра­бо­тать 3 ч, а вто­рой 12 ч, то они вы­пол­нят толь­ко 75% всей ра­бо­ты. За какое время может на­брать весь текст каж­дый опе­ра­тор, ра­бо­тая от­дель­но?

Ответ: первый оператор за 12 ч, второй оператор за 24 ч.
Скрыть

Пусть х (частей работы/час) - производительность перового рабочего, у - производительность второго, весь объем работы обозначим за 1. Тогда :
$$\frac{1}{x+y}=8$$ - работая вместе выполняют за 8 часов всю работу, $$3x+12y=0,75*1$$ - работая по 3 и 12 часов, выполняют 75% от всей работы. Выразим во втором уравнении х через у: $$3x=0,75-12y|:3\Leftrightarrow$$$$x=0,25-4y$$. Подставим в первое уравнение: $$\frac{1}{x+y}=8\Leftrightarrow$$$$x+y=\frac{1}{8}\Leftrightarrow$$$$\frac{1}{4}-4y+y=\frac{1}{8}\Leftrightarrow$$$$\frac{1}{8}=3y|:3\Leftrightarrow$$$$y=\frac{1}{24}$$. Тогда $$x=\frac{1}{4}-4*\frac{1}{24}=\frac{1}{12}$$, следовательно, время первого $$t_{1}=\frac{1}{\frac{1}{12}}=12$$ часа, а время второго $$t_{2}=\frac{1}{\frac{1}{24}}=24$$ часа

Задание 2395

На из­го­тов­ле­ние 231 де­та­ли уче­ник тра­тит на 11 часов боль­ше, чем ма­стер на из­го­тов­ле­ние 462 таких же де­та­лей. Из­вест­но, что уче­ник за час де­ла­ет на 4 де­та­ли мень­ше, чем ма­стер. Сколь­ко де­та­лей в час де­ла­ет уче­ник?

Ответ: 3
Скрыть

Пусть х - число деталей, которые делает ученик в час, тогда х+4 - число деталей, которые делает мастер за час. Получаем, что время мастера $$t_{1}=\frac{462}{x+4}$$, время ученика $$t_{2}=\frac{231}{x}$$. Ученик тратит больше на 11 часов, следовательно: $$t_{2}-t_{1}=11$$, тогда:

$$\frac{231}{x}-\frac{462}{x+4}=11|*\frac{x(x+4)}{11}\Leftrightarrow$$$$21(x+4)-42x=x^{2}+4x\Leftrightarrow$$$$x^{2}+25x-84=0\Leftrightarrow$$$$D=625+336=961=31^{2}\Rightarrow$$$$x_{1}=\frac{-25+31}{2}=3, x_{3}<0$$.

То есть ученик делает по 3 детали в час.

Задание 2396

Чтобы на­ка­чать в бак 117 л воды, тре­бу­ет­ся на 5 минут боль­ше вре­ме­ни, чем на то, чтобы вы­ка­чать из него 96 л воды. За одну ми­ну­ту можно вы­ка­чать на 3 л воды боль­ше, чем на­ка­чать. Сколь­ко лит­ров воды на­ка­чи­ва­ет­ся в бак за ми­ну­ту?

Ответ: 9
Скрыть

Пусть х л/мин накачивает, тогда х+3 л/мин выкачивает. Время накачки $$t_{1}=\frac{117}{x}$$; время выкачивания $$t_{2}=\frac{96}{x+3}$$. При этом накачивает на 5 часов дольше, то есть: $$t_{1}-t_{2}=5$$, тогда:

$$\frac{117}{x}-\frac{96}{x+3}=5|*x(x+3)\Leftrightarrow$$$$117x+351-96x=5x^{2}+15x\Leftrightarrow$$$$5x^{2}-6x-351=0\Rightarrow$$$$D=36+7020=7056=84^{2}\Rightarrow$$$$x_{1}=\frac{6+84}{10}=9, x_{2}<0$$, то есть накачивает по 9 л/мин.

Задание 2397

Дима и Саша вы­пол­ня­ют оди­на­ко­вый тест. Дима от­ве­ча­ет за час на 12 во­про­сов теста, а Саша — на 22. Они од­но­вре­мен­но на­ча­ли от­ве­чать на во­про­сы теста, и Дима за­кон­чил свой тест позже Саши на 75 минут. Сколь­ко во­про­сов со­дер­жит тест?

Ответ: 33
Скрыть

Пусть х - количество вопросов в тесте. Тогда время Димы $$t_{1}=\frac{x}{12}$$ часов ; время Саши $$t_{2}=\frac{x}{22}$$ часов. Время Димы больше на 75 минут или $$\frac{75}{60}=\frac{5}{4}$$ часов: $$t_{1}-t_{2}=\frac{5}{4}$$. В итоге получаем:

$$\frac{x}{12}|*11-\frac{x}{22}|*6=\frac{5}{4}\Leftrightarrow$$$$\frac{11x-6x}{6*11*2}=\frac{5}{4}|*\frac{6*11*2}{5}\Leftrightarrow$$$$x=33$$. То есть количество вопросов в тесте составляет 33

Задание 2398

Две трубы на­пол­ня­ют бас­сейн за 8 часов 45 минут, а одна пер­вая труба на­пол­ня­ет бас­сейн за 21 часов. За сколь­ко часов на­пол­ня­ет бас­сейн одна вто­рая труба?

Ответ: 15
Скрыть

Пусть х частей бассейна/час - производительность первой, у - производительность второй, объем бассейна примем за 1. Тогда $$\frac{1}{x+y}=8\frac{45}{60}$$ - вместе наполняют бассейн за 8 часов 45 минут (в часах), время наполнения первым $$t_{1}=\frac{1}{x}=21$$, надо найти время второго $$t_{2}=\frac{1}{y}$$:
выразим из второго уравнения х: $$x=\frac{1}{21}$$ и подставим в первое:
$$\frac{1}{x+y}=\frac{35}{4}\Leftrightarrow$$$$\frac{1}{\frac{1}{21}+y}=\frac{35}{4}\Leftrightarrow$$$$\frac{35}{21}+35y=4\Leftrightarrow$$$$35y=\frac{7}{3}|:35\Leftrightarrow$$$$y=\frac{1}{15}$$. Тогда $$t_{2}=\frac{1}{\frac{1}{15}}=15$$ часов

Задание 2399

Пер­вая труба про­пус­ка­ет на 2 литра воды в ми­ну­ту мень­ше, чем вто­рая. Сколь­ко лит­ров воды в ми­ну­ту про­пус­ка­ет вто­рая труба, если ре­зер­ву­ар объёмом 130 лит­ров она за­пол­ня­ет на 4 ми­ну­ты быст­рее, чем пер­вая труба за­пол­ня­ет ре­зер­ву­ар объёмом 136 лит­ров?

Ответ: 10 литров в минуту
Скрыть

Пусть x л/мин - скорость наполнения первой, тогда х-2 л/мин - скорость второй. Время наполнения резервуара в 130 литров второй трубой : $$t_{2}=\frac{130}{x}$$ минут, время наполнения 136 литров первой трубой $$t_{1}=\frac{136}{x-2}$$. Так как первая наполняет дольше на 4 минуты, то:

$$\frac{136}{x-2}-\frac{130}{x}=4|*\frac{x(x-2)}{2}\Leftrightarrow$$$$68x-65x+130=2x^{2}-4x\Leftrightarrow$$$$2x^{2}-7x-130=0\Rightarrow$$$$D=49+1040=1089=33^{2}\Rightarrow$$$$x_{1}=\frac{7+33}{4}=10, x_{2}<0$$, следовательно, скорость второй составляет 10 л/мин.

Задание 2401

Пер­вый ра­бо­чий за час де­ла­ет на 10 де­та­лей боль­ше, чем вто­рой, и вы­пол­ня­ет заказ, со­сто­я­щий из 60 де­та­лей, на 3 часа быст­рее, чем вто­рой ра­бо­чий, вы­пол­ня­ю­щий такой же заказ. Сколь­ко де­та­лей в час де­ла­ет вто­рой ра­бо­чий?

Ответ: 10
Скрыть

Пусть х деталей в час делает второй рабочий, тогда первый делает в час х+10 деталей. Время на выполнения 60 деталей для первого $$t_{1}=\frac{60}{x+10}$$, время для второго $$t_{2}=\frac{60}{x}$$. Второй работает на 3 часа дольше, то есть:
$$\frac{60}{x}-\frac{60}{x+10}=3|*\frac{x(x+10)}{3}\Leftrightarrow$$$$20x+200-20x=x^{2}+10x\Leftrightarrow$$$$x^{2}+10x-200=0\Leftrightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=-10\\x_{1}*x_{2}=-200\end{matrix}\right.\Leftrightarrow$$$$\left[\begin{matrix}x_{1}=-20\\x_{2}=10 \end{matrix}\right.$$
Работа не может быть отрицательной, то есть второй выполняет 10 деталей в час.

Задание 2402

Три бри­га­ды из­го­то­ви­ли вме­сте 266 де­та­лей. Из­вест­но, что вто­рая бри­га­да из­го­то­ви­ла де­та­лей в 4 раза боль­ше, чем пер­вая и на 5 де­та­лей мень­ше, чем тре­тья. На сколь­ко де­та­лей боль­ше из­го­то­ви­ла тре­тья бри­га­да, чем пер­вая.

Ответ: 92
Скрыть

Пусть х - количество деталей, которое изготовила третья, тогда х-5 деталей изготовила вторая, и $$\frac{x-5}{4}$$ деталей изготовила первая. В сумме было изготовлено 266 деталей, то есть: $$x+x-5+\frac{x-5}{4}=266|*4\Leftrightarrow$$$$8x-20+x-5=1064\Leftrightarrow$$$$9x=1089|:9\Leftrightarrow$$$$x=121$$ деталей изготовила третья.
Тогда первая изготовила $$\frac{121-5}{4}=29$$ деталей
Тогда разница между третьей и первой $$121-29=92$$ детали

Задание 2403

Игорь и Паша кра­сят забор за 20 часов. Паша и Во­ло­дя кра­сят этот же забор за 24 часа, а Во­ло­дя и Игорь — за 30 часов. За сколь­ко часов маль­чи­ки по­кра­сят забор, ра­бо­тая втроём?

Ответ: 16
Скрыть

Пусть х частей забора в час - производительность Игоря, у - Паши, z - Володи. Весь забор примем за 1. Тогда:
$$\left\{\begin{matrix}\frac{1}{x+y}=20\\ \frac{1}{y+z}=24\\ \frac{1}{x+z}=30\end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix}x+y=\frac{1}{20}\\ y+z=\frac{1}{24}\\x+z=\frac{1}{30}\end{matrix}\right.$$
Сложим все три уравнения, получим:
$$2x+2y+2z=\frac{1}{20}+\frac{1}{24}+\frac{1}{30}\Leftrightarrow$$$$2(x+y+z)=\frac{6+5+4}{120}|:2\Leftrightarrow$$$$x+y+z=\frac{1}{16}$$. То есть, работая вместе, они за час выполняют 1/16 всей работы, следовательно, всю работу они выполняют за 16 часов

Задание 2408

Из пяти сле­ду­ю­щих утвер­жде­ний о ре­зуль­та­тах матча хок­кей­ных ко­манд "Транс­пор­тир" и "Ли­ней­ка" че­ты­ре ис­тин­ны, а одно — ложно. Опре­де­ли­те, с каким сче­том за­кон­чил­ся матч, и ука­жи­те по­бе­ди­те­ля (если матч за­вер­шил­ся по­бе­дой одной из ко­манд). Ответ обос­нуй­те.

  1. Вы­иг­рал "Транс­пор­тир".
  2. Всего в матче было за­бро­ше­но менее 10 шайб.
  3. Матч за­кон­чил­ся вни­чью.
  4. Всего в матче было за­бро­ше­но более 8 шайб.
  5. "Ли­ней­ка" за­бро­си­ла более 3 шайб.
Ответ: 5:4 в пользу "Транспортира"
Скрыть

Одно из утверждений b, c или d является однозначно ложным, так как если закинули менее 10, но более 8 шайб, то количество, в таком случае, составляет 9, но тогда сыграть вничью не получилось бы, следовательно, одна из команд выиграла. Пусть верен пункт а, тогда осталось проверить подлинность пункта е при выполнении b и d. Если "Линейка" забросила более 3 шайб, но при этом проиграла, то она могла забросить только 4 шайбы. То есть получаем, что "Транспортир" выиграл со счетом 5:4 и тогда неверным будет утверждение под пунктом с

Задание 2409

Най­ди­те целое число, если из двух сле­ду­ю­щих утвер­жде­ний верно толь­ко одно:

1) $$a> -17$$;

2) $$a> -18$$.

Ответ: -17
Скрыть

Проверим данные утверждения. Если верно утверждение под номером 1, то мы можем взять любой целое больше -17, но тогда оно будет больше и -18, и не выполняется условие верности только одного утверждения.
Если же верно второе, то мы можем взять такое число, которое будет строго больше, чем -18, но не больше -17, собственно, это число и есть -17 (первое условие не выполняется в силу строгости неравенства)

Задание 2410

Най­ди­те целое число, если из двух сле­ду­ю­щих утвер­жде­ний верно толь­ко одно:

1) $$a<34$$;

2) $$a<35$$.

Ответ: 34
Скрыть

Проверим данные утверждения. Если верно утверждение под номером 1, то мы можем взять любой целое меньше 34, но тогда оно будет меньше и 35, и не выполняется условие верности только одного утверждения.
Если же верно второе, то мы можем взять такое число, которое будет строго меньше, чем 35, но не больше 34, собственно, это число и есть 34 (первое условие не выполняется в силу строгости неравенства)

Задание 2411

Кро­лик утвер­жда­ет, что вчера Винни-Пух съел не менее 9 ба­но­чек мёда, Пя­та­чок — что не менее 8 ба­но­чек, ослик Иа — что не менее 7. Сколь­ко ба­но­чек мёда съел вчера Винни-Пух, если из трех этих утвер­жде­ний ис­тин­но толь­ко одно?

Ответ: 7
Скрыть

Пусть верно утверждение, что не менее 9, но тогда выполняется утверждения и не менее 8 и 7, но нарушается утверждения истинности одного.
Пусть верно утверждения, что не менее 8, тогда так же выполняется, что не менее 7, и нарушается истинность только одного из трех.
Получаем, что истинно третье утверждение, и не должно выполняться второе и первое, то есть должно быть не менее 7, но менее 8 баночек. Получаем 7 штук

Задание 2412

Из пунк­тов А и В, рас­сто­я­ние между ко­то­ры­ми 19 км, вышли од­но­вре­мен­но нав­стре­чу друг другу два пе­ше­хо­да и встре­ти­лись в 9 км от А. Най­ди­те ско­рость пе­ше­хо­да, шед­ше­го из А, если из­вест­но, что он шёл со ско­ро­стью, на 1 км/ч боль­шей, чем пе­ше­ход, шед­ший из В, и сде­лал в пути по­лу­ча­со­вую оста­нов­ку.

Ответ: 6
Скрыть

Пусть х км/ч - скорость пешехода, шедшего из А, х-1 км/ч - скорость пешехода, шедшего из В. Так как они встретились в 9 км от А, то из В прошел 10 км. То есть время из А $$t_{1}=\frac{9}{x}$$ часов, время из В $$t_{2}=\frac{10}{x-1}$$ часов. Так как из А делал остановку на полчаса и вышли они одновременно, то время движения из В на полчаса больше, то есть:
$$\frac{10}{x-1}-\frac{9}{x}=\frac{1}{2}|*2x(x-1)\Leftrightarrow$$$$20x-18x+18=x^{2}-x\Leftrightarrow$$$$x^{2}-3x-18=0\Leftrightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=3\\x_{1}*x_{2}=-18 \end{matrix}\right.\Leftrightarrow$$$$ \left[\begin{matrix}x_{1}=6\\x_{2}=-3\end{matrix}\right.$$. Скорость не может быть отрицательной, следовательно, она составляла 6 км/ч

Задание 2413

Рас­сто­я­ние между го­ро­да­ми А и В равно 375 км. Город С на­хо­дит­ся между го­ро­да­ми А и В. Из го­ро­да А в город В вы­ехал ав­то­мо­биль, а через 1 час 30 минут сле­дом за ним со ско­ро­стью 75 км/ч вы­ехал мо­то­цик­лист, до­гнал ав­то­мо­биль в го­ро­де С и по­вер­нул об­рат­но. Когда он вер­нул­ся в А, ав­то­мо­биль при­был в В. Най­ди­те рас­сто­я­ние от А до С.

Ответ: 225 км
Скрыть

Пусть х км/ч - скорость автомобиля, у км - расстояние до пункта С, следовательно, расстояние от С до В 375-у км. Так как объекты двигаются друг за другом и встречаются в пункте С, то $$\frac{y}{x}-\frac{y}{75}=1,5$$ часа (разница во времени составляет те самые 1,5 часа). Так как от С в В автомобиль и из С в А мотоцикл прибыли одновременно, то $$\frac{y}{75}=\frac{375-y}{x}$$.

Выразим в первом уравнении у через х: $$\frac{y}{x}-\frac{y}{75}=1,5\Leftrightarrow$$$$y(\frac{1}{x}-\frac{1}{75})=\frac{3}{2}\Leftrightarrow$$$$y*\frac{75-x}{75x}=\frac{3}{2}\Leftrightarrow$$$$y=\frac{225x}{150-2x}$$

Подставим во второе: $$\frac{\frac{225x}{150-2x}}{75}=\frac{375-\frac{225x}{150-2x}}{x}\Leftrightarrow$$$$\frac{225x}{(150-2x)75}=\frac{375(150-2x)-225}{x(150-2x)}|*\frac{150-2x}{75}\Leftrightarrow$$$$\frac{3x}{75}=\frac{5(150-2x)-3x}{x}\Leftrightarrow$$$$3x^{2}=(750-13x)75|:3\Leftrightarrow$$$$x^{2}+325x-18750=0\Leftrightarrow$$$$D=105625+75000=180625=425^{2}\Rightarrow$$$$x_{1}=\frac{-325+425}{2}=50 ,x_{2}<0$$, следовательно, скорость автомобиля составляла 50 км/ч, тогда $$y=\frac{225*50}{150-2*50}=225$$км

Задание 2415

Рас­сто­я­ние между го­ро­да­ми А и В равно 750 км. Из го­ро­да А в город В со ско­ро­стью 50 км/ч вы­ехал пер­вый ав­то­мо­биль, а через три часа после этого нав­стре­чу ему из го­ро­да В вы­ехал со ско­ро­стью 70 км/ч вто­рой ав­то­мо­биль. На каком рас­сто­я­нии от го­ро­да А ав­то­мо­би­ли встре­тят­ся?

Ответ: 400 км
Скрыть

За три часа первый пройдет $$3*50=150$$км, следовательно, между автомобилями останется $$750-150=600$$км. Тогда, встретятся они через $$\frac{600}{70+50}=5$$ часов. То есть автомобиль из А в дороге будет $$3+5=8$$ часов, и пройдет $$8*50=400$$ км

Задание 2416

Же­лез­но­до­рож­ный со­став дли­ной в 1 км прошёл бы мимо стол­ба за 1 мин., а через тун­нель (от входа ло­ко­мо­ти­ва до вы­хо­да по­след­не­го ва­го­на) при той же ско­ро­сти — за 3 мин. Ка­ко­ва длина тун­не­ля (в км)?

Ответ: 2
Скрыть

Так как состав прошел мимо столба за одну минуту (по факту он проходит свою же длину), то его скорость можно вычислить как $$1*60=60$$ км/ч (умножили длину на количество минут в часе). Проходя же через туннель поезд проезжает сначала длину туннеля, затем свою собственную. Пусть длина туннеля х км, тогда выразим время, как отношения расстояния к скорости: $$\frac{x+1}{60}=\frac{3}{60}|*60\Leftrightarrow$$$$x+1=3\Leftrightarrow$$$$x=2$$км.

Задание 2417

Из пунк­та А в пункт В, рас­сто­я­ние между ко­то­ры­ми 13 км, вышел пе­ше­ход. Од­но­вре­мен­но с ним из В в А вы­ехал ве­ло­си­пе­дист. Ве­ло­си­пе­дист ехал со ско­ро­стью, на 11 км/ч боль­шей ско­ро­сти пе­ше­хо­да, и сде­лал в пути по­лу­ча­со­вую оста­нов­ку. Най­ди­те ско­рость пе­ше­хо­да, если из­вест­но, что они встре­ти­лись в 8 км от пунк­та В.

Ответ: 5 км/ч
Скрыть

Пусть х км/ч - скорость пешехода, тогда х+11 км/ч - скорость велосипедиста. Так как встретились в 8 км от В, то расстояние от А составляло $$13-8=5$$км, тогда время движения пешехода $$t_{1}=\frac{5}{x}$$ часов, время движения велосипедиста $$t_{2}=\frac{8}{x+11}$$. Так как выехал одновременно, но сделал получасовую остановку велосипедист, то время его движения будет на эти полчаса меньше, то есть:
$$\frac{5}{x}-\frac{8}{x+11}=\frac{1}{2}|*2x(x+11)\Leftrightarrow$$$$10(x+11)-16x=x^{2}+11x\Leftrightarrow$$$$x^{2}+17x-110=0\Leftrightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=-17\\x_{1}*x_{2}=-110 \end{matrix}\right.\Leftrightarrow$$$$\left[\begin{matrix}x_{1}=-22\\x_{2}=5\end{matrix}\right.$$. Скорость не может быть отрицательной, следовательно, скорость пешехода составляла 5 км/ч

Задание 2418

Поезд, дви­га­ясь рав­но­мер­но со ско­ро­стью 63 км/ч, про­ез­жа­ет мимо иду­ще­го в том же на­прав­ле­нии па­рал­лель­но путям со ско­ро­стью 3 км/ч пе­ше­хо­да за 57 се­кунд. Най­ди­те длину по­ез­да в мет­рах.

Ответ: 950 м
Скрыть

Когда два объекта двигаются друг за другом, то можно рассмотреть ситуацию, когда тот, которого догоняют, стоит на месте, а тот, который догоняет, двигается относительно первого со скоростью, равной разности их первоначальных скоростей, то есть человек стоит, а поезд двигается относительно него со скоростью $$63-3=60$$ км/ч. Представим время в часах 57 секунд составляют $$\frac{57}{3600}$$ часа. Тогда длина состава и есть пройденное им расстояние $$S=60*\frac{57}{3600}=0,95$$ км, что в метрах составляет $$0,95*1000=950$$ метров

Задание 2419

Из двух го­ро­дов од­но­вре­мен­но нав­стре­чу друг другу от­пра­ви­лись два ве­ло­си­пе­ди­ста. Про­ехав не­ко­то­рую часть пути, пер­вый ве­ло­си­пе­дист сде­лал оста­нов­ку на 30 минут, а затем про­дол­жил дви­же­ние до встре­чи со вто­рым ве­ло­си­пе­ди­стом. Рас­сто­я­ние между го­ро­да­ми со­став­ля­ет 144 км, ско­рость пер­во­го ве­ло­си­пе­ди­ста равна 24 км/ч, ско­рость вто­ро­го — 28 км/ч. Опре­де­ли­те рас­сто­я­ние от го­ро­да, из ко­то­ро­го вы­ехал вто­рой ве­ло­си­пе­дист, до места встре­чи.

Ответ: 84 км
Скрыть

Пусть t часов - время, через которые встретились велосипедисты с момента выезда, тогда время движения второго и есть t, а время движения первого $$t-\frac{1}{2}$$ часа. Тогда первый пройдет расстояние $$s_{1}=24*(t-\frac{1}{2})$$ км, а второй пройдет $$s_{2}=28t$$ км, что в сумме даст общее расстояние в 144 км:
$$24t-12+28t=144\Leftrightarrow$$$$52t=156\Leftrightarrow$$$$t=3$$ часа двигался второй. Тогда расстояние, им пройденное, составит $$3*28=84$$ км

Задание 2420

Два ве­ло­си­пе­ди­ста од­но­вре­мен­но от­прав­ля­ют­ся в 60-ки­ло­мет­ро­вый про­бег. Пер­вый едет со ско­ро­стью на 10 км/ч боль­шей, чем вто­рой, и при­бы­ва­ет к фи­ни­шу на 3 часа рань­ше вто­ро­го. Най­ди­те ско­рость ве­ло­си­пе­ди­ста, при­шед­ше­го к фи­ни­шу вто­рым.

Ответ: 10
Скрыть

Путь х км/ч - скорость второго, тогда х+10 км/ч - скорость первого, тогда, время первого $$t_{1}=\frac{60}{x+10}$$ часов, $$t_{2}=\frac{60}{x}$$ часов - время второго. При этом второй ехал на 3 часа дольше, то есть :
$$\frac{60}{x}-\frac{60}{x+10}=3|*\frac{x(x+10)}{3}\Leftrightarrow$$$$20x+200-20x=x^{2}+10x\Leftrightarrow$$$$x^{2}+10x-200=0\Rightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=-10\\x_{1}*x_{2}=-200 \end{matrix}\right.\Leftrightarrow$$$$\left[\begin{matrix}x_{1}=-20\\x_{2}=10\end{matrix}\right.$$. Скорость не может быть отрицательной, следовательно, скорость второго составляла 10 км/ч.

Задание 2421

Пер­вый ве­ло­си­пе­дист вы­ехал из посёлка по шоссе со ско­ро­стью 18 км/ч. Через час после него со ско­ро­стью 16 км/ч из того же посёлка в том же на­прав­ле­нии вы­ехал вто­рой ве­ло­си­пе­дист, а ещё через час — тре­тий. Най­ди­те ско­рость тре­тье­го ве­ло­си­пе­ди­ста, если сна­ча­ла он до­гнал вто­ро­го, а через 4 часа после этого до­гнал пер­во­го.

Ответ: 24 км/ч
Скрыть

Пусть х км/ч - скорость третьего. К моменту выезда третьего первый проехал $$18*2=36$$ км, следовательно, третий его догонит через $$t_{1}=\frac{36}{x-18}$$ часов. Второй проехал $$16*1=16$$ км, тогда третий его догонит через $$t_{2}=\frac{16}{x-16}$$ часов. При этом разница во времени составляет 4 часа, то есть:
$$\frac{36}{x-18}-\frac{16}{x-16}=4|*\frac{(x-18)(x-16)}{4}\Leftrightarrow$$$$9(x-16)-4(x-18)=(x-16)(x-18)\Leftrightarrow$$$$9x-144-4x+72=x^{2}-34x+288\Leftrightarrow$$$$x^{2}-39x+360=0\Rightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=39\\x_{1}*x_{2}=360\end{matrix}\right.\Rightarrow$$$$\left[\begin{matrix}x_{1}=24\\x_{2}=15\end{matrix}\right.$$Скорость не может быть 15 км/ч, так как он не смог бы догонять первых двух велосипедистов, следовательно, она составляла 24 км/ч

Задание 2422

Из А в В од­но­вре­мен­но вы­еха­ли два ав­то­мо­би­ли­ста. Пер­вый про­ехал с по­сто­ян­ной ско­ро­стью весь путь. Вто­рой про­ехал первую по­ло­ви­ну пути со ско­ро­стью, мень­шей ско­ро­сти пер­во­го ав­то­мо­би­ли­ста на 11 км/ч, а вто­рую по­ло­ви­ну пути про­ехал со ско­ро­стью 66 км/ч, в ре­зуль­та­те чего при­был в В од­но­вре­мен­но с пер­вым ав­то­мо­би­ли­стом. Най­ди­те ско­рость пер­во­го ав­то­мо­би­ли­ста, если из­вест­но, что она боль­ше 40 км/ч.

Ответ: 44
Скрыть

Пусть х км/ч - скорость первого, тогда х-11 км/ч - скорость второго на первой половине пути. Примем все расстояние за S км. Тогда, $$t_{1}=\frac{S}{x}$$ часов - время первого, $$t_{2}=\frac{0,5S}{x-11}+\frac{0,5S}{66}$$ часов - время второго. Велосипедисты прибыли одновременно, следовательно:
$$\frac{S}{x}=\frac{0,5S}{x-11}+\frac{0,5S}{66}|:S\Leftrightarrow$$$$\frac{1}{x}=\frac{0,5}{x-11}+\frac{0,5}{66}|*66x(x-11)\Leftrightarrow$$$$66(x-11)=33x+0,5x(x-11)|*2\Leftrightarrow$$$$132x-132*11=66x+x^{2}-11x\Leftrightarrow$$$$x^{2}-77x+1452=0\Rightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=77\\x_{1}*x_{2}=1452\end{matrix}\right.\Rightarrow$$$$\left[\begin{matrix}x_{1}=33\\x_{2}=44\end{matrix}\right.$$, скорость должна быть более 40 км/ч, то есть 44 км/ч

Задание 2423

Из го­ро­дов А и В нав­стре­чу друг другу од­но­вре­мен­но вы­еха­ли мо­то­цик­лист и ве­ло­си­пе­дист. Мо­то­цик­лист при­е­хал в В на 40 минут рань­ше, чем ве­ло­си­пе­дист при­е­хал в А, а встре­ти­лись они через 15 минут после вы­ез­да. Сколь­ко часов за­тра­тил на путь из В в А ве­ло­си­пе­дист?

Ответ: 1
Скрыть

Пусть х частей расстояния/час - скорость велосипедиста, y - мотоциклиста, все расстояние примем за 1. Так как они встретились через 15 минут ($$\frac{15}{60}=\frac{1}{4}$$ часа), то $$\frac{1}{x+y}=\frac{1}{4}(*1)$$. Время, которое тратит мотоциклист на весь путь из А в В равно $$t_{1}=\frac{1}{y}$$ часов, велосипедист $$t_{2}=\frac{1}{x}$$ часов, и они различаются на 40 минут ($$\frac{2}{3}$$ часа), тогда: $$\frac{1}{x}-\frac{1}{y}=\frac{2}{3}(*2)$$.
Выразим в первом уравнении у через х:
$$\frac{1}{x+y}=\frac{1}{4}\Leftrightarrow$$$$x+y=4\Leftrightarrow$$$$y=4-x$$. Подставим во второе:
$$\frac{1}{x}-\frac{1}{4-x}=\frac{2}{3}|*3x(4-x)\Leftrightarrow$$$$12-3x-3x=8x-2x^{2}\Leftrightarrow$$$$2x^{2}-14x+12=0|:2\Leftrightarrow$$$$x^{2}-7x+6=0\Rightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=7\\x_{1}*x_{2}=6\end{matrix}\right.\Rightarrow$$$$\left[\begin{matrix}x_{1}=6\\x_{2}=1\end{matrix}\right.$$
При х=6 $$y=4-6=-2$$ - число отрицательное, не подходит
При х=1 $$y=4-1=3$$ - подходит, следовательно, скорость велосипедиста составляла 1 часть расстояния в час, то есть за час он преодолел все расстояние

Задание 2424

Пер­вые 5 часов ав­то­мо­биль ехал со ско­ро­стью 60 км/ч, сле­ду­ю­щие 3 часа — со ско­ро­стью 100 км/ч, а по­след­ние 4 часа — со ско­ро­стью 75 км/ч. Най­ди­те сред­нюю ско­рость ав­то­мо­би­ля на про­тя­же­нии всего пути.

Ответ: 75
Скрыть

За первые 5 часов прошел: $$5*60=300$$ км
За следующие 3 часа прошел: $$3*100=300$$ км
За оставшиеся 4 часа прошел: $$4*75=300$$ км
Тогда общий путь составил 900 км, а общее время 12 часов, следовательно, средняя скорость составила: $$\frac{900}{12}=75$$ км/ч

Задание 2425

Два бе­гу­на од­но­вре­мен­но стар­то­ва­ли в одном на­прав­ле­нии из од­но­го и того же места кру­го­вой трас­сы в беге на не­сколь­ко кру­гов. Спу­стя один час, когда од­но­му из них оста­ва­лось 1 км до окон­ча­ния пер­во­го круга, ему со­об­щи­ли, что вто­рой бегун прошёл пер­вый круг 20 минут назад. Най­ди­те ско­рость пер­во­го бе­гу­на, если из­вест­но, что она на 8 км/ч мень­ше ско­ро­сти вто­ро­го.

Ответ: 13
Скрыть

Пусть х км/ч - скорость первого, тогда х+8 км/ч - скорость второго. Пусть у км - один круг, тогда:
за час первый не дошел до конца круга 1 км, следовательно, $$1*x=y-1$$
второй прошел круг за 20 минут до часа, то есть за 40 минут ($$\frac{2}{3}$$ часа), следовательно, $$\frac{2}{3}*(x+8)=y$$. Подставим из второго уравнения в первое выражение вместо у:
$$x=\frac{2}{3}(x+8)-1|*3\Leftrightarrow$$$$3x=2x+16-3\Leftrightarrow$$$$x=13$$ км/ч - скорость первого

Задание 2426

Пер­вые 300 км ав­то­мо­биль ехал со ско­ро­стью 60 км/ч, сле­ду­ю­щие 300 км — со ско­ро­стью 100 км/ч, а по­след­ние 300 км — со ско­ро­стью 75 км/ч. Най­ди­те сред­нюю ско­рость ав­то­мо­би­ля на про­тя­же­нии всего пути.

Ответ: 75
Скрыть

Время, потраченное на первые 300 км: $$\frac{300}{60}=5$$ часов
На следующие 300: $$\frac{300}{100}=3$$ часа
На последние 300: $$\frac{300}{75}=4$$ часа
Итого пройдено 900 км, а потрачено 12 часов, следовательно, средняя скорость составляет: $$\frac{900}{12}=75$$ км/ч

Задание 2427

Первую по­ло­ви­ну трас­сы ав­то­мо­биль про­ехал со ско­ро­стью 55 км/ч, а вто­рую — со ско­ро­стью 70 км/ч. Най­ди­те сред­нюю ско­рость ав­то­мо­би­ля на про­тя­же­нии всего пути.

Ответ: 61,6
Скрыть

Пусть 2у км - длина всей трассы, тогда время на первую половину $$t_{1}=\frac{y}{55}$$ часов, а время на вторую $$t_{2}=\frac{y}{70}$$ часов, тогда общее время $$t=\frac{y}{55}+\frac{y}{70}=\frac{14y+11y}{5*11*14}=\frac{5y}{11*14}$$ часов. Следовательно, средняя скорость составит: $$\frac{2y}{\frac{5y}{11*14}}=61,6$$ км/ч

Задание 2429

До­ро­га между пунк­та­ми A и В со­сто­ит из подъёма и спус­ка, а её длина равна 14 км. Ту­рист прошёл путь из А в В за 4 часа, из ко­то­рых спуск занял 2 часа. С какой ско­ро­стью ту­рист шёл на спус­ке, если его ско­рость на подъёме мень­ше его ско­ро­сти на спус­ке на 3 км/ч?

Ответ: 5
Скрыть

Пусть x км/ч - скорость на спуске, тогда х-3 км/ч - скорость на подъеме. Пусть у км - длина подъема, тогда 14-у км - длина спуска. Получаем время на подъеме: $$\frac{y}{x-3}=2$$ часов, время на спуске: $$\frac{14-y}{x}=2$$ часов. Выразим из первого у через х:
$$\frac{y}{x-3}=2\Leftrightarrow$$$$y=2x-6$$. Подставим во второе уравнение:
$$\frac{14-2x+6}{x}=2\Leftrightarrow$$$$20-2x=2x\Leftrightarrow$$$$x=5$$ км/ч - скорость на спуске.

Задание 2430

Два че­ло­ве­ка од­но­вре­мен­но от­прав­ля­ют­ся из од­но­го и того же места по одной до­ро­ге на про­гул­ку до опуш­ки леса, на­хо­дя­щей­ся в 4 км от места от­прав­ле­ния. Один идёт со ско­ро­стью 2,7 км/ч, а дру­гой — со ско­ро­стью 4,5 км/ч. Дойдя до опуш­ки, вто­рой с той же ско­ро­стью воз­вра­ща­ет­ся об­рат­но. На каком рас­сто­я­нии от точки от­прав­ле­ния про­изойдёт их встре­ча?

Ответ: 3
Скрыть

Пусть х км - расстояние от конечного пункта, на котором встретятся люди. Тогда первый пройдет 4-х км и затратит на это $$\frac{4-x}{2,7}$$ час, а второй пройдет 4+х км и затратит на это $$\frac{4+x}{4,5}$$ часа. Вышли они одновременно, остановок не делали, следовательно, их время равно:
$$\frac{4-x}{2,7}=\frac{4+x}{4,5}|*0,9\Leftrightarrow$$$$5(4-x)=3(4+x)\Leftrightarrow$$$$20-5x=12+3x\Leftrightarrow$$$$8=8x\Leftrightarrow$$$$x=1$$ км. Тогда от точки отправление будет $$4-1=3$$ км.

Задание 2432

Ве­ло­си­пе­дист вы­ехал с по­сто­ян­ной ско­ро­стью из го­ро­да А в город В, рас­сто­я­ние между ко­то­ры­ми равно 100 км. От­дох­нув, он от­пра­вил­ся об­рат­но в А, уве­ли­чив ско­рость на 15 км/ч. По пути он сде­лал оста­нов­ку на 6 часов, в ре­зуль­та­те чего за­тра­тил на об­рат­ный путь столь­ко же вре­ме­ни, сколь­ко на путь из А в В. Най­ди­те ско­рость ве­ло­си­пе­ди­ста на пути из А в В.

Ответ: 10
Скрыть

Пусть х км/ч - скорость велосипедиста в одну сторону, тогда х+15 км/ч - его скорость в обратную сторону. Время из А в В выражается как $$\frac{100}{x}$$ часов, время на обратный путь $$\frac{100}{x+15}$$ часов. Время движения в обратную сторону меньше времени движения из А в В на 6 часов (время остановки), тогда:
$$\frac{100}{x}-\frac{100}{x+15}=6|*\frac{x(x+15)}{2}\Leftrightarrow$$$$50(x+15)-50x=3x^{2}+45x\Leftrightarrow$$$$3x^{2}+15x-750=0|:3\Leftrightarrow$$$$x^{2}+5x-150=0\Rightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=-5\\x_{1}*x_{2}=-150\end{matrix}\right.\Rightarrow$$$$\left[\begin{matrix}x_{1}=-15\\x_{2}=10\end{matrix}\right.$$ - скорость не может быть отрицательной, следовательно, скорость из А в В составляла 10 км/ч

Задание 2668

Мимо наблюдателя поезд проходит за 10 секунд, а мимо моста длиной 400 метров - за 30 секунд. Считается, что поезд проходит мимо моста начиная с того момента, когда локомотив въезжает на мост, и кончая моментом, когда последний вагон покидает мост. Определите длину и скорость поезда.

Ответ: 0,2 км и 72 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х - длина поезда в км; у - скорость поезда в км/ч.

1) $$\frac{x}{y}=\frac{10}{3600}$$ час - 3600 секунд $$\Rightarrow$$ 10 секунд=$$\frac{10}{3600}$$ часа
2) $$\frac{0,4+x}{y}=\frac{30}{3600}$$ передний вагон поезда проходит длину моста и длину поезда

из (1) у=360х подставим во (2):

$$\frac{0,4+x}{360x}=\frac{1}{120}$$ $$\Leftrightarrow$$ $$48+120x=360x$$ $$\Leftrightarrow$$ $$240x=48$$ $$\Leftrightarrow$$ $$x=0,2$$ $$\Rightarrow$$ $$y=360\cdot 0,2=72$$

Задание 2772

Аня и Даша решают задачи. Аня может решить 30 задач за то время, за которое Даша может решить в два раза меньше задач. Аня и Даша могут решить эти 30 задач за 2 часа. За сколько часов Аня может решить 30 задач?
 

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть x - количество задач в час решает Аня, 0,5x- Даша. $$\frac{30}{x+0,5x}=2$$ $$30=3x$$ $$x=10$$ $$\Rightarrow$$ $$0,5x=5$$ $$\Rightarrow$$ $$\frac{30}{10}=3$$ ч - Аня

Задание 2813

Каждый из двух рабочих одинаковой квалификации может выполнить заказ за 16 часов. Через 2 часа после того, как один из них приступил к выполнению заказа, к нему присоединился второй рабочий, и работу над заказом они довели до конца уже вместе. Сколько часов потребовалось на выполнение всего заказа?

Ответ: 9
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть объем заказа 1. $$v_{1}=v_{2}=\frac{1}{16}$$ Пусть вместе работали х часов. $$2\cdot \frac{1}{16}+x(\frac{1}{16}+\frac{1}{16})=1$$ $$\frac{x}{8}=\frac{7}{8}\Rightarrow x=7$$ В итоге общая работа составила : $$7+2=9$$ часов

Задание 2891

Из двух городов, расстояние между которыми 9 км, навстречу друг другу выехали два велосипедиста и встретились через 20 минут. Если бы они ехали в одном направлении, то второй догнал бы первого через три часа. Найдите скорость второго велосипедиста

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 2926

За 8 тетрадей и 10 альбомов для рисования заплатили 4560 р. Во время распродажи цена на тетради была снижена на 25%, а на альбомы на 10% и такая покупка стала стоить 3780 р. Найдите первоначальную цену каждого вида товара.

Ответ: 240 и 270
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Решение временно отсутствует, можете найти его в моем видео-разборе ( вначале варианта )

Задание 2975

По течению реки поплыл плот, а через 5 часов 20 мин после этого – моторная лодка, которая догнала плот через 20 км. Какова скорость течения реки, если скорость лодки в стоячей воде 12 км/ч?

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Текстовое решение временно отсутствует. Вы можете найти разбор в видео перед вариантом

Задание 3016

Расстояние между двумя городами скорый поезд проходит на 4 часа быстрее товарного и на 1 час быстрее пассажирского. Скорость товарного поезда составляет 5/8 скорости пассажирского и на 50 км/ч меньше скорости скорого. Найдите скорость скорого поезда.

Ответ: 100 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть x - v пассажир. $$\Rightarrow$$

$$\frac{5}{8}x$$ - v товарного $$\Rightarrow$$

$$\frac{5}{8}x+50$$ - v cкорого.

$$\left\{\begin{matrix}\frac{S}{(\frac{5}{8}x+50)}=\frac{S}{\frac{5x}{8}}-4\\\frac{S}{(\frac{5}{8}x+50)}=\frac{S}{x}-1\end{matrix}\right.$$

$$\frac{S}{\frac{5x}{8}}-4-(\frac{S}{x}-1=0$$

$$\frac{8S}{5x}-4-\frac{1S}{x}+1=0$$

$$\frac{S(8-5)}{5x}-3=0$$

$$\frac{3S}{5x}=3$$ $$\Rightarrow$$ $$3S=3\cdot5x$$

$$\Rightarrow$$ $$x=\frac{3S}{3\cdot 5}=\frac{S}{5}\Rightarrow$$

vпассажир - $$\frac{1}{5}$$ расстояния в час $$\Rightarrow$$ за 5 часов $$\Rightarrow$$ товарный за 8, скорого - за 4.

$$\frac{5}{8}x\cdot 8=(\frac{5}{8}x+50)\cdot 4$$

$$5x\cdot 8=\frac{5}{2}x+200$$

$$x=80$$

$$\frac{5}{8}\cdot 8+50=100$$ км/ч

Задание 3100

Первые 150 км автомобиль проехал с некоторой скоростью, а затем оставшееся расстояние в 1,6 раз больше того, что проехал, преодолел со скоростью на 4% меньшей. С какой скоростью он ехал сначала, если средняя скорость автомобиля на всем пути составила 48,75 км/час?

Ответ: 50
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

150 - 1ая часть пути

$$150\cdot1,6=240$$ - 2ая часть

$$\frac{150}{a}-t_{2}$$

$$\frac{240}{0,96a}-t_{2}$$

$$v_{cp}=\frac{150+240}{\frac{150}{a}+\frac{250}{a}}=48,75$$

$$\frac{390\cdot a}{400}=48,75$$ $$\Leftrightarrow$$ $$a=50$$

Задание 3140

Моторная лодка спускается вниз по реке от A до B за 6 часов, причем собственная скорость лодки в 3 раза больше скорости течения реки. За какое время лодка поднимается вверх по реке от B до А.

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть S - расстояние от A до B Пусть x - скорость течения, тогда 3x - собственная скорость лодки, 3x+x=4x - скорость лодки вниз по реке(по течению), 3x-x=2x - скорость лодки вверх по реке (против течения). Уже очевидно, что обратно он будет плыть в два раза дольше, так как скорость его в два раза меньше, то есть 6*2=12 ч. Если расписывать: время движения вниз по течению выражается как: $$6=\frac{S}{4x}$$ $$\frac{S}{x}=24$$ Время движения вниз по течению выражается как: $$\frac{S}{2x}=\frac{\frac{S}{x}}{2}=\frac{24}{2}=12$$

Задание 3187

Через 1 мин после начала равномерного спуска воды из бассейна в нём осталось 400 м3 воды, а ещё через 3 мин - 250 м3 . Сколько воды было в бассейне до начала спуска?

Ответ: 450 м3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

За 3 мин спустило: $$400-250=150$$

в минуту спускает: $$\frac{150}{3}=50$$ м3

В начале было: $$400+50\cdot1=450$$ м3

Задание 3272

Насос может выкачать из бассейна $$\frac{2}{3}$$ воды за 7,5 мин. Проработав 9 мин, насос остановился. Найдите вместимость бассейна, если после остановки насоса в бассейне  осталось еще 20 м³ воды. 

Ответ: 100
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х - производительность насоса; V - объем бассейна. $$\frac{\frac{2}{3}V}{x}=7,5$$ $$\Rightarrow$$ $$x=\frac{2V}{3\cdot7,5}=$$ $$=\frac{2V}{\frac{3\cdot75}{10}}=\frac{2\cdot10V}{3\cdot75}=\frac{4V}{45}$$ За 9 минут: $$\frac{4V}{45}\cdot9=\frac{4V}{5}$$ $$\Rightarrow$$ осталось: $$V-\frac{4V}{5}=\frac{V}{5}=20$$ $$\Rightarrow$$ $$V=100$$

Задание 3311

Двое рабочих за одну смену изготовили 72 детали. После увеличения производительности первого рабочего на 15%, а второго на 25%, они вместе за смену изготовили 86 деталей. Сколько деталей в смену изготовил первый рабочий до повышения производительности?

Ответ: 40
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3358

Актер Энский за роль Деда Мороза получил премию равную 40% своего оклада, а актриса Эмская, за роль Снегурочки – 30% своего оклада. Премия Деда Мороза оказалась на 4500 р. больше премии Снегурочки. Каков оклад актера, если он на 5000 р. больше оклада актрисы?

Ответ: 30000
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3406

Два поезда отправились одновременно из пунктов А и В навстречу друг другу. Скорость первого поезда на 10 км/ч больше скорости второго. Поезда встретились в 28 км от середины расстояния АВ. Если бы поезд отправился из А на 45 мин позже второго, то они встретились бы на середине расстояния АВ. Найдите расстояние АВ и скорости поездов.

Ответ: 840 км/ч; 80 км/ч; 70 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3565

Свежие грибы содержат 90% влаги, сушеные – 12%. Сколько сушеных грибов получится из 22 кг свежих?

Ответ: 2,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х - сухое вещество в грибах $$22-100$$% $$x-10$$% $$x=\frac{22\cdot10}{100}=2,2$$ Т.к. в сушеных 12% влаги, то 88% сухого вещетсва $$2,2-88$$% $$y-100$$% $$y=\frac{2,2\cdot100}{88}=2,5$$

Задание 3842

Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя 1час, когда одному из них оставалось 3 км до окончания первого круга, ему сообщили, что второй бегун прошёл первый круг 6 минут назад. Найдите скорость первого бегуна, если известно, что она на 5 км/ч меньше скорости второго.

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х - скорость второго, тогда $$x-5$$ - скорость первого. Длина круга тогда $$\frac{54}{60}x$$, т.к. второй прошел его за 54 минуты или $$\frac{54}{60}$$ часа. 

Тогда $$\frac{54}{60}x-3$$ - расстояние, которое прошел первый за час, т.е.

$$\frac{54}{60}x-3=(x-5)\cdot1$$

$$\frac{54}{60}x-3=x-5$$

$$-3+5=x-\frac{54}{60}x$$

$$2=\frac{1}{10}x$$

$$x=20$$ $$\Rightarrow$$ $$x-5=20-5=15$$

Задание 3993

Имеются два сплава меди и цинка. В первом сплаве меди в 2 раза больше, чем цинка, а во втором в 5 раз меньше, чем цинка. Во сколько раз больше надо взять второго сплава, чем первого, чтобы получить новый сплав, в котором цинка было бы в 2 раза больше, чем меди?

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х - масса 1го сплава, тогда $$\frac{2}{3}x$$ меди $$\frac{1}{3}x$$ цинка в нем.

Пусть у - масса 2го сплава,тогда $$\frac{1}{6}y$$ меди, $$\frac{5}{6}$$ цинка в нем.

Пусть $$k=\frac{y}{x}$$, тогда $$x+kx$$ - суммарная масса.

В нем: $$\frac{1}{3}(x+kx)$$ - медь, $$\frac{2}{3}(x+kx)$$ - цинк.

$$\left\{\begin{matrix}\frac{2}{3}x+\frac{1}{6}kx=\frac{1}{3}(x+kx)(1)\\\frac{1}{3}x+\frac{5}{6}kx=\frac{2}{3}(x+kx)(2)\end{matrix}\right.$$

$$\frac{2}{3}x+\frac{1}{6}kx=\frac{1}{3}x+\frac{1}{3}kx$$

$$\frac{1}{3}x=\frac{1}{6}kx$$

$$k=2$$

1) вся медь из 1гои 2го ушла в сплав

2) весь цинк из 1гои 2го ушел в сплав

Задание 4057

Два пешехода выходят навстречу друг другу и встречаются через 7 часов, причем скорость второго пешехода в два раза больше скорости первого. Через какое время произошла бы встреча, если бы первый пешеход увеличил свою скорость в 1,5 раза?

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х - скорость первого, тогда 2х -скорость второго, пусть расстояние $$S=1$$, тогда время 7 часов равно:

$$\frac{1}{x+2x}=7\Leftrightarrow$$

$$\frac{1}{3x}=7\Leftrightarrow$$ $$x=\frac{1}{21}$$

Если бы первый увеличил в 1,5 раза, то его скорость:

$$v_{1}=\frac{1}{21}\cdot1,5=\frac{1}{14}$$ и время встречи

$$\frac{1}{\frac{1}{14}+2\cdot\frac{1}{21}}=\frac{1}{\frac{3+4}{2\cdot3\cdot7}}=\frac{2\cdot3\cdot7}{7}=6$$

$$7-6=1$$ - разница во времени

Задание 4327

Имеются два сплава золота и серебра. В одном сплаве количество этих металлов находится в отношении 3 : 5, а в другом – в отношении 1 : 3. Сколько нужно взять каждого сплава, чтобы получить 20 кг нового сплава, в котором золото и серебро находились бы в отношении 3 : 7?

Ответ: 8,12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х - масса 1го $$\Rightarrow$$ $$\frac{3}{8}x$$ - золота, $$\frac{5}{8}x$$ - серебро. Пусть $$20-x$$ масса 2го  $$\Rightarrow$$ $$\frac{1}{4}(20-x)$$ - золота, $$\frac{3}{4}(20-x)$$ - серебро.

Всего золота: $$\frac{3}{8}x+\frac{1}{4}(20-x)=$$ $$\frac{3}{8}x+5-\frac{7}{8}x=\frac{1}{8}x+5$$

Всего серебра: $$\frac{5}{8}x+\frac{3}{4}(20-x)=$$ $$\frac{5}{8}x+15-\frac{6}{8}x=15-\frac{1}{8}x$$

$$\frac{\frac{1}{8}x+5}{15-\frac{1}{8}x}=\frac{3}{7}$$; $$\frac{7}{8}x+35=45-\frac{3}{8}x$$; $$\frac{10x}{8}=10$$; $$x=8$$ - первый

$$20-8=12$$ - второй

Задание 4533

Один экскаватор может вырыть котлован на 10 ч быстрее, чем другой. После того, как первый экскаватор проработал 10 ч, его сменил второй экскаватор и закончил работу за 15 ч. За Сколько часов могли вырыть котлован оба экскаватора, работая одновременно.

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х - производительность 1го в час, у - второго. Пусть 1 - объем котлована: $$\left\{\begin{matrix}\frac{1}{y}-\frac{1}{x}=10\\10x+15y=1\end{matrix}\right.$$; $$x=\frac{1-15y}{10}$$; $$\frac{1}{y}-\frac{10}{1-15y}=10$$; $$1-15y-10y=10y-150y^{2}$$; $$150y^{2}+35y+1=0$$; $$D=1225-600=625$$; $$y_{1}=\frac{35-25}{300}=\frac{1}{30}$$ $$\Rightarrow$$ $$x_{1}\frac{1-15\cdot\frac{1}{30}}{10}=\frac{1}{20}$$; $$y_{2}=\frac{35+25}{300}=\frac{1}{5}$$ $$\Rightarrow$$ $$x_{2}\frac{1-15\cdot\frac{1}{5}}{10}<0$$.

Время общее: $$\frac{1}{\frac{1}{20}+\frac{1}{30}}=\frac{1}{\frac{5}{60}}=\frac{60}{5}=12$$ 

Задание 4650

В каждом вагоне находится одинаковое число пассажиров. Количество пассажиров в одном вагоне превосходит число вагонов на 9. Когда на станции во второй вагон вошли 10 человек, а из остальных вышло по 10 человек, то число пассажиров во втором вагоне оказалось равным числу пассажиров, оставшихся во всех остальных вагонах. Сколько пассажиров было первоначально в каждом вагоне?

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х - число пассажиров в одном вагоне, у - число вагонов, тогда: x = y + 9 - первое уравнение. Затем во второй добавили 10 пассажиров, то есть в нем стало x + 10 пассажиров. Из остальных ушло по 10, то есть в них по x - 10 пассажиров. Всего таких вагонов y - 1 (так как второй мы не учитываем), тогда: x + 10 = (x - 10)(y - 1) - второе уравнение. Подставим из первого во второе уравнение вместо x: $$y+9+10=(y+9-10)(y-1)$$ $$y+19=(y-1)^{2}$$ $$y^{2}-2x+1-y-19=0$$ $$y^{2}-3x-18=0$$ $$y_{1}=6 ; y_{2}=-3$$ Отрицательным не может быть количество вагонов, потому остается только 6. Тогда количество пассажиров в начале в каждом было 6+9=15

Задание 4800

Для рытья котлована выделили два экскаватора. После того, как первый проработал два часа, его сменил второй, который за три часа закончил работу. Всю работу один второй экскаватор выполнил бы на 4 часа быстрее, чем один первый экскаватор. За какое время выроют котлован оба экскаватора, работая вместе?

Ответ: $$\frac{8}{3}$$ часа
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть объем всей работа $$V=1$$. Производительность первого $$A_{1}=x$$ (объема работы в час), второго $$A_{2}=y$$ (объема работы в час),тогда первый, работая 2 часа выполнил 2х, второй, работая потом 3 часа, выполнил 3у. И в результате работа была выполнена полностью, то есть $$2x+3y=1 (1)$$. Первый выполняет работу за $$\frac{1}{x}$$ часов, второй за $$\frac{1}{y}$$ часов, и время первого на 4 часа дольше, то есть $$\frac{1}{x}-\frac{1}{y}=4 (2)$$. Выразим в первом x через y и подставим во второе: $$x=\frac{1-3y}{2}$$ $$\frac{1}{\frac{1-3y}{2}}-\frac{1}{y}=4\Leftrightarrow $$$$\frac{2}{1-3y}-\frac{1}{y}=4\Leftrightarrow $$$$2y-1+3y=4y-12y^{2} \Leftrightarrow $$$$12y^{2}+y-1$$ Решим данное уравнение через дискриминант и получим: $$y_{1}=\frac{1}{4}$$. Второй у нет смысла рассматривать - он отрицательный. Тогда $$x_{1}=\frac{1-3*\frac{1}{4}}{2}=\frac{1}{8}$$ Тогда время совместной работы составит: $$\frac{1}{\frac{1}{4}+\frac{1}{8}}=\frac{8}{3}$$ часа

Задание 4847

Теплоход затратил 5 часов на путь вниз по течению реки от пункта A до пункта B. На обратный путь против течения он затратил 8 часов 20 минут. Найти скорость теплохода, если путь от A до B равен 100 километрам

Ответ: 16
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х - собственная скорость теплохода,  у - скорость течения. Тогда: 

$$\left\{\begin{matrix}\frac{100}{x+y}=5\\\frac{100}{x-y}=8\frac{1}{3}\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}5(x+y)=100\\25(x-y)=300\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x+y=20\\x-y=12\end{matrix}\right.$$ $$\Leftrightarrow$$ $$2x=32$$ $$\Rightarrow$$ $$x=16$$

Задание 4895

Один раствор содержит 20% (по объему) соли, а второй – 70% соли. Сколько литров первого и второго растворов нужно взять, чтобы получить 100л 50% - ного соляного раствора? 

Ответ: 40 и 60
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть масса первого раствора х, тогда соли в нем 0,2x. Масса второго раствора 100-x (так как мы в результате получили 100 литров третьего), а соли в нем 0,7(100-х). Третий же раствор содержит 0,5*100=50 литров соли. Данный объем получается из слияния объемов соли первого и второго растворов: $$0,2x+0,7(100-x)=50\Leftrightarrow $$$$0,2x+70-0,7x=50\Leftrightarrow $$$$-0,5x=-20\Leftrightarrow $$$$x=40$$ - объем первого, тогда объем второго 100-40=60

Задание 4942

На строительстве стены первый каменщик работал 5 дней один. Затем к нему присоединился второй, и они вместе закончили работу через 4 дня. Известно, что первому каменщику потребовалось бы на выполнение этой работы на 5 дней больше, чем второму. За сколько дней может выстроить эту стену первый каменщик, работая отдельно?

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть производительность первого х (частей стены в день), а производительность второго - y (частей стены в день). Всю работу (стену) примем за 1. Тогда время, за которое первый сделает стену : $$\frac{1}{x}$$, а второй: $$\frac{1}{y}$$. Это время различается на 5 дней, тогда: $$\frac{1}{x}-\frac{1}{y}=5$$. Первый, работая 5 дней выполнил 5х стены, далее, работая вместе 4 дня, они выполнили 4(x+y) стены. В результате вся стена была построена, то есть: $$5x+4(x+y)=1$$: $$\left\{\begin{matrix}\frac{1}{x}-\frac{1}{y}=5\\ 5x+4(x+y)=1\end{matrix}\right.\Leftrightarrow$$$$ \left\{\begin{matrix}\frac{1}{x}-\frac{1}{y}=5\\ y=\frac{1-9x}{4}\end{matrix}\right.$$ Подставим в первое вместо y полученное выражение: $$\frac{1}{x}-\frac{1}{\frac{1-9x}{4}}=5\Leftrightarrow $$$$\frac{1}{x}-\frac{4}{1-9x}=5\Leftrightarrow $$$$1-9x-4x=5(x-9x^{2})\Leftrightarrow $$$$45x^{2}-18x+1=0$$ Решаем данное уравнение получаем $$\left\{\begin{matrix}x_{1}=\frac{1}{3}\\ x_{2}=\frac{1}{15}\end{matrix}\right.$$ $$x_{1}$$ не подходит, так как в таком случае стена строилась бы за 3 дня всего, а по условию она больше 5 дней строится первым. В таком случае получаем, что $$t=\frac{1}{\frac{1}{15}}=15$$

Задание 4989

 Один мастер может выполнить задание на 15 дней быстрее, чем другой. После того, как первый мастер проработал 10 дней, его сменил другой и закончил работу за 30 дней. За сколько дней могут выполнить всю работу дв мастера, работая одновременно? 

Ответ: 18
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
Пусть х - производительность первого; у - производительность второго; вся работа =1. 
$$\left\{\begin{matrix}\frac{1}{y}-\frac{1}{x}=15\\10x+30y=1\end{matrix}\right.$$
$$x=\frac{1-30y}{10}\Leftrightarrow$$$$\frac{1}{y}-\frac{10}{1-30y}=15\Leftrightarrow$$$$1-30y-10y=15(y-30y^{2})\Leftrightarrow$$$$1-40y-15y+450y^{2}=0\Leftrightarrow$$$$450y^{2}-55y+1=0$$
$$D=3025-1800=1225$$
$$y_{1}=\frac{55+35}{900}=\frac{1}{10}$$
$$y_{2}=\frac{55-35}{900}=\frac{20}{900}=\frac{1}{45}$$;
$$x_{1}=\frac{1-3}{10}$$ - не подходит;
$$x_{2}=\frac{1-\frac{30}{45}}{10}=\frac{\frac{1}{3}}{10}=\frac{1}{30}$$
$$t=\frac{1}{\frac{1}{30}+\frac{1}{45}}=\frac{1}{\frac{5}{90}}=\frac{90}{5}=18$$

Задание 5038

 Первый велосипедист выехал из посёлка по шоссе со скоростью 21 км/ч. Через час после него со скоростьюи15 км/ч из того же посёлка в том же направлении выехал второй велосипедист, а ещё через час — третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 9 часов после этого догнал первого. 

Ответ: 25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х - скорость третьего. Время, за которое догонит второго: $$t_{2}=\frac{15\cdot1}{x-15}$$. Первого: $$t_{1}=\frac{21\cdot2}{x-21}$$

$$\frac{42}{x-21}-\frac{15}{x-15}=9$$; $$42x-42\cdot15-15x+21\cdot15=9(x^{2}-15x-21x+21\cdot15)$$; $$27x-315=9(x^{2}-36x+315)$$; $$3x-35=x^{2}-36x+315$$; $$x^{2}-39x+350=0$$

$$D=1521-1400=121$$; $$x_{1}=\frac{39+11}{2}=25$$; $$x_{2}=\frac{39-11}{2}=14$$ - не подходит.

Задание 5085

Производительность первого станка на 25% больше производительности второго станка. Второй станок сделал деталей на 4% больше, чем первый. На сколько процентов время, затраченное вторым станком на выполнение своей работы, больше, чем время, затраченное первым станком на выполнение своей работы. 

Ответ: 30
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х - производительность второго, тогда 1,25х - производительность первого. Пусть у - количество первого, тогда 1,04у - количество второго. Тогда:

$$t_{1}=\frac{y}{1,25x}$$ - время первого

$$t_{2}=\frac{1,04y}{x}$$ - время второго;

$$\frac{y}{1,25x}-100$$%; $$\frac{1,04y}{x}-a$$%

$$a=\frac{\frac{1,04y}{x}\cdot100}{\frac{y}{1,25x}}=1,04\cdot100\cdot1,25=130$$%

Задание 5125

К раствору, содержащему 40г соли, добавили 200г воды, после чего концентрация уменьшилась на 10%. Сколько воды содержал раствор и какова была его концентрация? 

Ответ: 160 грамм и 20%
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х - масса начального раствора в граммах. Тогда его концентрация составляет $$\frac{40}{x}*100$$ в процентах. Далее масса увеличивается на 200 грамм, то есть составляется $$x+200$$. Тогда концентрация нового раствора $$\frac{40}{x+200}*100$$ в процентах. $$\frac{40}{x}*100-\frac{40}{x+200}*100=10 \Leftrightarrow$$ $$\frac{40}{x}-\frac{40}{x+200}=0,1 \Leftrightarrow$$ $$10*\frac{40(x+200)-10x}{x(x+200)}=\frac{x^{2}+200x}{x(x+200)} \Leftrightarrow$$ $$x^{2}+200x-80000=0$$ По теореме Виета: $$\left [\begin{matrix}x_{1}+x_{2}=-200\\ x_{1}*x_{2}=-80000\end{matrix}\right.\Leftrightarrow $$$$\left [ \begin{matrix}x_{1}=-400\\ x_{2}=200\end{matrix}\right.$$ В таком случае масса первоначального раствора составляла 200 грамм, тогда его концентрация : $$\frac{40}{200}*100=20$$ процентов, масса воды в нем: $$200-40=160$$ грамм

Задание 5172

Дорога между пунктами А и В, длиной 36км, состоит из подъёма и спуска. Велосипедист, двигаясь на спуске со скоростью на 6км/ч большей, чем на подъёме, затрачивает на путь из А в В 2 ч 40 мин, а на обратный путь на 20 мин меньше. Найдите скорость велосипедиста на подъёме и на спуске.

Ответ: 12 и 18
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть расстояние первого подъема : y, тогда первый спуск 36-y. Пусть x - скорость на подъеме, тогда x + 6 - скорость на спуске. Получаем, что время в одну сторону: $$\frac{y}{x}+\frac{36-y}{x+6}=2\frac{2}{3}$$.Время в обратную сторону меньше на 20 минут, так же спуск и подъем меняются местами, тогда: $$\frac{y}{x+6}+\frac{36-y}{x}=2\frac{1}{3}$$. Вычтем из первого уравнения второе: $$\frac{y}{x}-\frac{y}{x+6}+\frac{36-y}{x+6}-\frac{36-y}{x}=\frac{1}{3}$$ $$y(\frac{1}{x}-\frac{1}{x+6})+(36-y)(\frac{1}{x+6}-\frac{1}{x})=\frac{1}{3}$$ $$y(\frac{6}{x^{2}+6x})+(36-y)(\frac{-6}{x^{2}+6x})=\frac{1}{3}$$ $$(36+2y)(\frac{6}{x^{2}+6x})=\frac{1}{3}$$ $$36+2y=\frac{x^{2}+6x}{18}$$ $$y=\frac{x^{2}+6x+648}{36}$$ Выразим в первом уравнении также y через x: $$\frac{y(x+6)}{x^{2}+6x}+\frac{(36-y)x}{x^{2}+6x}=\frac{8}{3}$$ $$\frac{xy+6y+36x-xy}{x^{2}+6x}=\frac{8}{3}$$ $$3(6y+36x)=8(x^{2}+6x)$$ $$y=\frac{4x^{2}-30x}{9}$$ Уравняем полученные y: $$\frac{x^{2}+6x+648}{36}=\frac{4x^{2}-30x}{9} |*36$$ $$x^{2}+6x+648=16x^{2}-120x$$ $$5x^{2}-42x-216=0$$ $$x=12$$ В таком случае скорость на спуске: $$12+6=18$$

Задание 5222

Первый велосипедист выехал из поселка по шоссе со скоростью 15 км/ч. Через час после него со скоростью 10 км/ч из того же поселка в том же направлении выехал второй велосипедист, а еще через час после этого — третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 2 часа 20 минут после этого догнал первого. 

Ответ: 25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Чтобы найти время, за которое догоняет первый объект второго, при учете различного времени выезда, необходимо воспользоваться формулой: $$t=\frac{v_{2}t_{1}}{v_{1}-v_{2}}$$, где $$v_{1}$$-скорость того, кто догоняет, $$v_{2}$$ - скорость того, которого догоняют, $$t_{1}$$-разница во времени выезда. Пусть x км/ч - скорость третьего. Тогда, время, за которое третий догонит второго: $$t_{1}=\frac{10*1}{x-10}$$,- время, за которое третий догонит первого: $$t_{2}=\frac{15*2}{x-15}$$. При этом $$t_{2}-t_{1}=2\frac{20}{60}$$ часов. $$\frac{15*2}{x-15}-\frac{10*1}{x-10}=2\frac{20}{60} \Leftrightarrow$$$$\frac{30}{x-15}-\frac{10}{x-10}=\frac{7}{3} |*3(x-15)(x-10) \Leftrightarrow$$$$3(30x-300-10x+150)=7(x^{2}-25x+150)\Leftrightarrow$$$$60x-450-7x^{2}+175x-1050=0|*(-1)\Leftrightarrow$$$$7x^{2}-235x+1500=0$$ Найдем корни уравнения через дискриминант: $$D=55225-42000=13225=115^{2}$$ $$x_{1}=\frac{235+115}{14}=25$$ $$x_{2}=\frac{235-115}{14}=\frac{60}{7}$$ - не подходит, так как скорость третьего должна быть больше, чем скорости первого и второго (иначе он их не сможет догонять)

Задание 5270

Из города А в город В с интервалом в 10 мин отправились три рейсовых автобуса. Первый автобус шел со скоростью на 5 км/ч меньше положенной, второй сохранял положенную скорость, а третий превышал ее на 6 км/ч. В результате все три автобуса пришли в Б одновременно. Определите расстояние между городами A и B. 

Ответ: 110
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть скорость второго равна x км/ч, тогда скорость первого х-5 км/ч, скорость третьего х+6 км/ч. Пусть S - расстояние от А до В в км. Тогда: $$t_{1}=\frac{S}{x-5}$$ - время первого $$t_{2}=\frac{S}{x}$$ - время второго $$t_{3}=\frac{S}{x+6}$$ - время третьего Разница во времени у них составляет 10 минут, то есть $$\frac{1}{6}$$ часа. Получаем систему: $$\left\{\begin{matrix}t_{1}-t_{2}=\frac{1}{6}\\t_{2}-t_{3}= \frac{1}{6}\end{matrix}\right.$$ Подставим имеющиеся выражения: $$\left\{\begin{matrix}\frac{S}{x-5}-\frac{S}{x}=\frac{1}{6}\\\frac{S}{x}-\frac{S}{x+6}= \frac{1}{6}\end{matrix}\right.\Leftrightarrow $$ $$\left\{\begin{matrix}\frac{S(x-(x-5))}{(x(x-5)}=\frac{1}{6}\\\frac{S((x+6)-x)}{x(x+6)}= \frac{1}{6}\end{matrix}\right.$$ Поделим первое на второе: $$\frac{5}{x(x-5)} : \frac{6}{x(x+6)}= 1 \Leftrightarrow $$$$\frac{5(x+6)}{6(x-5)}=1 \Leftrightarrow $$$$5x+30=6x-30 \Leftrightarrow $$$$x=60$$ Подставим полученное значение в первое уравнение: $$\frac{S*5}{60*55}=\frac{1}{6} \Leftrightarrow $$$$30S=60*55 |:30 \Leftrightarrow$$$$S=110$$

Задание 5318

Двое рабочих могут вместе выполнить 2/3 некоторой работы за 4 дня. За сколько дней каждый рабочий может выполнить всю работу, если один из них может сделать это на 5 дней раньше, чем второй.

Ответ: 10 и 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х - производительность первого в день, y - производительность второго в день. Объем всей работы равен 1. Тогда: $$x+y=\frac{\frac{2}{3}}{4}=\frac{1}{6}$$ (объем работы поделили на количество дней и получили суммарную производительность). Отсюда $$x=\frac{1-6y}{6}$$. Пусть первый работает медленнее, тогда $$\frac{1}{x}-\frac{1}{y}=5$$. Подставим в это уравнение выраженное значение х через у: $$\frac{1}{\frac{1-6y}{6}}-\frac{1}{y}=5 \Leftrightarrow$$$$\frac{6}{1-6y}-\frac{1}{y}=5\Leftrightarrow$$$$6y-1+6y=5y-30y^{2}\Leftrightarrow$$$$30y^{2}+7y-1=0$$. Отсюда $$y_{1}=\frac{1}{10}$$ ; $$y_{2}$$ меньше нуля. Следовательно, время второго $$t=\frac{1}{\frac{1}{10}}=10$$, тогда время первого на пять дней больше, то есть 15

Задание 5365

В сплаве олова с медью содержалось 11 кг меди. После того, как в сплав добавили 7,5 кг олова, содержание олова повысилось на 33%. Какова была первоначальная масса сплава?

Ответ: 12,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть x кг - масса сплава, тогда x - 11 кг - масса олова в нем, а доля олова : $$\frac{x-11}{x}*100$$%. Добавили 7,5 кг олова, тогда масса олова стала : x - 11 + 7,5 = x - 3,5 кг , масса сплава при этом стала: x + 7,5 кг, следовательно, доля олова : $$\frac{x-3,5}{x+7,5}*100$$%. Тогда:

$$\frac{x-3,5}{x+7,5}*100-\frac{x-11}{x}*100=33|*x(x+7,5)\Leftrightarrow$$$$100x(x-3,5)-100(x-11)(x+7,5)=33x(x+7,5)\Leftrightarrow$$$$100x^{2}-350x-100x^{2}+350x+8250=33x^{2}+247,5x\Leftrightarrow$$$$33x^{2}+247,5x-82550=0|:16,5\Leftrightarrow$$$$2x^{2}+15x-500=0$$

$$D=225+4000=65^{2}\Leftrightarrow$$$$x_{1}=\frac{-15+65}{4}=12,5 ; x_{2}<0$$. Следовательно, первоначальная масса сплава составляла 12,5 кг.

Задание 5413

Из пункта А в пункт В с определённой скоростью выехал автомобилист. Если бы он ехал со скоростью на 12 км/ч меньше, то затратил бы на весь путь на один час больше, а если бы ехал со скоростью на 20 км/ч больше, то затратил бы на весь путь на один час меньше. С какой скоростью планировал проехать весь путь автомобилист?

Ответ: 60
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х км\ч –скорость; у-расстояние, тогда время первого: $$\frac{y}{x }=t_{1}$$, время второго:$$\frac{y}{x -12}=t_{2}$$, время третьего: $$\frac{y}{x +70}=t_{3}$$. Составим систему уравнений в соответствии с условием задания: $$\left\{\begin{matrix}t_{2}-t_{1}=1 & & \\t_{1}-t_{3}=1 & &\end{matrix}\right. \Leftrightarrow $$$$\left\{\begin{matrix}\frac{4}{x -12}-\frac{y}{x }=1 & & \\\frac{y}{x }-\frac{y}{x +20}=1 & &\end{matrix}\right.\Leftrightarrow$$$$ \left\{\begin{matrix}y\left ( \frac{x -\left ( x -12 \right )}{\left ( x -12 \right )*x } \right )=1 & & \\y\left ( \frac{x +20-x }{x *\left ( x +20 \right )} \right )=1 & &\end{matrix}\right.;$$ Поделим первое уравнение на второе: $$\frac{12}{-x \left ( x -12 \right )}:\frac{20}{-x *\left ( x +20 \right )}=1;$$ $$\frac{3*\left ( x +20 \right )}{5*\left ( x -12 \right )}=1;$$ $$5x -60=3x +60;$$ $$2x =120\Rightarrow x =60;$$ км/ч скорость автобуса.

Задание 6069

При одновременной работе двух труб бассейн наполняется за 7 ч 18 мин. За какое время наполняется бассейн каждой трубой в отдельности, если через одну трубу он наполняется на 6 ч быстрее, чем через другую?

Ответ: 12 и 18
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть 1- объем бассейна , х- производительность 1-ой трубы в частях бассейна в час, y-2-ой . Тогда :

$$\left\{\begin{matrix}\frac{1}{x+y}=7\frac{12}{60} \\\frac{1}{x}-\frac{1}{y}=6\end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix}\frac{1}{x+y}=\frac{72}{10}(1)\\\frac{1}{x}-\frac{1}{y}=6(2)\end{matrix}\right.$$

1)$$72x+72y=10\Leftrightarrow x=\frac{10-72y}{72}$$

Подставим во второе $$\frac{72}{10-72y}-\frac{1}{y}=6\Leftrightarrow 72y-10+72y=60y-432y^{2}$$ $$432y^{2}+84y-10\Leftrightarrow 216y^{2}+42y-5=0$$

$$D=1764+4320=6084=78^{2}$$

$$y_{2}=\frac{-42+78}{2*216}=\frac{36}{2*216}=\frac{1}{12} y_{2}< 0$$

$$x_{1}=\frac{10-72*\frac{1}{12}}{72}=\frac{4}{72}=18.$$

Задание 6116

Бригада лесорубов должна была за несколько дней заготовить 216 м3 древесины. Первые три дня она выполняла установленную норму, а затем – каждый день заготавливала на 8 м3 больше плана, поэтому за день до срока было заготовлено 232 м3 древесины. Определите плановую дневную норму бригады.

Ответ: 24
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть планировалось добывать х кубических метров в день, в течении у дней. Тогда получаем $$xy=216$$. Но сначала три дня добывали по норме, а потом оставшиеся дни без одного (так как за день до нормы закончили) добывали на 8 больше, то есть $$3x+(y-4)(x+8)=232$$. (y-4 - от того, что три дня уже работали, плюс закончили на 1 день раньше):

$$\left\{\begin{matrix}xy=216\\3x+(y-4)(x+8)=232\end{matrix}\right.\Leftrightarrow$$$$\left\{\begin{matrix}xy=216\\3x+xy+8y-4x-32=232\end{matrix}\right.\Leftrightarrow$$$$\left\{\begin{matrix}xy=216\\8y-x+xy-32=23\end{matrix}\right. $$

Подставим вместо xy число 216:

$$8y-x+216-32=232\Leftrightarrow$$$$8y-x=48\Leftrightarrow$$$$x=8y-48$$

Подставим в первое уравнение системы:

$$(8y-48)y=216|:8\Leftrightarrow$$$$y^{2}-6y-27=0$$.

Тогда корни данного уравнения 9 и -3. Количество дней не может быть отрицательным, следовательно, $$y=9$$. Найдем х: $$x=8-9-48=24$$

Задание 6164

Одновременно из пунктов А и С в пункт В отправляются два туриста. Через 4 часа они прибыли в пункт В. Второй турист каждый километр проходил на 3 минуты быстрее первого, так как путь от С до В на 4 км длиннее пути от А до В. Найдите скорость первого туриста.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть x км –путь , тогда x+4 км-CB. Пусть y км\ч –скорость первого, z км\ч – скорость второго: $$\left\{\begin{matrix}\frac{x+4}{z}=4 & & \\\frac{x}{y}=4& & \\\frac{1}{y}-\frac{1}{z}=\frac{3}{60} & &\end{matrix}\right.\Leftrightarrow$$$$\left\{\begin{matrix}z=\frac{x+4}{4} & & \\y=\frac{x}{4} & & \\\frac{4}{x}-\frac{4}{x+4}=\frac{1}{20} & &\end{matrix}\right.$$ $$\frac{4x+16-4x}{x^{2}+4x}=\frac{1}{20}\Leftrightarrow$$ $$\frac{16}{x^{2}+4x}=\frac{1}{20}\Leftrightarrow$$ $$x^{2}+4x-320=0$$ $$\left\{\begin{matrix}x_{1}+x_{2}=-4 & & \\x_{1}x_{2}=-320& &\end{matrix}\right.\Leftrightarrow$$$$\left\{\begin{matrix}x_{1}=-20 & & \\x_{2}=16& &\end{matrix}\right.$$ $$y=\frac{16}{4}=4$$

Задание 6211

В первую поездку автомобиль израсходовал 10% бензина, имеющегося в баке, затем во вторую поездку – 25% остатка. После этого в баке осталось на 13 л меньше, чем было первоначально. Сколько литров бензина находилось в баке первоначально?

Ответ: 40
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть изначально было литров. Израсходовал 0,1x , осталось 0,9x . Затем израсходовал 25% от $$0,9x=0,25*0,9x=0,225x$$. Тогда всего израсходовали: $$0,1x+0,25x=13$$ $$0,325x=13\Leftrightarrow x=40$$ (литров) было в баке.

Задание 6258

Из пункта А в пункт В выехал грузовик. Через час из пункта А выехал легковой автомобиль. Через 2 часа после выезда он догнал грузовик и прибыл в пункт В на 3 часа раньше грузовика. Сколько времени грузовик ехал от А до В?

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть x-скорость авто,y-скорость грузовика, 1-расстояние от A до B. Тогда : Раз выехал через час, и догнал через 2, то грузовик ехал 3 часа и автомобиль 2 часа. Тогда пройденное расстояние у них одинаково: $$3y=2x(1)$$ Раз приехал на 3 часа раньше , то в пути был на 3+1=4 часа меньше и время автомобиля на 4 часа меньше, чем времени грузовика: $$\frac{1}{y}-\frac{1}{x}=4(2)$$ Из (1): $$x=\frac{3y}{2}$$ подставим в (2): $$\frac{1}{y}-\frac{2}{3y}=4\Leftrightarrow$$ $$\frac{3-2}{3y}-4\Leftrightarrow 3y=\frac{1}{4}\Leftrightarrow$$ $$y=\frac{1}{12}$$ Тогда время грузовика: $$\frac{1}{\frac{1}{12}}=12$$ часов

Задание 6307

Велосипедист проехал 25 км. При этом один час он ехал по ровной дороге, а один час – в гору. Какова скорость (в км/ч) велосипедиста по ровной дороге, если каждый километр по ровной дороге он проезжал на 2 минуты быстрее, чем в гору?

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть t-время 1 км по дороге , тогда $$t+\frac{2}{60}$$-время 1 км. в гору. Тогда $$v_{1}=\frac{1}{t}$$-скорость по дороге, $$v_{2}=\frac{1}{t+\frac{1}{30}}$$-скорость в гору. Тогда $$1*\frac{1}{t}+1*\frac{1}{t+\frac{1}{30}}=25$$

$$\frac{1}{t}+\frac{30}{30t+1}=25\Leftrightarrow$$ $$30t+1+30t=25(30t^{2}+t)$$

$$750t^{2}+25t-60t-1=0$$

$$750t^{2}-35t-1=0$$

$$D=1225+3000=65^{2}$$

$$t_{1}=\frac{35+65}{1500}=\frac{1}{15}$$

$$t_{2}<0$$

Тогда $$v_{1}=\frac{1}{\frac{1}{5}}=15$$

Задание 6354

Моторная лодка спустилась вниз по течению реки на 20 км и поднялась вверх по притоку еще на 10 км, затратив на весь путь 1 ч 10 мин. На обратный путь лодке потребовалось 1 ч 20 мин. Зная, что скорость реки равна скорости течения притока, найти собственную скорость лодки.

Ответ: 25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть x-скорость лодки в стоячей воде (км\ч ),y км\ч - скорость течения

$$\left\{\begin{matrix}\frac{20}{x+y}+\frac{10}{x-y} =1\frac{1}{6} \\\frac{10}{x+y}+\frac{20}{x-y}=1\frac{1}{3} \end{matrix}\right.$$

     Умножим второе на 2 и вычтем из первого:

$$\frac{10}{x-y}-\frac{40}{x-y}=\frac{7}{6}-\frac{8}{3}$$

$$-\frac{30}{x-y}=\frac{7-16}{6}=-\frac{9}{6}=-\frac{3}{2}$$

$$x-y=\frac{39*2}{3}=20$$

$$y=x-20$$

     Подставим в первое:

$$\frac{20}{x+x-20}+\frac{10}{x-x+20}=\frac{7}{6}$$

$$\frac{20}{2x-20}+\frac{1}{2}=\frac{7}{6}$$

$$\frac{10}{x-10}=\frac{7-3}{6}=\frac{2}{3}$$

$$2(x-10)=30\Leftrightarrow$$ $$2x-20=30\Leftrightarrow$$ $$2x=50\Leftrightarrow$$ $$x=25$$

Задание 6401

Один рабочий должен был изготовить 36 деталей, второй – 20 деталей. Первый делал в день на 2 детали больше, чем второй, и затратил на изготовление своего заказа на 1 день меньше, чем второй. Сколько деталей в день делал каждый рабочий?

Ответ: 4 и 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть x - количество деталей в день у второго рабочего, тогда x+2 - y первого . Время заказа второго $$t_{2}=\frac{20}{x}$$ , первого $$t_{1}=\frac{36}{x+2}$$. Тогда:

$$t_{2}-t_{1}=1\Leftrightarrow$$ $$\frac{20}{x}-\frac{36}{x+2}=1\Leftrightarrow$$ $$20x+40-36x=x^{2}+2x\Leftrightarrow$$$$x^{2}+18x-40=0$$

$$\left\{\begin{matrix}x_{1}+x_{2}=-18\\x_{1}x_{2}=-40\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x_{1}=-20\\x_{2}=2\end{matrix}\right.$$

Т.е. второй делал 2 детали, а первый 4

Задание 6448

Моторная лодка спускается вниз по реке от А до В за 6 часов, причем собственная скорость лодки в три раза больше скорости течения реки. За какое время лодка поднимется вверх по реке от В до А.

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть x - собственная скорость лодки (в частях расстояния в час), y - течения . Пусть расстояние равно 1. Тогда : $$\frac{1}{x+y}=6$$

     При этом $$x=3y\Rightarrow \frac{1}{3y+y}=6\Leftrightarrow$$ $$\frac{1}{4y}=6\Leftrightarrow$$ $$y=\frac{1}{24}$$ частей расстояния в час

     Тогда время вверх по течению: $$\frac{1}{3y-y}=\frac{1}{2y}=\frac{1}{2*\frac{1}{24}}=12$$ часов

Задание 6503

Два велосипедиста выезжают одновременно навстречу друг другу из пунктов А и В, расстояние между которыми 27 км. Через час велосипедисты встречаются и, не останавливаясь, продолжают ехать с той же скоростью. Первый прибывает в пункт В на 27 мин позже, чем второй в пункт А. Найдите скорость каждого велосипедиста.

Ответ: 15 и 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть y - скорость первого велосипедиста (в км\ч) , x - скорость второго. Раз через час встретились , то : $$\frac{27}{x+y}=1$$. Так как время певого на 27 минут меньше, то : $$\frac{27}{y}-\frac{27}{x}=\frac{27}{60}$$. Получим систему:

     $$\left\{\begin{matrix}\frac{27}{x+y}=1\\\frac{27}{y}-\frac{27}{x}=\frac{27}{60}\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x+y=27\\\frac{x-y}{xy}=\frac{1}{60}\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x=27-y\\\frac{27-y-y}{(27-y)y}=\frac{1}{60}\end{matrix}\right.$$

$$(27-2y)*60=y(27-y)\Leftrightarrow$$$$1620-120y-27y+y^{2}=0\Leftrightarrow$$$$y^{2}-147y+1620=0$$

$$D=21609-6480=15129=123^{2}$$

     $$y_{1}=\frac{147-123}{2}=12\Rightarrow$$ $$x=27-12=15$$

     $$y_{2}=\frac{147+123}{2}=135\Rightarrow$$ $$x<0$$ – не подходит

Задание 6550

Два насоса, работая одновременно, заполняют бак за 3 часа 12 минут. Первый насос заполнил часть объёма бака, проработав 2 часа, а затем оставшуюся часть на 800л большую заполнил второй насос, проработав 4 часа. Каков объём бака?

Ответ: 1600
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть x-производительность первого (л\г), y-второго, V-объем. Тогда :

$$\frac{V}{x+y}=3\frac{12}{60}$$ - работали вместе

$$4y-2x=800$$ - разность в 800 метров

$$2x+4y=V$$ - заполнили за 2 и 4

     $$\left\{\begin{matrix}\frac{V}{x+y}=3\frac{1}{5}=\frac{16}{5}\\4y-2x=800\\4y+2x=V\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}5V=16(x+y)\\8y=V+800\\2x=4y-800\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}5V=16x+16y\\8y=V+800\\4x=V+800-1600\end{matrix}\right. \Leftrightarrow$$ $$\left\{\begin{matrix}5V=16x+16y\\8y=V+800\\4x=V-800\end{matrix}\right.$$

     $$5V=4(V-800)+2(V+800)\Leftrightarrow$$ $$5V=4V-3200+2V+1600\Leftrightarrow$$ $$1600=V$$

Задание 6597

Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 48 минут, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 168 км, скорость первого велосипедиста равна 15 км/ч, скорость второго — 30 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи

Ответ: 120
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть t часов –время движения второго, тогда $$t-\frac{48}{60}$$ часов –первого . Тогда : $$15(t-\frac{4}{5})+30t=168|:3\Leftrightarrow$$ $$5t-4+10t=56\Leftrightarrow$$$$15t=60\Leftrightarrow t=4$$ часа, тогда расстояние, пройденное вторым: $$S=4*30=120$$(км)

Задание 6645

Поезд, двигаясь равномерно со скоростью 141 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям со скоростью 6 км/ч, за 8 секунд. Найдите длину поезда в метрах.

Ответ: 300
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть пешеход стоит, тогда скорость поезда относительно него : $$141-6=135$$ км\ч. Переведем секунды в часы: 6 c =$$\frac{8}{3600}$$ часа =$$\frac{1}{450}$$ часа Найдем длину по формуле расстояния: $$S=v*t=135*\frac{1}{450}=0,3$$ км = 300 метров

Задание 6712

Мастеру на выполнение заказа потребуется на 5 дней меньше, чем его ученику, но при совместной работе они выполнят заказ на 4 дня быстрее, чем мастер, работающий в одиночку. За сколько дней выполнит заказ мастер, работая в одиночку?

Ответ: 10
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть x-производительность мастера в день, y-ученика , 1-объем работы . Тогда: $$\left\{\begin{matrix}\frac{1}{y}-\frac{1}{x}=5\\\frac{1}{x}-\frac{1}{x+y}=4\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\frac{1}{y}-\frac{1}{x}=5\\\frac{x+y-x}{x(x+y)}=4\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\frac{1}{y}-\frac{1}{x}=5(1)\\\frac{y}{x(x+y)}=4(2)\end{matrix}\right.$$

   (1): $$\frac{x-y}{xy}=5\Leftrightarrow$$ $$x-y=5xy\Leftrightarrow$$ $$x=5xy+y\Leftrightarrow$$ $$x=y(5x+1)\Leftrightarrow$$ $$y=\frac{x}{5x+1}$$

   (2): $$4x(x+y)=y\Leftrightarrow$$ $$4x(x+\frac{x}{5x+1})=\frac{x}{5x+1}|:x\Leftrightarrow$$ $$4(\frac{5x^{2}+2x}{5x+1})=\frac{1}{5x+1}|:(5x+1)\Leftrightarrow$$ $$20x^{2}+8x-1=0\Leftrightarrow$$ $$D=64+80=144$$

     $$x_{1}=\frac{-8+12}{40}=\frac{1}{10}\Rightarrow$$ $$t_{x}=1:\frac{1}{10}=10$$

    $$x_{2}=\frac{-8-12}{40}<0$$

Задание 6739

Один сплав содержит 20%, а другой – 30% олова. Сколько килограммов первого и второго сплавов нужно взять, чтобы получить 10 кг 27%-го сплава олова?

Ответ: 3 и 7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть x(кг ) – масса первого сплава, тогда 0,2x - масса олова в нем , 10-x - второго сплава, 0,3(10-x) – олова в нем. Тогда:

$$0,2x+0,3(10-x)=0,27*10\Leftrightarrow$$$$0,2x+3-0,3x=2,7\Leftrightarrow$$$$-0,1x=-0,3\Rightarrow$$$$x=3$$(кг) первый, тогда 10-3=7 кг – второй

Задание 6786

Из пункта А круговой трассы выехал велосипедист. Через 20 минут он ещё не вернулся в пункт А, откуда следом за ним отправился мотоциклист. Через 15 минут после отправления он догнал велосипедиста в первый раз, а ещё через 40 минут после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 40 км.

Ответ: 105
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

   Пусть x-км\ч - скорость велосипедиста, y км\ч - мотоциклиста. Тогда: $$\frac{35}{60}x=\frac{15}{60}y$$ (догнал через 15 минут, выехал на 20 минут позже) и $$\frac{40}{60}y-\frac{40}{60}x=40$$ (через 40 минут опережал на круг)

$$\left\{\begin{matrix}\frac{7}{12}x=\frac{1}{4}y\\\frac{y}{60}-\frac{x}{60}=1\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}7x=3y\\y-x=60\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}y=60+x\\7x=180+3x\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}y=105\\x=45\end{matrix}\right.$$

Задание 6857

Иван шёл от дома до автобусной остановки пешком со скоростью 4 км/ч, затем ехал на автобусе до школы со скоростью 30 км/ч и затратил на весь путь 1 час. Обратно из школы он ехал на автобусе со скоростью 36 км/ч и шёл пешком от остановки до дома со скоростью 3 км/ч. На обратную дорогу он потратил 1 час 5 мин. Найти путь, который Иван проехал на автобусе, и расстояние от дома до остановки.

Ответ: 2 и 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть x км.-расстояние от дома до остановки , y км - от остановки до школы, тогда ( с учетом , что $$t=\frac{S}{v}$$):

$$\left\{\begin{matrix}\frac{x}{4}+\frac{y}{30}=1\\\frac{y}{36}+\frac{x}{3}=1\frac{5}{60}\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\frac{x}{4}+\frac{y}{30}=1|*60\\\frac{y}{36}+\frac{x}{3}=\frac{13}{12}|*36\end{matrix}\right.\Leftrightarrow$$$$\left\{\begin{matrix}15x+2y=60\\y+12x=39\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}2y+15x=60\\2y+24x=78\end{matrix}\right.\Leftrightarrow$$ $$24x-15x=78-60\Leftrightarrow$$ $$x=2\Rightarrow$$ $$y+12*2=39\Leftrightarrow$$ $$y=15$$

Задание 6905

Из А в В и из В в А одновременно вышли два пешехода. Когда первый прошел половину пути, второму до конца пути осталось пройти 24 км, а когда второй прошел половину пути, первому до конца пути осталось пройти 15 км. Сколько километров остаётся пройти второму пешеходу после того, как первый закончит переход?

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть S –длина пути(км) , x км\ч- скорость первого , y (км\ч) –скорость второго, тогда:

$$\left\{\begin{matrix}\frac{S}{2x}=\frac{S-24}{y}\\\frac{S}{2y}=\frac{S-15}{x}\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\frac{Sy}{2x}=S-24\\\frac{Sx}{2y}=S-15\end{matrix}\right.$$

Умножим первое на второе:

$$\frac{S^{2}}{4}=(S-24)(S-15)\Leftrightarrow$$ $$S^{2}-52 S+480=0\Leftrightarrow$$ $$\left\{\begin{matrix}S_{1}+S_{2}=52\\S_{1}*S_{2}=480\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}S_{1}=40\\S_{2}=14\end{matrix}\right.$$

$$S_{2}<24\Rightarrow$$ $$S=40\Leftrightarrow$$ $$\left\{\begin{matrix}\frac{20y}{x}=16\\\frac{20x}{y}=25\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}16x=20y\\20x=25y\end{matrix}\right.\Leftrightarrow$$ $$x=1,25y$$

Тогда второй пройдет :$$\frac{S}{x}*y=\frac{40}{1,25y}*y=32\Rightarrow$$ ему останется 40-32=8 км.

Задание 6953

Скорость автомобиля по ровному участку на 5 км/ч меньше, чем скорость под гору, и на 15 км/ч больше, чем скорость в гору. Дорога из A в B идет в гору и равна 100 км. Определить скорость автомобиля по ровному участку, если расстояние от A до B и обратно он проехал за 1 ч 50 мин.?

Ответ: 115
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть x км\ч – скорость по ровному участку , тогда x+5 км\ч –под гору; x-15 км\ч-в гору

     Время в гору: $$\frac{100}{x-5}$$; под гору: $$\frac{100}{x+5}$$;

     Получим: $$\frac{100}{x-15}+\frac{100}{x+15}=1\frac{50}{60}=\frac{11}{6}$$ $$100(\frac{x+5+x-15}{(x-15)(x+6)})=\frac{11}{6}$$$$\Leftrightarrow$$ $$6*100(2x-10)=11(x^{2}-10x-75)\Leftrightarrow$$$$11x^{2}-110x-825=1200x-6000\Leftrightarrow$$$$11x^{2}-1310x+5175=0$$

$$D=1716100-227700=1220^{2}$$

$$x_{1}=\frac{1310+1220}{22}=115$$
$$x_{2}=\frac{90}{22}<15$$

     Тогда в ответ запишем 115

Задание 7001

Две машинистки вместе напечатали 65 страниц, причем первая работала на 1 час больше второй. Вторая машинистка печатает в час на 2 страницы больше первой; напечатала она на 5 страниц больше. Сколько страниц в час печатает каждая машинистка?

Ответ: 5 и 7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть x стр\ч –скорость первой машинистки . Тогда x+2 стр\ч –второй . Пусть y ч-работала первая, тогда y-1 ч- работала вторая . Получим :

$$\left\{\begin{matrix}x*y+(x+2)(y-1)=65(1)\\(x+2)(y-1)-xy=5(2)\end{matrix}\right.$$

     Из (2): $$xy-x+2y-2-xy=5\Leftrightarrow$$ $$x=2y-7$$

     Подставим (1): $$(2y-7)y+(2y-7+2)(y-1)=65\Leftrightarrow$$ $$2y^{2}-7y+2y^{2}-2y-5y+5-65=0\Leftrightarrow$$$$4y^{2}-14y-60=0\Leftrightarrow$$ $$2y^{2}-7y-30=0$$

$$D=49+240=289=17^{2}$$ ; $$y_{1}=\frac{7+17}{4}=6$$ ; $$y_{2}<0$$

     Тогда $$x=2*6-7=5$$ стр\ч -первая и 5+2=7-вторая

Задание 7087

Два бегуна стартовали один за другим с интервалом в 2 мин. Второй бегун догнал первого на расстоянии 1 км от точки старта, а пробежав еще 4 км, он повернул обратно и встретился снова с первым бегуном через 20 мин после старта первого бегуна. Найдите скорость второго бегуна.

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть x км\ч –скорость первого, у км\ч –второго. Первый пробегает 1 км за $$\frac{1}{x}$$ часов, второй $$\frac{1}{y}$$ ч. Тогда $$\frac{1}{x}-\frac{1}{y}=\frac{2}{60}$$

     Далее первый был в пути 20 минут и пробежал $$\frac{20}{60} x=\frac{1}{3}x$$, второй - 18 минут, то есть $$\frac{18}{60}y=\frac{3y}{10}$$ км. Если взять за S км . расстояние , которое пробежал второй в обратную , то получим , что первый пробежал 5-S , второй 5+S $$\Rightarrow$$ в сумме 10км. Тогда :

     $$\left\{\begin{matrix}\frac{1}{x}-\frac{1}{y}=\frac{1}{30}\\\frac{1}{3}x+\frac{3y}{10}=10\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\frac{1}{x}-\frac{1}{y}=\frac{1}{30}\\10x+9y=300\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\frac{1}{x}-\frac{1}{y}=\frac{1}{30}\\x=\frac{300-9y}{10}\end{matrix}\right.$$

     $$\frac{10}{300-9y}-\frac{1}{y}=\frac{1}{30}\Leftrightarrow$$ $$\frac{10y-300+9y}{300y-9y^{2}}=\frac{1}{30}\Leftrightarrow$$ $$\frac{19y-300}{100y-3y^{2}}=\frac{1}{10}\Leftrightarrow$$ $$190y-3000=100y-3y^{2} \Leftrightarrow$$$$3y^{2}+90y-3000=0\Leftrightarrow$$ $$y^{2}+30y-1000=0\Leftrightarrow$$$$\left\{\begin{matrix}y_{1}+y_{2}=-30\\y_{1}*y_{2}=-1000\end{matrix}\right.$$$$\left[\begin{matrix}y_{1}=-50<0\\y_{2}=20\end{matrix}\right.$$

Задание 7134

Имеются три куска сплава меди с никелем в отношениях 2 : 1, 3 : 1 и 5 : 1 по массе. Из них сплавлен кусок массой 12 кг с отношением содержания меди и никеля 4 : 1. Найдите массу каждого исходного куска, если масса первого из них вдвое больше массы второго

Ответ: 1,92; 0,96; 9,12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть x кг-масса второго, тогда 2x кг-масса первого, y кг-третьего. Тогда x+2x+y=12 . В первом $$\frac{2}{3}$$ меди и $$\frac{1}{3}$$ никеля $$\Rightarrow$$ $$\frac{4x}{3}$$ кг и $$\frac{2x}{3}$$ кг, во втором $$\frac{3}{4}$$ меди и $$\frac{1}{4}$$ никеля $$\Rightarrow$$ $$\frac{3x}{4}$$ кг и $$\frac{x}{4}$$ кг, в третьем $$\frac{5}{6}$$ меди и $$\frac{1}{6}$$ никеля $$\Rightarrow$$ $$\frac{5y}{6}$$ и $$\frac{y}{6}$$. В итоговом $$\frac{4}{5}$$ меди и $$\frac{1}{5}$$ никеля $$\Rightarrow$$ 9,6 кг. меди и 2,4 кг. никеля. Тогда:

$$\left\{\begin{matrix}\frac{4x}{3}+\frac{3x}{4}+\frac{5y}{6}=9,6|*60\\\frac{2x}{3}+\frac{x}{4}+\frac{y}{6}=2,4 |*60\\3x+y=12\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}16x+9x+10y=115,2\\y=12-3x\end{matrix}\right.\Leftrightarrow$$$$\left\{\begin{matrix}25x+10y=115,2\\y=12-3x\end{matrix}\right.\Leftrightarrow$$$$25x+120-30x=115,2\Leftrightarrow$$$$-5x=-4,8\Rightarrow$$ $$x=0,96\Rightarrow$$ $$2x=1,92$$ - масса первого и $$y=9,12$$ - масса третьего

Задание 7161

Пчёлы перерабатывают цветочный нектар в мёд, освобождая его от воды. Нектар обычно содержит 84% воды, а полученный из него мёд — 20%. Сколько килограммов нектара приходится перерабатывать пчёлам для получения одного килограмма мёда?

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     В меде содержится 20% воды, следовательно, 80% чистого нектара. Тогда, в 1 кг меда 1*0,8=0,8 кг чистого нектара. При этом в обычном нектаре 84% воды, следовательно, 16% чистого нектара, тогда:

0,8 кг=16%
x кг -100%

     Получим , что $$x=\frac{0,8*100}{16}=\frac{80}{16}=5$$ кг. нектара нужно обработать.

Задание 7248

Мастеру на выполнение заказа потребуется на 5 дней меньше, чем его ученику, но при совместной работе они выполнят заказ на 4 дня быстрее, чем мастер, работающий в одиночку. За сколько дней выполнит заказ мастер, работая в одиночку?

Ответ: 10
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть х (частей захода) –производительность мастера в день, у - ученика, 1 - весь заказ, тогда : $$\frac{1}{y}-\frac{1}{x}=5$$ (разница в 5 дней на весь заказ) и $$\frac{1}{x}-\frac{1}{x+y}=4$$ (на 4 дня вместе быстрее, чем один мастер)

     $$\left\{\begin{matrix}\frac{1}{y}-\frac{1}{x}=5\\\frac{1}{x}-\frac{1}{x+y}=4\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x-y=5xy\\x+y-x=4x(x+y)\end{matrix}\right.\Leftrightarrow$$

     Сложим первое и второе: $$x=5xy+4x^{2}+4xy\Leftrightarrow$$ $$9xy+4x^{2}-x=0\Leftrightarrow$$ $$x(9y+4x-1)=0$$. Т.е. x-производительность, то $$x\neq 0$$ , следовательно, $$9y+4x-1=0\Rightarrow$$ $$y=\frac{1-4x}{9}$$. Подставим в первое:

     $$\frac{9}{1-4x}-\frac{1}{x}=5\Leftrightarrow$$ $$\frac{9x-1+4x}{x-4x^{2}}=5\Leftrightarrow$$ $$13x-1=5x-20x^{2}\Leftrightarrow$$ $$20x^{2}+8x-1=0$$

     $$D=64+80=144\Rightarrow$$ $$x_{1}=\frac{-8+12}{2*20}=\frac{1}{10}$$; $$x_{2}<0\Rightarrow$$ мастер выполнит заказ за $$\frac{1}{\frac{1}{10}}=10$$ дней.

Задание 7277

Две машинистки напечатали 250 страниц рукописи. Первая работала 5 дней, вторая – 6 дней. Сколько страниц в день печатала каждая машинистка, если первая напечатала за три дня на 40 страниц меньше, чем вторая за 4 дня?

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть х страниц в день печатает первая, у -вторая, тогда :$$\left\{\begin{matrix}5x+6y=250\\4y-3x=40\end{matrix}\right.$$$$\Leftrightarrow$$ $$\left\{\begin{matrix}15x+18y=750\\20y-15x=200\end{matrix}\right.$$

     Сложим первое и второе: $$38y=950\Rightarrow$$ $$y=25$$

     Тогда: $$4*25-3x=40\Leftrightarrow$$ $$100-40=3x\Rightarrow$$ $$x=20$$

Задание 7309

Два пешехода вышли одновременно навстречу друг другу из пунктов А и В и, встретившись через 50 мин, без остановки продолжили движение, каждый в своём направлении. За какое время проходит путь между А и В каждый из пешеходов, если известно, что первый пришел в В на 4 часа раньше, чем второй пришел в А?

Ответ: 1 ч и 5 ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7393

Два поезда отправились одновременно из А в В навстречу друг другу. Скорость первого поезда на 10 км/ч больше скорости второго. Поезда встретились в 28 км от середины расстояния АВ. Если бы первый поезд отправился из А на 45 минут позже второго, то они встретились бы на середине расстояния АВ. Найдите расстояние АВ и скорости обоих поездов.

Ответ: 840 км, 80 км/ч, 70 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7469

Бассейн наполняется из двух труб за 7,5 часов. Если открыть только первую трубу, то бассейн наполнится на 8 часов быстрее, чем если открыть только вторую трубу. Сколько времени будет наполнятся бассейн второй трубой?

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть х (частей бассейна в час) - производительность первой трубы, y - второй, 1 - весь объем бассейна. Тогда, время совместного наполнения бассейна находится как: $$\frac{1}{x+y}=7,5$$. Время наполнения только второй $$\frac{1}{y}$$, первой $$\frac{1}{x}$$.

Тогда: $$\left\{\begin{matrix}\frac{1}{x+y}=7,5\\\frac{1}{y}-\frac{1}{x}=8 \end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}15(x+y)=2\\\frac{1}{y}-\frac{1}{x}=8 \end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x=\frac{2-15y}{15}\\\frac{1}{y}-\frac{1}{x}=8\end{matrix}\right.$$ Подставим во второе уравнение: $$\frac{1}{y}-\frac{15}{2-15y}=8\Leftrightarrow$$$$2-15y-15y=16y-120y^{2}\Leftrightarrow$$$$60y^{2}-23y+1=0$$

$$D=529-240=17^{2}$$
$$y_{1}=\frac{23+17}{120}=\frac{1}{3}\Rightarrow$$$$x=\frac{2-15*\frac{1}{3}}{15}<0$$
$$y_{2}=\frac{23-7}{120}=\frac{1}{20}\Rightarrow$$$$t=\frac{1}{\frac{1}{20}}=20$$ часов

Задание 7495

Бассейн наполняется двумя трубами за 4 часа. Первая труба может наполнить бассейн за 5 часов. За сколько часов вторая трубя, действуя отдельно, может наполнить бассейн?

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7542

Катер проходит 96 км вниз по реке от А до В и обратно за 14 ч. Одновременно с катером из А отправился плот. На пути обратно катер встретил плот на расстоянии 24 км от А. Найдите скорость катера в стоячей воде и скорость течения

Ответ: 14 и 2 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7589

Баржа прошла по течению реки 80 км и, повернув обратно, прошла ещё 60 км, затратив на весь путь 10 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч

Ответ: 15 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7616

В помощь насосу, перекачивающему 7 литров воды за 2 минуты, подключили второй насос, перекачивающий тот же объём воды за 3 минуты. Сколько минут эти два насоса должны работать совместно, чтобы перекачать 70 л воды?

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7665

Пешеход и велосипедист отправляются одновременно навстречу друг другу из городов А и В, расстояние между которыми 40 км, и встречаются спустя 2 ч после отправления. Затем они продолжают путь, причем велосипедист прибывает в А на 7 ч 30 мин раньше, чем пешеход в В. Найдите скорости пешехода и велосипедиста, полагая, что оба все время двигались с неизменными скоростями.

Ответ: 4 и 16 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7712

Бригада рабочих должна была изготовить 8000 одинаковых деталей в определенный срок. Фактически эта работа была окончена на 8 дней раньше срока, так как бригада делала ежедневно на 50 деталей больше, чем было намечено по плану. В какой срок должна была быть окончена работа?

Ответ: 40
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7759

Имеется лом стали двух сортов, причем первый сорт содержит 10% никеля, второй 30%. На сколько тонн стали больше нужно взять второго сорта, чем первого, чтобы получить 200 т стали с содержанием никеля 25%?

Ответ: 100
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7809

Автомобиль, идущий со скоростью 100 км/ч, выехал из пункта А в пункт В и в пункте С встретился с велосипедистом , выехавшим на полтора часа раньше из пункта В в пункт А со скоростью 10 км/ч. Если бы скорость автомобиля была на 20 км/ч больше, а скорость велосипедиста на 5 км/ч больше, то встреча произошла бы на 10км ближе к пункту А. Найдите расстояние от В до С.

Ответ: 30
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7855

От пристани по течению реки отправился плот. Через 5 ч 20 мин вслед за плотом от той же пристани отправилась моторная лодка, которая догнала плот, пройдя 20 км. Какова скорость плота, если известно, что скорость моторной лодки больше скорости плота на 12 км/ч?

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7905

Учебный самолёт летел со скоростью 220 км/ч. Когда ему осталось пролететь на 385 км меньше, чем он пролетел, самолёт увеличил скорость до 330 км/ч. Средняя скорость на всём пути оказалась равной 250 км/ч. Какое расстояние (в км) пролетел самолёт?

Ответ: 1375
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8397

В солёную воду с содержанием соли 5% добавили 1 кг солёной воды с содержанием соли 10% и тщательно перемешали. Затем в полученную смесь добавили 2 кг солёной воды с содержанием соли 15%. Далее выпарили всю воду. Получилось 750 грамм соли. Сколько кг солёной воды было первоначально? Все процентные содержания соли даны по массе.

Ответ: 7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть $$x$$кг - масса первоначального раствора. Тогда смеси в нем $$0,05x$$кг. Соли во втором и третьем растворах: $$0,1\cdot1$$кг и $$0,15\cdot2$$кг. Масса итогового раствора: $$(x+1+2)$$кг, а соли в нем $$0,75$$кг. Получим: $$0,05x+0,1+0,3=0,75$$ $$\Rightarrow$$ $$0,05x=0,35$$ $$\Rightarrow$$ $$x=7$$ кг

Задание 8423

Имеются два сосуда, содержащие 30 кг и 20 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 81% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 83% кислоты. Сколько килограммов кислоты содержится во втором растворе? Все процентные содержания кислоты в растворах даны по массе.

Ответ: 18,6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть $$x$$ - доля кислоты в первом растворе, тогда $$y$$ - во твором. Тогда $$30x$$ - масса кислоты (кг) в первом, $$20y$$ - во втором. Получим: $$(1)30x+20y=(30+20)\cdot0,81$$. Пусть массы по 30 кг, тогда $$(2)30x+30y=(30+30)\cdot0,83$$. Имеем систему: 
$$\left\{\begin{matrix}30x+20y=50\cdot0,81=405&\\30x+30y=49,8&\end{matrix}\right.$$

Вычтем из второго первое уравнение: $$10y=9,3$$ $$\Rightarrow$$ $$20y=18,6$$ - масса кислоты во твором

Задание 8475

Расстояние между городами A и B равно 120 км. Город C находится между городами A и B. Из города A в город выехал автомобиль, а через 36 минут следом за ним со скоростью 75 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он проехал половину пути из C в B, автомобиль прибыл в B. Найдите расстояние (в км) от A до C .

Ответ: 90
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8527

Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 51 минуту, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 251 км, скорость первого велосипедиста равна 10 км/ч, скорость второго – 20 км/ч. Определите расстояние (в км) от города, из которого выехал второй велосипедист, до места встречи.

Ответ: 173
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8579

Из пунктов A и B, расстояние между которыми равно 27 км, вышли одновременно навстречу друг другу два туриста и встретились в 12 км от пункта. Турист, шедший из A в B, сделал в пути получасовую остановку. Найдите скорость (в км/ч) туриста, шедшего из B, если известно, что он шёл со скоростью, на 2 км/ч меньшей, чем первый турист.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8631

Расстояние между двумя пристанями по реке равно 80 км. Катер прошёл от одной пристани до другой, сделал стоянку на 1 час 20 минут и вернулся обратно. Всё путешествие заняло $$10\frac{1}{3}$$ ч. Найдите скорость (в км/ч) течения реки, если скорость катера в стоячей воде равна 18 км/ч.

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8715

Плиточник должен уложить 120 м2 плитки. Если он будет укладывать на 8 м2 в день больше, чем запланировал, то закончит работу на 4 дня раньше. Сколько квадратных метров плитки в день планирует укладывать плиточник?

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8826

Моторная лодка прошла против течения реки 132 км и вернулась в пункт отправления, затратив на обратный путь на 5 часов меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч.

Ответ: 17 км/ч
Скрыть

Пусть скорость лодки х км/ч. Тогда скорость против течения будет х-5 км/ч. а по течению х+5 км/ч

По условию на обратный путь затрачено на 5 часов меньше, тогда: $$\frac{132}{x-5}-\frac{132}{x+5}=5$$

Приведем к общему знаменателю: $$\frac{132(x+5)-132(x-5)}{x^2-25}=5$$

$$\frac{132х+660-132х+660}{х^{2}-25}=5$$
$$\frac{1320}{x^{2}-25}=5$$
$$5(x^{2}-25)=1320$$
$$x^{2}=264+25=289$$ 
х=17 км/ч - искомая скорость лодки
 

Задание 8853

Моторная лодка прошла против течения реки 208 км и вернулась в пункт отправления, затратив на обратный путь на 5 часов меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч.

Ответ: 21 км/ч
 

Задание 8945

Первая труба пропускает на 16 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 105 литров она заполняет на 4 минуты дольше, чем вторая труба?

Ответ: 14
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8971

Моторная лодка прошла от одной пристани до другой, расстояние между которыми по реке равно 16 км, сделала остановку на 40 минут и вернулась обратно через $$3\frac{2}{3}$$ ч после поездки. Найдите скорость течения реки, если известно, что скорость моторной лодки в стоячей воде равна 12 км/ч.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8998

Первая труба пропускает на 15 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 100 литров она заполняет на 6 минут дольше, чем вторая труба?

Ответ: 10
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9007

Баржа прошла по течению реки 56 км и, повернув обратно, прошла ещё 54 км, затратив на весь путь 5 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.

Ответ: 23 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9025

Грузовик перевозит партию щебня массой 120 тонн, ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что за первый день было перевезено 3 тонны щебня. Определите, сколько тонн щебня было перевезено за последний день, если вся работа была выполнена за 10 дней.

Ответ: 21
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9086

Грузовик перевозит партию щебня массой 340 тонн, ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что за первый день было перевезено 4 тонны щебня. Определите, сколько тонн щебня было перевезено за последний день, если вся работа была выполнена за 17 дней.

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9193

По двум параллельным железнодорожным путям навстречу друг другу следуют скорый и пассажирский поезда, скорости которых равны соответственно 65 км/ч и 40 км/ч. Длина пассажирского поезда равна 350 метрам. Найдите длину скорого поезда, если время, за которое он прошёл мимо пассажирского, равно 36 секундам. Ответ дайте в метрах.

Ответ: 700
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9219

Поезд, двигаясь равномерно со скоростью 75 км/ч, проезжает мимо пешехода, идущего параллельно путям со скоростью 3 км/ч навстречу поезду, за 30 секунд. Найдите длину поезда в метрах.

Ответ: 650
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9265

Два человека одновременно отправляются из одного и того же места по одной дороге на прогулку до опушки леса, находящейся в 3,7 км от места отправления. Один идёт со скоростью 3,3 км/ч, а другой – со скоростью 4,1 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии (в км) от точки отправления произойдёт их встреча?

Ответ: 3,3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9286

Первая труба пропускает на 5 литров воды меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 200 литров она заполняет на 2 минуты дольше, чем вторая труба?

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9313

Шесть одинаковых рубашек дешевле куртки на 8 %. На сколько процентов девять таких же рубашек дороже куртки?

Ответ: 38
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9413

Семь одинаковых рубашек дешевле куртки на 9 %. На сколько процентов десять таких же рубашек дороже куртки?

Ответ: 30
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9423

Баржа прошла по течению реки 88 км и, повернув обратно, прошла ещё 72 км, затратив на весь путь 10 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.

Ответ: 17 км/ч
 

Задание 9443

Баржа прошла по течению реки 56 км и, повернув обратно, прошла ещё 54 км, затратив на весь путь 5 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.

Ответ: 23
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9469

Смешали некоторое количество 10-процентного раствора вещества с таким же количеством 12-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Ответ: 11
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9557

Баржа прошла по течению реки 88 км и, повернув обратно, прошла ещё 72 км, затратив на весь путь 10 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.

Ответ: 17 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9584

Первые два часа автомобиль ехал со скоростью 65 км/ч, следующие 4 часа – со скоростью 105 км/ч, а последние 4 часа – со скоростью 80 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути

Ответ: 87
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9613

В сосуд, содержащий 5 литров 27-процентного водного раствора вещества, добавили 4 литра воды. Сколько процентов составляет концентрация получившегося раствора?

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9709

Три бригады вместе изготовили 114 синхронизаторов передач. Известно, что вторая бригада изготовила синхронизаторов в 3 раза больше, чем первая, и на 16 синхронизаторов меньше, чем третья. На сколько синхронизаторов передач больше изготовила третья бригада, чем первая?

Ответ: 44
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9735

По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 60 км/ч и 30 км/ч. Длина товарного поезда равна 900 метрам. Найдите длину пассажирского поезда (в метрах), если время, за которое он проходит мимо товарного поезда, равно трём минутам

Ответ: 600
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9762

В сосуд, содержащий 9 литров 16-процентного водного раствора вещества, добавили 3 литра воды. Сколько процентов составляет концентрация получившегося раствора?

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9830

Имеются два сосуда, содержащие 30 кг и 42 кг раствора различной концентрации. Если их слить вместе, то получится раствор, содержащий 40% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 37% кислоты. Сколько килограммов кислоты содержится во втором растворе?

Ответ: 23,1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9857

Два автомобиля одновременно отправляются в 420-километровый пробег. Первый едет со скоростью на 24 км/ч большей, чем второй, и прибывает к финишу на 2 ч раньше второго. Найдите скорость первого автомобиля.

Ответ: 84
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9922

Катер прошёл от одной станции к другой, расстояние между которыми по реке равно 48 км, сделал стоянку на 20 минут и вернулся обратно через $$5\frac{1}{3}$$ часа после начала поездки. Найдите скорость (в км/ч) течения реки, если известно, что скорость катера в стоячей воде равна 20 км/ч.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9957

В сосуд, содержащий 5 литров 27-процентного водного раствора вещества, добавили 4 литра воды. Сколько процентов составляет концентрация получившегося раствора?

Ответ: 15
 

Задание 9976

Два автомобиля одновременно отправляются в 560-километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает к финишу на 1 ч раньше второго. Найдите скорость первого автомобиля (в км/ч).

Ответ: 80
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10003

Свежие фрукты содержат 88 % воды, а высушенные — 30 %. Сколько требуется свежих фруктов для приготовления 72 кг высушенных фруктов?

Ответ: 420
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10242

Два велосипедиста отправляются в 60‐километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает к финишу на три часа раньше второго. Найдите скорость (в км/ч) велосипедиста, прибывшего к финишу вторым

Ответ: 10
 

Задание 10305

Костя и Руслан выполняют одинаковый тест. Костя отвечает в час на 19 вопросов теста, а Руслан – на 20. Они одновременно начали отвечать на вопросы теста, и Костя закончил свой тест позже Руслана на 9 минут. Сколько вопросов содержит тест?

Ответ: 57
 

Задание 10327

Первую половину пути автомобиль проехал со скоростью 34 км/ч, а вторую половину – со скоростью 51 км/ч. Найдите среднюю скорость (в км/ч) автомобиля на протяжении всего пути.

Ответ: 40,8
 

Задание 10360

Имеются два сосуда, содержащие 10 и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 55% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 61% кислоты. Сколько килограммов кислоты содержится в первом растворе. Все процентные содержания кислоты даны по массе.

Ответ: 8,7
 

Задание 10372

Из пункта A в пункт B, расстояние между которыми равно 34 км, выехал велосипедист. Одновременно с ним из B в A вышел пешеход. Велосипедист ехал со скоростью на 8 км/ч большей скорости пешехода и сделал по пути получасовую остановку. Найдите скорость (в км/ч) велосипедиста, если известно, что они встретились в 10 км от пункта B .

Ответ: 12
 

Задание 10423

Три бригады вместе изготовили 114 синхронизаторов передач. Известно, что вторая бригада изготовила синхронизаторов в 3 раза больше, чем первая, и на 16 синхронизаторов меньше, чем третья. На сколько синхронизаторов передач больше изготовила третья бригада, чем первая.

Ответ: 44
 

Задание 10464

Расстояние между пристанями А и В равно 126 км. Из А в В по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот проплыл 36 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 4 км/ч.

Ответ: 32
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Скорость плота соответствует скорости течения реки, следовательно, плот в движении был: $$\frac{36}{4}=9$$ часов. Лодка в движении была на час меньше, то есть 8 часов. Пусть x км/ч - собственная скорость лодки. Тогда скорость по течению x+4 км/ч, против течения: x-4 км/ч. Время движения по течению: $$\frac{126}{x+4}$$ часа, против: $$\frac{126}{x-4}$$, а в сумме дает 8 часов:

$$\frac{126}{x-4}+\frac{126}{x+4}=8|:2$$

$$\frac{63}{x-4}+\frac{63}{x+4}=4|\cdot (x-4)(x+4)$$

$$63x+63\cdot 4+63x+63\cdot 4=4x^{2}-64$$

$$4x^{2}-126x-64=0|:2$$

$$2x^{2}-63x-32=0$$

$$D=3969+4\cdot 2 \cdot 32=4225=65^{2}$$

$$x_{1}=\frac{63+65}{2\cdot 2}=32$$

$$x_{2}<0$$

 

Задание 10958

Два велосипедиста одновременно отправляются в 60-километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает на финиш на 3 часа раньше второго. Найдите скорость (в км/ч) велосипедиста, приехавшего к финишу вторым.

Ответ: 10
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть Пусть $$x$$ км/ч - скорость второго, тогда $$x+10$$ км/ч - скорость первого. Получим: $$\frac{60}{x}-\frac{60}{x+10}=3\leftrightarrow \frac{20\left(x+10\right)-20x-x\left(x+10\right)}{x\left(x+10\right)}=0\leftrightarrow$$ $$\leftrightarrow 20x+200-20x-x^2-10x=0\leftrightarrow x^2+10x-200=0\leftrightarrow \left[ \begin{array}{c} x_1=-20 \\ x_2=10 \end{array} \right.$$. Следовательно, скорость второго 10 км/ч.
 

Задание 10981

Два велосипедиста одновременно отправляются в 208-километровый пробег. Первый едет со скоростью на 3 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу первым.

Ответ: 16
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть $$x$$ км/ч - скорость быстрого, тогда $$x-3$$ - скорость медленного. Тогда $$\frac{208}{x-3}-\frac{208}{x}=3\leftrightarrow 208x-208x+208\cdot 3=3x(x-3)\to$$ $$\to x^2-3x-208=0\leftrightarrow D=29^2$$

Получим два корня: $$x_1=\frac{3+2}{2}=16; x_2<0$$. Значит ответ: 16.

 

Задание 11042

Два велосипедиста одновременно отправляются в 224-километровый пробег. Первый едет со скоростью на 2 км/ч большей, чем второй, и прибывает к финишу на 2 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
Ответ: 14
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть x км/ч - скорость второго, тогда $$x+2$$ км/ч - скорость первого. Получим: $$\frac{224}{x}-\frac{222}{x+2}=2\leftrightarrow 112(x+2)-112x=1(x^2+2x)\leftrightarrow$$ $$\leftrightarrow 112x+224-112x=x^2+2x\leftrightarrow x^2+2x-224=0$$

Решаем по теореме Виета:

1) $$x_1+x_2=-2\to x_1=-16<0$$

2) $$x_1x_2=-224\to x_2=14$$ - ответ.

 

Задание 11064

Даша и Саша выполняют одинаковый тест. Дима отвечает за час на 12 вопросов теста, а Саша - на 22. Они одновременно начали отвечать на вопросы теста, и Дима закончил свой тест позже Саши на 75 минут. Сколько вопросов содержит тест?
Ответ: 33
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть Пусть $$x$$ вопросов в тесте, тогда время Даши: $$\frac{x}{12}$$ часов, Саши: $$\frac{x}{22}$$ часов. Получим: $$\frac{x}{12}-\frac{x}{22}=\frac{75}{60}\leftrightarrow \frac{11x-6x}{2\cdot 6\cdot 11}=\frac{5}{4}\leftrightarrow x=33.$$
 

Задание 11169

Имеются два сосуда, содержащие 12 кг и 8 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 65 % кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60 % кислоты. Сколько процентов кислоты содержится во втором растворе?
Ответ: 35
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11191

Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 51 минуту, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 251 км, скорость первого велосипедиста равна 10 км/ч, скорость второго — 20 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.

Ответ: 173 км
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11213

Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 28 минут, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 286 км, скорость первого велосипедиста равна 10 км/ч, скорость второго — 30 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.

Ответ: 218 км
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11234

Имеются два сосуда, содержащие 30 кг и 42 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 40 % кислоты. Если же слить равные массы этих растворов, то полученный раствор будет соде

Ответ: 55%
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11257

Два автомобиля одновременно отправляются в 420-километровый пробег. Первый едет со скоростью на 24 км/ч большей, чем второй, и прибывает к финишу на 2 ч раньше второго. Найдите скорость (в км/ч) первого автомобиля.

Ответ: 84
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11299

Моторная лодка прошла против течения реки 132 км и вернулась в пункт отправления, затратив на обратный путь на 5 часов меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч.

Ответ: 17
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11320

Моторная лодка прошла против течения реки 208 км и вернулась в пункт отправления, затратив на обратный путь на 5 часов меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч.

Ответ: 21
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11356

Первая труба пропускает на 16 литров воды в минуту меньше, чем вторая труба Сколько литров воды в минуту пропускает первая труба, если резервуар объёмов 105 литров она заполняет на 4 минуты дольше, чем вторая труба?

Ответ: 14
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11399

Первая труба пропускает на 15 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 100 литров она заполняет на 6 минут дольше, чем вторая труба?

Ответ: 10
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11442

Грузовик перевозит партию щебня массой 120 тонн, ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что за первый день было перевезено 3 тонны щебня. Определите, сколько тонн щебня было перевезено за последний день, если вся работа была выполнена за 10 дней.

Ответ: 21
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11490

Грузовик перевозит партию щебня массой 340 тонн, ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что за первый день было перевезено 4 тонны щебня. Определите, сколько тонн щебня было перевезено за последний день, если вся работа была выполнена за 17 дней.

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11514

Первые 5 часов автомобиль ехал со скоростью 60 км/ч, следующие 3 часа — со скоростью 100 км/ч, а последние 4 часа — со скоростью 75 км/ч. Найдите среднюю скорость (в км/ч) автомобиля на протяжении всего пути.

Ответ: 75
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11537

Расстояние между двумя пристанями по реке равно 24 км. Моторная лодка прошла от одной пристани до другой, сделала стоянку на 1 ч 40 мин и вернулась обратно. Всё путешествие заняло $$6\frac{2}{3}$$ ч. Найдите скорость (в км/ч) течения реки, если известно, что скорость моторной лодки в стоячей воде равна 10 км/ч.

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11558

По двум параллельным железнодорожным путям навстречу друг другу следуют скорый и пассажирский поезда, скорости которых равны соответственно 65 км/ч и 40 км/ч. Длина пассажирского поезда равна 350 метрам. Найдите длину скорого поезда, если время, за которое он прошёл мимо пассажирского, равно 36 секундам. Ответ дайте в метрах.

Ответ: 700
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11580

Поезд, двигаясь равномерно со скоростью 75 км/ч, проезжает мимо пешехода, идущего параллельно путям со скоростью 3 км/ч навстречу поезду, за 30 секунд. Найдите длину поезда в метрах.

Ответ: 650
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11602

Имеются два сосуда, содержащие 4 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 57% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится в первом растворе?

Ответ: 2,6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11625

Первые 5 часов автомобиль ехал со скоростью 60 км/ч, следующие 3 часа — со скоростью 100 км/ч, а последние 4 часа — со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.

Ответ: 75
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11645

Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 1 км до окончания первого круга, ему сообщили, что второй бегун прошёл первый круг 20 минут назад. Найдите скорость (в км/ч) первого бегуна, если известно, что она на 8 км/ч меньше скорости второго.

Ответ: 13
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11666

Шесть одинаковых рубашек дешевле куртки на 8 %. На сколько процентов девять таких же рубашек дороже куртки?

Ответ: 38%
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11688

Семь одинаковых рубашек дешевле куртки на 9 %. На сколько процентов десять таких же рубашек дороже куртки?

Ответ: 30%
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11790

Два оператора, работая вместе, могут набрать текст газеты объявлений за 8 ч. Если первый оператор будет работать 3 ч, а второй 12 ч, то они выполнят только 75% всей работы. За сколько часов может набрать весь текст первый оператор, работая отдельно?

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11812

Баржа прошла по течению реки 56 км и, повернув обратно, прошла ещё 54 км, затратив на весь путь 5 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.

Ответ: 23
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11834

Баржа прошла по течению реки 88 км и, повернув обратно, прошла ещё 72 км, затратив на весь путь 10 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.

Ответ: 17
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11876

В сосуд, содержащий 5 литров 27-процентного водного раствора вещества, добавили 4 литра воды. Сколько процентов составляет концентрация получившегося раствора?

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11898

В сосуд, содержащий 9 литров 16-процентного водного раствора вещества, добавили 3 литра воды. Сколько процентов составляет концентрация получившегося раствора?

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11924

Два автомобиля одновременно отправляются в 420-километровый пробег. Первый едет со скоростью на 24 км/ч большей, чем второй, и прибывает к финишу на 2 ч раньше второго. Найдите скорость первого автомобиля.

Ответ: 84
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11945

Два автомобиля одновременно отправляются в 560-километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает к финишу на 1 ч раньше второго. Найдите скорость первого автомобиля.

Ответ: 80
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11979

Первый рабочий за час делает на 9 деталей больше, чем второй, и выполняет заказ, состоящий из 216 деталей, на 4 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?

Ответ: 27
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12000

Первый рабочий за час делает на 9 деталей больше, чем второй, и выполняет заказ, состоящий из 112 деталей, на 4 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12021

Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 1 км до окончания первого круга, ему сообщили, что второй бегун пробежал первый круг 3 минуты назад. Найдите скорость первого бегуна, если известно, что она на 2 км/ч меньше скорости второго.

Ответ: 18
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12042

Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 4 км до окончания первого круга, ему сообщили, что второй бегун пробежал первый круг 6 минут назад. Найдите скорость первого бегуна, если известно, что она на 6 км/ч меньше скорости второго.

Ответ: 14
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12063

Петя и Ваня выполняют одинаковый тест. Петя отвечает за час на 19 вопросов теста, а Ваня - на 20. Они одновременно начали отвечать на вопросы теста, и Петя закончил свой тест позже Вани на 9 минут. Сколько вопросов содержит тест?

Ответ: 57
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12084

Петя и Ваня выполняют одинаковый тест. Петя отвечает за час на 13 вопросов теста, а Ваня - на 15. Они одновременно начали отвечать на вопросы теста, и Петя закончил свой тест позже Вани на 40 минут. Сколько вопросов содержит тест?

Ответ: 65
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12105

Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 180 км. Отдохнув, он отправился обратно в А, увеличив скорость на 5 км/ч. По пути он сделал остановку на 3 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В.

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12126

Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 224 км. Отдохнув, он отправился обратно в А, увеличив скорость на 2 км/ч. По пути он сделал остановку на 2 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В.

Ответ: 14
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12147

Смешали 3 литра 30-процентного раствора вещества с 7 литрами 10-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Ответ: 16
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12168

Смешали 4 литра 35-процентного раствора вещества с 11 литрами 5-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Ответ: 13
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12189

Первые 500 км автомобиль ехал со скоростью 100 км/ч, следующие 100 км - со скоростью 50 км/ч, а последние 165 км - со скоростью 55 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.

Ответ: 76,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12210

Первую половину пути автомобиль проехал со скоростью 36 км/ч, а вторую - со скоростью 99 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.

Ответ: 52,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12231

Свежие фрукты содержат 84 % воды, а высушенные — 16 %. Сколько сухих фруктов получится из 231 кг свежих фруктов?

Ответ: 44
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12252

Свежие фрукты содержат 88% воды, а высушенные - 30%. Сколько требуется свежих фруктов для приготовления 72 кг высушенных фруктов?

Ответ: 420
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12937

Кролик утверждает, что вчера Винни‐Пух съел не менее 9 баночек мёда, Пятачок — что не менее 8 баночек, ослик Иа — что не менее 7. Сколько баночек мёда съел вчера Винни‐Пух, если из трёх этих утверждений истинно только одно?

Ответ: 7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12984

Теплоход проходит по течению реки до пункта назначения 216 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 5 км/ч, стоянка длится 5 часов, а в пункт отправления теплоход возвращается через 23 часа после отплытия из него.

Ответ: 25 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13005

Теплоход проходит по течению реки до пункта назначения 80 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 5 км/ч, стоянка длится 23 часа, а в пункт отправления теплоход возвращается через 35 часов после отплытия из него.

Ответ: 15 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13026

Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 30 км/ч, а вторую половину пути проехал со скоростью, большей скорости первого на 9 км/ч, в результате чего прибыл в В одновременно с первым автомобилистом. Найдите скорость первого автомобилиста.

Ответ: 36 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13048

Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 55 км/ч, а вторую половину пути проехал со скоростью, большей скорости первого на 6 км/ч, в результате чего прибыл в В одновременно с первым автомобилистом. Найдите скорость первого автомобилиста.

Ответ: 60 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13069

Первый рабочий за час делает на 9 деталей больше, чем второй, и выполняет заказ, состоящий из 112 деталей, на 4 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13092

Первый рабочий за час делает на 6 деталей больше, чем второй, и выполняет заказ, состоящий из 140 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13113

Свежие фрукты содержат 93% воды, а высушенные — 16%. Сколько килограммов сухих фруктов получится из 252 кг свежих фруктов

Ответ: 21
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13136

Две трубы наполняют бассейн за 6 часов 18 минут, а одна первая труба наполняет бассейн за 9 часов. За сколько часов наполняет бассейн одна вторая труба?

Ответ: 21
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13158

Расстояние между пристанями А и В равно 45 км. Из А в В по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот проплыл 28 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 4 км/ч.

Ответ: 16 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13180

Расстояние между пристанями А и В равно 60 км. Из А в В по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот проплыл 30 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч.

Ответ: 25 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13201

Рыболов в 5 часов утра на моторной лодке отправился от пристани против течения реки, через некоторое время бросил якорь, 2 часа ловил рыбу и вернулся обратно в 10 часов утра того же дня. На какое расстояние (в км) от пристани он отплыл, если скорость реки равна 2 км/ч, а собственная скорость лодки 6 км/ч?

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13222

Имеются два сосуда, содержащие 12 кг и 8 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 65% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится во втором растворе?

Ответ: 2,8
 

Задание 13244

Из пункта A в пункт , расстояние между которыми 34 км, вышел пешеход. Через полчаса навстречу ему из B в А выехал велосипедист. Велосипедист ехал со скоростью, на 8 км/ч большей скорости пешехода. Найдите скорость (в км/ч) велосипедиста, если известно, что они встретились в 10 км от пункта A .

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13270

Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 209 км. На следующий день он отправился обратно в А, увеличив скорость на 8 км/ч. По пути он сделал остановку на 8 часов, в результате чего затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из В в А.

Ответ: 19 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13291

Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 112 км. На следующий день он отправился обратно в А, увеличив скорость на 9 км/ч. По пути он сделал остановку на 4 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из В в А.

Ответ: 21 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13312

Два велосипедиста одновременно отправляются в 208-километровый пробег. Первый едет со скоростью на 3 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу первым.

Ответ: 16 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13334

Два велосипедиста одновременно отправляются в 224-километровый пробег. Первый едет со скоростью на 2 км/ч большей, чем второй, и прибывает к финишу на 2 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.

Ответ: 14 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13355

Теплоход проходит по течению реки до пункта назначения 280 км и после стоянки возвращается в пункт отправления. Найдите скорость течения (в км/ч), если скорость теплохода в неподвижной воде равна 24 км/ч, стоянка длится 15 часов, а в пункт отправления теплоход возвращается через 39 часов после отплытия из него.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13414

Имеются два сосуда, содержащие 12 кг и 8 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 65 % кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60 % кислоты. Сколько процентов кислоты содержится во втором растворе?

Ответ: 35%
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13435

Первый рабочий за час делает на 5 деталей больше, чем второй, и выполняет заказ, состоящий из 200 деталей, на 2 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13458

Имеются два сосуда, содержащие 30 кг и 42 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 40 % кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 37 % кислоты. Сколько процентов кислоты содержится во втором растворе?

Ответ: 55%
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13479

Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 51 минуту, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 251 км, скорость первого велосипедиста равна 10 км/ч, скорость второго — 20 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.

Ответ: 173 км
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13502

Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 28 минут, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 286 км, скорость первого велосипедиста равна 10 км/ч, скорость второго — 30 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.

Ответ: 218 км
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13524

Смешав 60%‐ый и 30%‐ый растворы кислоты и добавив 5 кг чистой воды, получили 20%‐ый раствор кислоты. Если бы вместо 5 кг воды добавили 5 кг 90%‐го раствора той же кислоты, то получили бы 70%‐ый раствор кислоты. Сколько килограммов 60%‐го раствора использовали для получения смеси?

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13584

Моторная лодка прошла против течения реки 132 км и вернулась в пункт отправления, затратив на обратный путь на 5 часов меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч.

Ответ: 17 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13606

По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 60 км/ч и 30 км/ч. Длина товарного поезда равна 900 метрам. Найдите длину (в метрах) пассажирского поезда, если время, за которое он прошёл мимо товарного поезда, равно 3 минутам.

Ответ: 600
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13628

Моторная лодка прошла против течения реки 208 км и вернулась в пункт отправления, затратив на обратный путь на 5 часов меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч.

Ответ: 21 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13650

От пристани A к пристани B, расстояние между которыми равно 238 км, отправился с постоянной скоростью первый теплоход, а через 7 часов после этого следом за ним со скоростью, на 17 км/ч большей, отправился второй. Найдите скорость (в км/ч) первого теплохода, если в пункт B оба теплохода прибыли одновременно

Ответ: 17 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13674

Игорь и Паша красят забор за 8 часов. Паша и Володя красят этот же забор за 10 часов, а Володя и Игорь – за 24 часа. За сколько минут мальчики покрасят забор, работая втроём?

Ответ: 450
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13714

Первая труба пропускает на 16 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 105 литров она заполняет на 4 минуты дольше, чем вторая труба?

Ответ: 14
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13735

Первая труба пропускает на 15 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 100 литров она заполняет на 6 минут дольше, чем вторая труба?

Ответ: 10
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13758

Два велосипедиста одновременно отправляются в 224‐километровый пробег. Первый едет со скоростью на 2 км/ч большей, чем второй, и прибывает к финишу на 2 часа раньше второго. Найдите скорость (в км/ч) велосипедиста, пришедшего к финишу вторым.

Ответ: 14
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13819

Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя 20 минут, когда одному из них оставалось 400 м до окончания первого круга, ему сообщили, что второй бегун пробежал первый круг 1 минуту назад. Найдите скорость первого бегуна, если известно, что она на 2 км/ч меньше скорости второго.

Ответ: 14 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13840

От пристани А к пристани В, расстояние между которыми равно 280 км, отправился с постоянной скоростью первый теплоход, а через 4 часа после этого следом за ним, со скоростью, на 8 км/ч большей, чем у первого, отправился второй. Найдите скорость (в км/ч) первого теплохода, если в пункт В оба теплохода прибыли одновременно.

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13861

Три бригады изготовили вместе 248 деталей. Известно, что вторая бригада изготовила деталей в 4 раза больше, чем первая и на 5 деталей меньше, чем третья. На сколько деталей больше изготовила третья бригада, чем первая?

Ответ: 86
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13884

Из A в B одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого автомобилиста на 11 км/ч, а вторую половину пути проехал со скоростью 66 км/ч, в результате чего прибыл в B одновременно с первым автомобилистом. Найдите скорость (в км/ч) первого автомобилиста, если известно, что она больше 40 км/ч.

Ответ: 44
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13924

Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя 20 минут, когда одному из них оставалось 400 м до окончания первого круга, ему сообщили, что второй бегун пробежал первый круг 2 минуты назад. Найдите скорость первого бегуна, если известно, что она на 3 км/ч меньше скорости второго.

Ответ: 15 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13946

По двум параллельным железнодорожным путям навстречу друг другу следуют скорый и пассажирский поезда, скорости которых равны соответственно 65 км/ч и 40 км/ч. Длина пассажирского поезда равна 350 метрам. Найдите длину скорого поезда, если время, за которое он прошёл мимо пассажирского, равно 36 секундам. Ответ дайте в метрах.

Ответ: 700
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13968

Поезд, двигаясь равномерно со скоростью 75 км/ч, проезжает мимо пешехода, идущего параллельно путям со скоростью 3 км/ч навстречу поезду, за 30 секунд. Найдите длину поезда в метрах.

Ответ: 650
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13990

Шесть одинаковых рубашек дешевле куртки на 8 % . На сколько процентов девять таких же рубашек дороже куртки?

Ответ: 38
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 14011

Семь одинаковых рубашек дешевле куртки на 9 %. На сколько процентов десять таких же рубашек дороже куртки?

Ответ: 30
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 14066

В сосуд, содержащий 9 литров 16-процентного водного раствора вещества, добавили 3 литра воды. Сколько процентов составляет концентрация получившегося раствора?

Ответ: 12
 

Задание 14088

Два автомобиля одновременно отправляются в 420-километровый пробег. Первый едет со скоростью на 24 км/ч большей, чем второй, и прибывает к финишу на 2 ч раньше второго. Найдите скорость первого автомобиля.

Ответ: 84 км/ч
 

Задание 14110

Два автомобиля одновременно отправляются в 560-километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает к финишу на 1 ч раньше второго. Найдите скорость первого автомобиля.

Ответ: 80 км/ч
 

Задание 14132

Свежие фрукты содержат 88 % воды, а высушенные — 30 %. Сколько требуется свежих фруктов для приготовления 72 кг высушенных фруктов?

Ответ: 420 кг
 

Задание 14154

Свежие фрукты содержат 84 % воды, а высушенные — 16% . Сколько сухих фруктов получится из 231 кг свежих фруктов?

Ответ: 44 кг
 

Задание 14176

Первую половину пути автомобиль проехал со скоростью 36 км/ч, а вторую — со скоростью 99 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.

Ответ: -1;4
 

Задание 14198

Первые 500 км автомобиль ехал со скоростью 100 км/ч, следующие 100 км — со скоростью 50 км/ч, а последние 165 км — со скоростью 55 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.

Ответ: 76,5 км/ч