Перейти к основному содержанию

ОГЭ

ОГЭ / (C5) Геометрическая задача на доказательство

Задание 2929

Докажите, что если в треугольнике две высоты равны, то он равнобедренный.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Решение временно отсутствует, можете найти его в моем видео-разборе ( вначале варианта )

Задание 3019

Докажите, что если медиана треугольника совпадает с его биссектрисой, то этот треугольник равнобедренный.

Ответ: ч.т.д.
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

AH - медиана и биссектриса $$\Rightarrow$$ $$\angle HAC=\angle HAB$$; BH=HC и АН - общая.

По теореме косинусов:

$$\left.\begin{matrix}\frac{AH}{\sin C}=\frac{HC}{\sin HAC}\\\frac{AH}{\sin B}=\frac{HB}{\sin BAH}\end{matrix}\right\}$$

$$\Rightarrow \sin C=\sin B\Rightarrow \angle C=\angle B$$

ч.т.д.

Задание 3143

Докажите, что периметр параллелограмма больше суммы длин его диагоналей

Ответ: ч.т.д.
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Текстовое решение временно недоступно, вы можете найти его в видео в начале варианта

Задание 2972

Докажите, что если у треугольника равны две высоты, то этот треугольник равнобедренный.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$CH=AM$$ $$\bigtriangleup BCH=\bigtriangleup AMB$$ ($$\angle B$$ - общий катеты равны) $$\Rightarrow$$ $$AB=BC$$ $$\Rightarrow$$ $$\bigtriangleup ABC$$ - равнобедренный.

ч. т. д.

Задание 3190

Докажите, что прямая, проходящая через точки пересечения двух окружностей, делит пополам общую касательную к ним

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

По свойству касательной и секущей: $$AM^{2}=MC\cdot MN$$

$$MB^{2}=MC\cdot MN$$

$$\Rightarrow$$ $$AM^{2}=MB^{2}$$

$$\Rightarrow$$ $$AM=MB$$

ч.т.д.

Задание 3361

Докажите, что середины оснований трапеции, точка пересечения ее диагоналей и точка пересечения боковых сторон трапеции лежат на одной прямой.

Ответ: ч.т.д.
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3409

Докажите, что радиус окружности, вписанной в прямоугольный треугольник, равен половине разности суммы катетов и гипотенузы.

Ответ: ч.т.д.
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3568

В выпуклом четырехугольнике $$ABCD$$ точки $$K$$, $$M$$, $$P$$, $$E$$ – середины сторон $$AB$$, $$BC$$, $$CD$$ и $$DA$$ соответственно. Докажите, что площадь четырехугольника $$KMPE$$ равна половине площади четырехугольника $$ABCD$$.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) из $$\bigtriangleup ABC$$: $$KM\parallel AC$$ (км - средняя линия)

аналогично: $$KE\parallel DB\parallel MP$$; $$KM\parallel AC\parallel EP$$ и $$EP=KM$$; $$EK=PC$$

2) $$S_{ABD}+S_{DBC}=S_{ABC}+S_{ADC}=S_{ABCD}=S$$

$$\left.\begin{matrix}S_{AKE}=\frac{1}{4}S_{ABD}\\S_{KCP}=\frac{1}{4}S_{DBC}\\S_{KBM}=\frac{1}{4}S_{ACB}\\S_{EDP}=\frac{1}{4}S_{ADC}\end{matrix}\right\}$$ $$\Rightarrow$$

$$\frac{1}{4}(S_{ABD}+S_{DBC})+\frac{1}{4}(S_{ACB}+S_{ADC})=\frac{1}{4}S+\frac{1}{4}S=\frac{1}{2}S$$ $$\Rightarrow$$

$$S_{EKMP}=S-\frac{1}{2}S=\frac{1}{2}S$$

Задание 4060

В четырехугольнике две стороны параллельны друг другу, а две другие перпендикулярны диагоналям. Докажите, что перпендикулярные диагоналям стороны равны между собой.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$BC\parallel AD\Rightarrow ABCD$$ - трапеция

2) Пусть М - середина AD $$\Rightarrow$$

$$AM=MD=BM$$ ($$\bigtriangleup ABD$$ - прямоуг.)

$$AM=MD=MC$$ (аналогично) $$\Rightarrow$$

$$BM=MC\Rightarrow$$ $$\angle MBC=\angle MCB$$

3)  $$\angle CMD=\angle BCM$$ (накрестлежащие)

$$\angle AMB=\angle MBC$$ (накрестлежащие) $$\Rightarrow$$

$$\angle AMB=\angle DCM$$ $$\Rightarrow$$

$$\bigtriangleup AMB=\bigtriangleup CMD$$ (по двум сторонам и углу)

$$\Rightarrow$$ $$AB=CD$$

ч.т.д.

Задание 4803

Докажите, что сумма длин медиан треугольника меньше его периметра.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

На каждой стороне треугольника достроим параллелограмм, как показано на рисунке и введем обозначения: BC=a;AB=c;AC=b;CC1=mc;BB1=mb;AA1=ma

1) Рассмотрим параллелограм ACFB: AF - его диагональ (так как А1 - середина BC), тогда 2AA1=AF; по свойству длин сторон треугольника AF<AC+CF, но СF=AB, и тогда получаем 2ma<b+c или ma<0,5(b+c)(1)
2) Аналогично рассматривая два других параллелограма и треугольники CBE и BCD, получаем mс<0,5(a+b)(2) и mb<0,5(a+c)(3) соответственно.
3) Сложим неравенства 1,2 и 3 и получим : ma+mb+mc<0,5b+0,5c+0,5a+0,5b+0,5a+0,5c или ma+mb+mc<a+b+c
ч.т.д.

Задание 4871

На высоте $$AD$$ треугольника $$ABC$$ взята точка $$N$$. Докажите, что $$AB^{2}-AC^{2}=NB^{2}-NC^{2}$$.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1)По теореме Пифагора из $$\bigtriangleup ABD ; \bigtriangleup ADC$$:
$$\left\{\begin{matrix}AB^{2}=DB^{2}+DA^{2}\\AC^{2}=DC^{2}+DA^{2}\end{matrix}\right.$$
Вычтем из первого второе и получим: $$AB^{2}-AC^{2}=DB^{2}-DC^{2}$$
2)По теореме Пифагора из $$\bigtriangleup BND ; \bigtriangleup CND$$:
$$\left\{\begin{matrix}NB^{2}=DB^{2}+DN^{2}\\NC^{2}=DC^{2}+DN^{2}\end{matrix}\right.$$
Вычтем из первого второе и получим: $$NB^{2}-NC^{2}=DB^{2}-DC^{2}$$
3)Из равенств пунктов 1 и 2 получаем: $$AB^{2}-AC^{2}=NB^{2}-NC^{2}$$

Задание 4898

Докажите, что биссектрисы углов прямоугольника с неравными сторонами при пересечении образуют квадрат.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1)$$\angle JAD = \angle JDA = 45^{\circ}$$ (AJ и DJ - биссектрисы пярмых углов), тогда $$\angle AJD = 90^{\circ}$$. Тогда $$\angle FJI =90^{\circ}$$ как смежный. Аналогично $$\angle FGI =90^{\circ}$$ и тогда FGIJ - прямоугольник

2)$$\bigtriangleup AJD = \bigtriangleup BGC$$ (прямоугольные, равнобедренные, одинаковые гипотенуза), тогда DJ=GC(1). $$\bigtriangleup DFC$$ прямоугольный и равнобедренный, тогда DF=FG(2). Из равенств 1 и 2 получаем FJ=FG. Тогда FGIJ - квадрат

Задание 4945

Диагонали четырёхугольника $$ABCD$$ взаимно перпендикулярны. Углы при вершинах $$B$$ и $$C$$ равны между собой. Докажите, что стороны $$AB$$ и $$CD$$ параллельны.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 4992

В четырехугольнике две стороны параллельны, а диагонали взаимно перпендикулярны. Докажите, что если в данный четырехугольник можно вписать окружность, то две другие стороны четырёхугольника равны между собой.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
1) Так как $$AC \perp BD$$ и $$BC \parallel AD$$ получаем, что $$\angle CBE = \angle EDA ; \angle BCE = \angle EAD$$. Тогда $$\bigtriangleup BEC \sim \bigtriangleup AED$$ и мы можем записать отношение соответственных сторон: $$\frac{BE}{ED}=\frac{EC}{EA}\Leftrightarrow$$$$BE*EA=CE*ED(1)$$
2) Так как чертырехугольник можно вписать в окружность, то BD и AC - хорды и по свойству хорд: $$BE*ED=CE*EA(2)$$
3)Поделим (1) на (2) и получим: $$\frac{EA}{ED}=\frac{ED}{EA}$$. В таком случае $$EA=ED$$, но из подобия $$BE=EC$$ и тогда треугольники AEB и CED равны по двум катетам, откуда следует, что $$AB=CD$$

Задание 5041

В треугольнике $$ABC$$ угол $$ACB$$ тупой, $$BO\perp AC$$, $$OF\perp AB$$, $$OD\perp BC$$. Докажите, что $$\angle ACB=\angle DFB$$.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть $$\angle A=\alpha$$; $$\angle B=\beta$$ $$\Rightarrow$$ $$\angle ACB=180-\angle\alpha-\angle\beta$$

1) $$\angle BCO=180-\angle C=\alpha+\beta$$ $$\Rightarrow$$ из $$\bigtriangleup OCB$$: $$\angle CBO=90^{\circ}-\angle BCO=90^{\circ}-\alpha-\beta$$

2) $$\bigtriangleup ODN\sim\bigtriangleup FNB$$ (прямоугольные); $$\angle DNO=\angle FNB$$ (как вертикал.); $$\Rightarrow$$ $$\frac{ON}{NB}=\frac{DN}{FN}$$ $$\Rightarrow$$ $$\frac{ON}{DN}=\frac{NB}{NF}$$ $$\Rightarrow$$ $$\angle DFN=\angle NBO=90^{\circ}-\alpha-\beta$$ $$\Rightarrow$$ $$\angle DFB=90^{\circ}+90^{\circ}-\alpha-\beta=180^{\circ}-\alpha-\beta=\angle ACB$$ 

ч.т.д.