ОГЭ
Задание 2929
Докажите, что если в треугольнике две высоты равны, то он равнобедренный.
Решение временно отсутствует, можете найти его в моем видео-разборе ( вначале варианта )
Задание 3019
Докажите, что если медиана треугольника совпадает с его биссектрисой, то этот треугольник равнобедренный.
AH - медиана и биссектриса $$\Rightarrow$$ $$\angle HAC=\angle HAB$$; BH=HC и АН - общая.
По теореме косинусов:
$$\left.\begin{matrix}\frac{AH}{\sin C}=\frac{HC}{\sin HAC}\\\frac{AH}{\sin B}=\frac{HB}{\sin BAH}\end{matrix}\right\}$$
$$\Rightarrow \sin C=\sin B\Rightarrow \angle C=\angle B$$
ч.т.д.
Задание 3143
Докажите, что периметр параллелограмма больше суммы длин его диагоналей
Текстовое решение временно недоступно, вы можете найти его в видео в начале варианта
Задание 2972
Докажите, что если у треугольника равны две высоты, то этот треугольник равнобедренный.
$$CH=AM$$ $$\bigtriangleup BCH=\bigtriangleup AMB$$ ($$\angle B$$ - общий катеты равны) $$\Rightarrow$$ $$AB=BC$$ $$\Rightarrow$$ $$\bigtriangleup ABC$$ - равнобедренный.
ч. т. д.
Задание 3190
Докажите, что прямая, проходящая через точки пересечения двух окружностей, делит пополам общую касательную к ним
По свойству касательной и секущей: $$AM^{2}=MC\cdot MN$$
$$MB^{2}=MC\cdot MN$$
$$\Rightarrow$$ $$AM^{2}=MB^{2}$$
$$\Rightarrow$$ $$AM=MB$$
ч.т.д.
Задание 3568
В выпуклом четырехугольнике $$ABCD$$ точки $$K$$, $$M$$, $$P$$, $$E$$ – середины сторон $$AB$$, $$BC$$, $$CD$$ и $$DA$$ соответственно. Докажите, что площадь четырехугольника $$KMPE$$ равна половине площади четырехугольника $$ABCD$$.
1) из $$\bigtriangleup ABC$$: $$KM\parallel AC$$ (км - средняя линия)
аналогично: $$KE\parallel DB\parallel MP$$; $$KM\parallel AC\parallel EP$$ и $$EP=KM$$; $$EK=PC$$
2) $$S_{ABD}+S_{DBC}=S_{ABC}+S_{ADC}=S_{ABCD}=S$$
$$\left.\begin{matrix}S_{AKE}=\frac{1}{4}S_{ABD}\\S_{KCP}=\frac{1}{4}S_{DBC}\\S_{KBM}=\frac{1}{4}S_{ACB}\\S_{EDP}=\frac{1}{4}S_{ADC}\end{matrix}\right\}$$ $$\Rightarrow$$
$$\frac{1}{4}(S_{ABD}+S_{DBC})+\frac{1}{4}(S_{ACB}+S_{ADC})=\frac{1}{4}S+\frac{1}{4}S=\frac{1}{2}S$$ $$\Rightarrow$$
$$S_{EKMP}=S-\frac{1}{2}S=\frac{1}{2}S$$
Задание 4060
В четырехугольнике две стороны параллельны друг другу, а две другие перпендикулярны диагоналям. Докажите, что перпендикулярные диагоналям стороны равны между собой.
1) $$BC\parallel AD\Rightarrow ABCD$$ - трапеция
2) Пусть М - середина AD $$\Rightarrow$$
$$AM=MD=BM$$ ($$\bigtriangleup ABD$$ - прямоуг.)
$$AM=MD=MC$$ (аналогично) $$\Rightarrow$$
$$BM=MC\Rightarrow$$ $$\angle MBC=\angle MCB$$
3) $$\angle CMD=\angle BCM$$ (накрестлежащие)
$$\angle AMB=\angle MBC$$ (накрестлежащие) $$\Rightarrow$$
$$\angle AMB=\angle DCM$$ $$\Rightarrow$$
$$\bigtriangleup AMB=\bigtriangleup CMD$$ (по двум сторонам и углу)
$$\Rightarrow$$ $$AB=CD$$
ч.т.д.
Задание 4803
Докажите, что сумма длин медиан треугольника меньше его периметра.
На каждой стороне треугольника достроим параллелограмм, как показано на рисунке и введем обозначения: BC=a;AB=c;AC=b;CC1=mc;BB1=mb;AA1=ma
Задание 4871
На высоте $$AD$$ треугольника $$ABC$$ взята точка $$N$$. Докажите, что $$AB^{2}-AC^{2}=NB^{2}-NC^{2}$$.
Задание 4898
Докажите, что биссектрисы углов прямоугольника с неравными сторонами при пересечении образуют квадрат.
1)$$\angle JAD = \angle JDA = 45^{\circ}$$ (AJ и DJ - биссектрисы пярмых углов), тогда $$\angle AJD = 90^{\circ}$$. Тогда $$\angle FJI =90^{\circ}$$ как смежный. Аналогично $$\angle FGI =90^{\circ}$$ и тогда FGIJ - прямоугольник
2)$$\bigtriangleup AJD = \bigtriangleup BGC$$ (прямоугольные, равнобедренные, одинаковые гипотенуза), тогда DJ=GC(1). $$\bigtriangleup DFC$$ прямоугольный и равнобедренный, тогда DF=FG(2). Из равенств 1 и 2 получаем FJ=FG. Тогда FGIJ - квадрат
Задание 4992
В четырехугольнике две стороны параллельны, а диагонали взаимно перпендикулярны. Докажите, что если в данный четырехугольник можно вписать окружность, то две другие стороны четырёхугольника равны между собой.
Задание 5041
В треугольнике $$ABC$$ угол $$ACB$$ тупой, $$BO\perp AC$$, $$OF\perp AB$$, $$OD\perp BC$$. Докажите, что $$\angle ACB=\angle DFB$$.
Пусть $$\angle A=\alpha$$; $$\angle B=\beta$$ $$\Rightarrow$$ $$\angle ACB=180-\angle\alpha-\angle\beta$$
1) $$\angle BCO=180-\angle C=\alpha+\beta$$ $$\Rightarrow$$ из $$\bigtriangleup OCB$$: $$\angle CBO=90^{\circ}-\angle BCO=90^{\circ}-\alpha-\beta$$
2) $$\bigtriangleup ODN\sim\bigtriangleup FNB$$ (прямоугольные); $$\angle DNO=\angle FNB$$ (как вертикал.); $$\Rightarrow$$ $$\frac{ON}{NB}=\frac{DN}{FN}$$ $$\Rightarrow$$ $$\frac{ON}{DN}=\frac{NB}{NF}$$ $$\Rightarrow$$ $$\angle DFN=\angle NBO=90^{\circ}-\alpha-\beta$$ $$\Rightarrow$$ $$\angle DFB=90^{\circ}+90^{\circ}-\alpha-\beta=180^{\circ}-\alpha-\beta=\angle ACB$$
ч.т.д.