ОГЭ
Задание 10982
$$у = х^2 - 4|х| - х$$ из этого получим два уравнения:
1) $$x_0=-\frac{-5}{2}=2,5; y_0=2,5^2-5\cdot 2,5=-6,25, x_1=0; x_2=5$$
2) $$x_0=\frac{-3}{2}=-1,5; y_0=(-1,5)^2+3\cdot (-1,5)=-2,25, x_1=0; x_2=-3$$
Построим график функции.
от 1 до 3 точек при $$m\in [-6,25;-2,25]\cup [0;+\infty)$$
Задание 10465
Постройте график функции $$y=\frac{(x^{2}-4x+3)(x^{2}-x-2)}{x^{2}-2x-3}$$ и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Учтем область определения функции D(x): $$x^{2}-2x-3\neq 0\Leftrightarrow$$$$x\neq -1;3$$
Разложим числитель на множители:
Тогда с учетом D(x): $$y=\frac{(x^{2}-4x+3)(x^{2}-x-2)}{x^{2}-2x-3}=$$$$\frac{(x-3)(x-1)(x-2)(x+1)}{(x+1)(x-3)}=$$$$(x-1)(x-2)$$
Построим график функции:
Прямая y=m - параллельна оси оХ. Будет иметь одну точку пересечения в следующих случаях: -0,25;2;6