ОГЭ
Задание 2290
Сократите дробь: $$\frac{18^{n+3}}{3^{2n+5}\cdot 2^{n-2}}$$.
$$\frac{18^{n+3}}{3^{2n+5}\cdot 2^{n-2}}=$$$$\frac{(3^{2}*2)^{n+3}}{3^{2n+5}\cdot 2^{n-2}}=$$$$\frac{3^{2n+6}*2^{n+3}}{3^{2n+5}\cdot 2^{n-2}}=$$$$3^{2n+6-2n-5}*2^{n+3-n+2}=$$$$3*32=96$$
Задание 2291
Разложите на множители: $$x^{2}y+1-x^{2}-y$$.
$$(x^{2}y-x^{2})-(y-1)=x^{2}(y-1)-(y-1)=$$ $$(x^{2}-1)(y-1)=(x-1)(x+1)(y-1)$$
Задание 2292
Сократите дробь: $$\frac{5x^{2}-3x-2}{5x^{2}+2x}$$.
$$\frac{5(x-1)(x+0,4)}{5x(x+0,4)}=\frac{x-1}{x}$$
$$5x^{2}-3x-2=5(x-x_{1})(x-x_{2})$$; где $$x_{1},x_{2}$$ - корни
$$D=9+40=49$$; $$x_{1}=\frac{3+7}{10}=1$$; $$x_{2}=\frac{3-7}{10}=-0,4$$
Задание 2293
Упростите выражение: $$\frac{\sqrt{\sqrt{10}-2}\cdot\sqrt{\sqrt{10}+2}}{\sqrt{24}}$$
$$\sqrt{\frac{(\sqrt{10}-2)(\sqrt{10}+2)}{\sqrt{24}}}=\sqrt{\frac{10-4}{24}}=$$ $$\sqrt{\frac{6}{24}}=\sqrt{\frac{1}{4}}=\frac{1}{2}$$
Задание 2294
Один из корней уравнения $$5x^{2}-2x+3p=0$$ равен 1. Найдите второй корень.
Подставим $$x=1$$:
$$5\cdot1-2\cdot1+3p=0$$; $$3p+3=0$$; $$p=-1$$ Подставим и найдем 2 корень: $$5x^{2}-2x-3=0$$; $$D=4+60=64$$; $$x_{1}=\frac{2+8}{10}=1$$; $$x_{2}=\frac{2-8}{10}=-0,6$$
Задание 2295
Упростите выражение: $$\frac{5^{n+1}-5^{n-1}}{2\cdot 5^{n}}$$
$$\frac{5^{n}\cdot5-\frac{5^{n}}{5}}{2\cdot5^{n}}=\frac{5^{n}(5-\frac{1}{5})}{2\cdot2^{n}}=\frac{4,8}{2}=2,4$$
Задание 2296
Упростите выражение: $$\frac{10\cdot 2^{n}}{2^{n+1}+2^{n-1}}$$
$$\frac{10\cdot2^{n}}{2^{n}\cdot2+\frac{2^{n}}{2}}=\frac{10\cdot2^{n}}{2^{n}(2+\frac{1}{2})}=\frac{10}{2,5}=4$$
Задание 2297
Упростите выражение: $$\frac{6}{a-1}-\frac{10}{(a-1)^{2}}\div \frac{10}{a^{2}-1}-\frac{2a+2}{a-1}$$
$$\frac{6-2a-2}{a-1}-\frac{10}{(a-1)^{2}}\cdot\frac{(a-1)(a+1)}{10}=$$ $$\frac{4-2a}{a-1}-\frac{a+1}{a-1}=\frac{4-2a-a-1}{a-1}=$$ $$\frac{-3a+3}{a-1}=\frac{-3(a-1)}{a-1}=-3$$
Задание 2298
Упростите выражение: $$\frac{m}{m^{2}-2m+1}-\frac{m+2}{m^{2}+m-2}$$
$$\frac{m}{(m-1)^{2}}-\frac{m+2}{(m-1)(m+2)}=\frac{m-m+1}{(m-1)^{2}}=\frac{1}{(m-1)^{1}}$$
$$m^{2}+m-2=0$$; $$D=1+8=9$$; $$m_{1}=\frac{-1+3}{2}=1$$; $$m_{2}=\frac{-1-3}{2}=-2$$
Задание 2299
Найдите значение выражения: $$\frac{(3x)^{3}\cdot x^{-9}}{x^{-10}\cdot 2x^{5}}$$ при $$x=5$$
$$\frac{27x^{3}\cdot x^{-9}}{2\cdot x^{-10+5}}=\frac{27\cdot x^{-6}}{2\cdot c^{-5}}=$$ $$13,5\cdot x^{-1}=13,5\cdot\frac{1}{5}=2,7$$
Задание 2300
Какое из чисел больше: $$\sqrt{6}+\sqrt{10}$$ или $$3+\sqrt{7}$$
$$\sqrt{6}+\sqrt{10}<3+\sqrt{7}$$
$$6+2\sqrt{60}+10<9+6\sqrt{7}+7$$
$$16+2\sqrt{60}<16+6\sqrt{7}$$
$$2\sqrt{60}<6\sqrt{7}$$
$$\sqrt{240}<\sqrt{252}$$
Задание 2301
Сократите дробь $$\frac{p(b)}{p(\frac{1}{b})}$$ , если $$p(b)=(b+\frac{3}{b})(3b+\frac{1}{b})$$
$$p(\frac{1}{b})=(\frac{1}{b}+\frac{3}{\frac{1}{b}})(3\cdot\frac{1}{b}+\frac{1}{\frac{1}{b}})=$$ $$(\frac{1}{b}+3b)(\frac{3}{b}+b)=p(b)$$
$$\frac{p(b)}{p(\frac{1}{b})}=1$$
Задание 2302
Упростите выражение: $$\frac{3x^{2}+4x}{x^{2}-2x}-\frac{2x-7}{x}-\frac{x+8}{x-2}$$
$$\frac{x(3x+4)}{x(x-2)}-\frac{2x-7}{x}-\frac{x+8}{x-2}=\frac{3x+4-x-8}{x-2}-\frac{2x-7}{x}=\frac{2x-4}{x-2}-\frac{2x-7}{x}=$$ $$\frac{2(x-2)}{x-2}-\frac{2x}{x}+\frac{7}{x}=2-2+\frac{7}{x}=\frac{7}{x}$$
Задание 2303
Сократите дробь: $$\frac{x^{3}+2x^{2}-9x-18}{(x-3)(x+2)}$$
$$\frac{x^{2}(x+2)-9(x+2)}{(x-3)(x+2)}=\frac{(x+2)(x^{2}-9)}{(x-3)(x+2)}=$$ $$\frac{(x-3)(x+3)}{x-3}=x+3$$
Задание 2304
Сократите дробь: $$\frac{ab-2b-6+3a}{a^{2}-4}$$
$$\frac{b(a-2)+3(a-2)}{(a-2)(a+2)}=\frac{(a-2)(b+3)}{(a-2)(a+2)}=\frac{b+3}{a+2}$$