Перейти к основному содержанию

ОГЭ

(C6) Геометрическая задача повышенной сложности

Четырёхугольники

Аналоги к этому заданию:

Задание 6649

В трапеции ABCD с боковыми сторонами АВ = 9 и CD = 5 биссектриса угла D пересекает биссектрисы углов А и С в точках М и Nсоответственно, а биссектриса угла В пересекает те же две биссектрисы в точках L и K, причём точка K лежит на основании AD. Найдите отношение МN : KL, если LM : KN = 3 : 7

Ответ: $$\frac{5}{21}$$
Скрыть

     1) $$\angle ABK=\angle CBK$$ (BL-биссектриса ), $$\angle CBK=\angle AKB$$ (накрест лежащие) $$\Rightarrow AB=AK=9$$; AL-биссектриса , медиана и высота равнобедренного $$\Delta ABK$$: $$AL\perp BK$$ и $$BL\perp LK(1)$$

     2) Аналогично из $$\Delta CDK$$ : $$CD=DK=5$$; $$DN\perp CK$$; $$CN=NK$$. С учетом (1) - LN-средняя линия $$\Delta BKC$$ и AD=14

     3) $$MK\cap LN=Q$$; $$KM\cap BC=P$$. Тогда : $$LN\left | \right |BC$$, $$BC\left | \right |AD\Rightarrow$$ $$LN\left | \right |AD$$ и : $$\Delta LMN\sim \Delta AMD\Rightarrow$$ $$QN:QL=KD:KA=5:9\Rightarrow$$ $$QL=\frac{9 QN}{5}(2)$$

     4) $$\angle MLN=\angle MNK=90\Rightarrow$$ около $$MNKL$$ можно описать окружность ($$\angle MLK+\angle MNK=180$$) $$\Rightarrow \Delta LMQ\sim \Delta QNM$$: $$\frac{LM}{NK}=\frac{MQ}{QN}=\frac{3}{7}(3)$$

     5) $$\Delta LQK\sim \Delta MQN\Rightarrow$$ $$\frac{MN}{LK}=\frac{MQ}{QL}$$. С учетом (2) : $$\frac{NQ}{QL}=\frac{MQ}{\frac{9QN}{5}}=$$$$\frac{5MQ}{9 QN}(3)$$. С учетом (3): $$\frac{5 MQ}{9 QN}=\frac{5}{9}*\frac{3}{7}=$$$$\frac{5}{21}=\frac{MN}{LK}$$

Аналоги к этому заданию:

Задание 5612

В равнобедренную трапецию, периметр которой равен 120, а площадь равна 540, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.

Ответ:
Аналоги к этому заданию:

Задание 5611

В трапеции проведен отрезок, параллельный основаниям и делящий ее на две трапеции одинаковой площади. Найдите длину этого отрезка, если основания трапеции равны $$24\sqrt{2}$$ см и $$7\sqrt{2}$$ см.

Ответ:
Аналоги к этому заданию:

Задание 5610

В равнобедренной трапеции ABCD боковые стороны равны меньшему основанию BC. К диагоналям трапеции провели перпендикуляры BH и CE. Найдите площадь четырёхугольника BCEH, если площадь трапеции ABCD равна 36 .

Ответ:
Аналоги к этому заданию:

Задание 5609

Углы при одном из оснований трапеции равны 85° и 5°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 11 и 1. Найдите основания трапеции.

Ответ:
Аналоги к этому заданию:

Задание 5608

Основания трапеции относятся как 1:3. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Ответ:
Аналоги к этому заданию:

Задание 5607

Боковые стороны AB и CD трапеции ABCD равны соответственно 20 и 25, а основание BC равно 5. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.

Ответ:
Аналоги к этому заданию:

Задание 5606

Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если от‐ ношение диагоналей параллелограмма равно 28.

Ответ: