Перейти к основному содержанию

ОГЭ

(C5) Геометрическая задача на доказательство

Четырёхугольники и их элементы

Задание 3143

Докажите, что периметр параллелограмма больше суммы длин его диагоналей

Ответ: ч.т.д.
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Текстовое решение временно недоступно, вы можете найти его в видео в начале варианта

Задание 3361

Докажите, что середины оснований трапеции, точка пересечения ее диагоналей и точка пересечения боковых сторон трапеции лежат на одной прямой.

Ответ: ч.т.д.
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3568

В выпуклом четырехугольнике $$ABCD$$ точки $$K$$, $$M$$, $$P$$, $$E$$ – середины сторон $$AB$$, $$BC$$, $$CD$$ и $$DA$$ соответственно. Докажите, что площадь четырехугольника $$KMPE$$ равна половине площади четырехугольника $$ABCD$$.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) из $$\bigtriangleup ABC$$: $$KM\parallel AC$$ (км - средняя линия)

аналогично: $$KE\parallel DB\parallel MP$$; $$KM\parallel AC\parallel EP$$ и $$EP=KM$$; $$EK=PC$$

2) $$S_{ABD}+S_{DBC}=S_{ABC}+S_{ADC}=S_{ABCD}=S$$

$$\left.\begin{matrix}S_{AKE}=\frac{1}{4}S_{ABD}\\S_{KCP}=\frac{1}{4}S_{DBC}\\S_{KBM}=\frac{1}{4}S_{ACB}\\S_{EDP}=\frac{1}{4}S_{ADC}\end{matrix}\right\}$$ $$\Rightarrow$$

$$\frac{1}{4}(S_{ABD}+S_{DBC})+\frac{1}{4}(S_{ACB}+S_{ADC})=\frac{1}{4}S+\frac{1}{4}S=\frac{1}{2}S$$ $$\Rightarrow$$

$$S_{EKMP}=S-\frac{1}{2}S=\frac{1}{2}S$$

Задание 4060

В четырехугольнике две стороны параллельны друг другу, а две другие перпендикулярны диагоналям. Докажите, что перпендикулярные диагоналям стороны равны между собой.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$BC\parallel AD\Rightarrow ABCD$$ - трапеция

2) Пусть М - середина AD $$\Rightarrow$$

$$AM=MD=BM$$ ($$\bigtriangleup ABD$$ - прямоуг.)

$$AM=MD=MC$$ (аналогично) $$\Rightarrow$$

$$BM=MC\Rightarrow$$ $$\angle MBC=\angle MCB$$

3)  $$\angle CMD=\angle BCM$$ (накрестлежащие)

$$\angle AMB=\angle MBC$$ (накрестлежащие) $$\Rightarrow$$

$$\angle AMB=\angle DCM$$ $$\Rightarrow$$

$$\bigtriangleup AMB=\bigtriangleup CMD$$ (по двум сторонам и углу)

$$\Rightarrow$$ $$AB=CD$$

ч.т.д.

Задание 4898

Докажите, что биссектрисы углов прямоугольника с неравными сторонами при пересечении образуют квадрат.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1)$$\angle JAD = \angle JDA = 45^{\circ}$$ (AJ и DJ - биссектрисы пярмых углов), тогда $$\angle AJD = 90^{\circ}$$. Тогда $$\angle FJI =90^{\circ}$$ как смежный. Аналогично $$\angle FGI =90^{\circ}$$ и тогда FGIJ - прямоугольник

2)$$\bigtriangleup AJD = \bigtriangleup BGC$$ (прямоугольные, равнобедренные, одинаковые гипотенуза), тогда DJ=GC(1). $$\bigtriangleup DFC$$ прямоугольный и равнобедренный, тогда DF=FG(2). Из равенств 1 и 2 получаем FJ=FG. Тогда FGIJ - квадрат

Задание 4945

Диагонали четырёхугольника $$ABCD$$ взаимно перпендикулярны. Углы при вершинах $$B$$ и $$C$$ равны между собой. Докажите, что стороны $$AB$$ и $$CD$$ параллельны.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 4992

В четырехугольнике две стороны параллельны, а диагонали взаимно перпендикулярны. Докажите, что если в данный четырехугольник можно вписать окружность, то две другие стороны четырёхугольника равны между собой.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
1) Так как $$AC \perp BD$$ и $$BC \parallel AD$$ получаем, что $$\angle CBE = \angle EDA ; \angle BCE = \angle EAD$$. Тогда $$\bigtriangleup BEC \sim \bigtriangleup AED$$ и мы можем записать отношение соответственных сторон: $$\frac{BE}{ED}=\frac{EC}{EA}\Leftrightarrow$$$$BE*EA=CE*ED(1)$$
2) Так как чертырехугольник можно вписать в окружность, то BD и AC - хорды и по свойству хорд: $$BE*ED=CE*EA(2)$$
3)Поделим (1) на (2) и получим: $$\frac{EA}{ED}=\frac{ED}{EA}$$. В таком случае $$EA=ED$$, но из подобия $$BE=EC$$ и тогда треугольники AEB и CED равны по двум катетам, откуда следует, что $$AB=CD$$

Задание 5225

Докажите, что в трапеции, диагонали которой являются биссектрисами углов при одном из оснований, длины трёх сторон равны.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1)$$\angle BDA=\angle DBC$$(накрестлежащие при параллельных BC и AD) ; $$\angle BDA=\angle BDC$$ (BD - биссеткриса) , тогда $$\angle BDC=\angle DBC$$, тогда треугольник BDC - равнобедренный и BC=BD(1)

2)аналогично рассматривается равенство углов BAC и BCA, тогда треугольник ABC - равнобедренный, и AB=BC, но с учетом равенства (1) получаем AB=BC=CD.

ч.т.д.

Задание 5321

На стороне $$BC$$ квадрата $$ABCD$$ взята точка $$M$$. Докажите, что площадь треугольника $$AMD$$ равна половине площади квадрата.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1)Пусть $$MH \perp AD$$ , тогда ABMH - прямоугольник и MH=AB

2)$$S_{AMD}=\frac{1}{2}AD*MH$$, или $$S_{AMD}=\frac{1}{2}AD*AB=\frac{1}{2}S_{ABCD}$$

Задание 5368

Докажите, что если в равнобедренной трапеции диагонали взаимно перпендикулярны, то высота трапеции равна средней линии.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
1) Треугольники ABE и CDE прямоугольные (по условию), $$AB \parallel DC$$ (свойство трапеции), тогда треугольник $$ABE\sim CDE$$. Следовательно, $$\frac{EC}{AE}=\frac{ED}{BE}=k$$. Пусть AE=x, тогда EC=kx, пусть BE=y, тогда ED=ky
2) Треугольники ABD и ABC равны (AD=BC и $$\angle DAB=\angle ABC$$ т.к. трапеция равнобедренная, AB - общая), тогда AC=BD и x+kx=y=ky, следовательно x=y, тогда треугольники ABE и CDE - равнобедерненные
3)HE - высота и медиана, тогда, по свойству медианы в прямоугольном треугольнике: $$HE=\frac{1}{2}AB$$, аналогично $$EM=\frac{1}{2}CD$$, тогда $$HE+EM=\frac{1}{2}(AB+CD)=KL$$
ч.т.д.

Задание 5578

В параллелограмме $$ABCD$$ точки $$E$$, $$F$$, $$K$$ и $$M$$ лежат на его сторонах, как показано на рисунке, причём $$AE=CK$$, $$BF=DM$$. Докажите, что $$EFKM$$ — параллелограмм.

Ответ:

Задание 5579

Дан правильный восьмиугольник. Докажите, что если его вершины последовательно соединить отрезками через одну, то получится квадрат.

Ответ:
Скрыть

Последовательно соединенные через одну вершины восьмиугольника образуют треугольники, стороны которых образованы сторонами восьмиугольника и проведенными отрезками. В правильном восьмиугольнике все стороны и углы равны. Получается, что все получившиеся треугольники равны по двум сторонам и углу между ними. Значит, все стороны у получившейся фигуры равны.

Углы у этих треугольников равны $$135;22,5; 22,5.$$

Тогда угол фигуры можно рассчитать как: $$\frac{360 - 135 - 22,5 - 22,5}{2}=90.$$

Итак, у нас получилась фигура с углами в $$90$$ градусов и равными сторонами. То есть квадрат.

Задание 5582

В параллелограмме $$ABCD$$ проведены высоты $$BE$$ и $$BF$$. Докажите, что треугольник $$ABE$$ подобен треугольнику $$CBF$$ .

Ответ:

Задание 5583

Два квадрата имеют общую вершину. Докажите, что отмеченные на рисунке отрезки $$AB$$ и $$CE$$ равны.

Ответ:

Задание 5584

В параллелограмме проведены биссектрисы противоположных углов. Докажите, что отрезки биссектрис, заключенные внутри параллелограмма, равны.

Ответ: