Перейти к основному содержанию

ОГЭ

(C5) Геометрическая задача на доказательство

Четырёхугольники и их элементы

Задание 3143

Докажите, что периметр параллелограмма больше суммы длин его диагоналей

Ответ: ч.т.д.
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Текстовое решение временно недоступно, вы можете найти его в видео в начале варианта

Задание 3314

Биссектрисы углов A и D трапеции ABCD пересекаются в точке M, лежащей на стороне BC. Докажите, что точка M равноудалена от прямых AB, AD и CD.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3361

Докажите, что середины оснований трапеции, точка пересечения ее диагоналей и точка пересечения боковых сторон трапеции лежат на одной прямой.

Ответ: ч.т.д.
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3568

В выпуклом четырехугольнике АВСD точки К, М, Р, Е – середины сторон АВ, ВС, СD и DA соответственно. Докажите, что площадь четырехугольника КМРЕ равна половине площади четырехугольника АВСD.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) из $$\bigtriangleup ABC$$: $$KM\parallel AC$$ (км - средняя линия)

аналогично: $$KE\parallel DB\parallel MP$$; $$KM\parallel AC\parallel EP$$ и $$EP=KM$$; $$EK=PC$$

2) $$S_{ABD}+S_{DBC}=S_{ABC}+S_{ADC}=S_{ABCD}=S$$

$$\left.\begin{matrix}S_{AKE}=\frac{1}{4}S_{ABD}\\S_{KCP}=\frac{1}{4}S_{DBC}\\S_{KBM}=\frac{1}{4}S_{ACB}\\S_{EDP}=\frac{1}{4}S_{ADC}\end{matrix}\right\}$$ $$\Rightarrow$$

$$\frac{1}{4}(S_{ABD}+S_{DBC})+\frac{1}{4}(S_{ACB}+S_{ADC})=\frac{1}{4}S+\frac{1}{4}S=\frac{1}{2}S$$ $$\Rightarrow$$

$$S_{EKMP}=S-\frac{1}{2}S=\frac{1}{2}S$$

Задание 3996

На стороне BC квадрата ABCD взята точка М. Докажите, что площадь треугольника AМD равна половине площади квадрата.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Пусть МН - высота AMD $$\Rightarrow$$

$$MH\perp AD$$ $$\Rightarrow$$

$$MH\parallel AB$$ $$\Rightarrow$$

$$MH=AB$$

2) $$S_{ABCD}=\frac{1}{2}AD\cdot MH=\frac{1}{2}AB\cdot AD$$

$$S_{ABCD}=AB\cdot AD$$ $$\Rightarrow$$

$$S_{AMD}=\frac{1}{2}S_{ABCD}$$

Ч.Т.Д.

Задание 4060

В четырехугольнике две стороны параллельны друг другу, а две другие перпендикулярны диагоналям. Докажите, что перпендикулярные диагоналям стороны равны между собой.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$BC\parallel AD\Rightarrow ABCD$$ - трапеция

2) Пусть М - середина AD $$\Rightarrow$$

$$AM=MD=BM$$ ($$\bigtriangleup ABD$$ - прямоуг.)

$$AM=MD=MC$$ (аналогично) $$\Rightarrow$$

$$BM=MC\Rightarrow$$ $$\angle MBC=\angle MCB$$

3)  $$\angle CMD=\angle BCM$$ (накрестлежащие)

$$\angle AMB=\angle MBC$$ (накрестлежащие) $$\Rightarrow$$

$$\angle AMB=\angle DCM$$ $$\Rightarrow$$

$$\bigtriangleup AMB=\bigtriangleup CMD$$ (по двум сторонам и углу)

$$\Rightarrow$$ $$AB=CD$$

ч.т.д.

Задание 4536

На стороне ВС квадрата АВСD взята точка К. Докажите, что площадь треугольника АКD равна половине площади квадрата.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Пусть х - сторона квадрата, S - его площадь: $$S=x^{2}$$

2) Пусть $$KH\perp AD$$ $$\Rightarrow$$ $$KH=AB=x$$ $$\Rightarrow$$ $$S_{AKD}=\frac{1}{2}\cdot AD\cdot KH=\frac{1}{2}\cdot x\cdot x=\frac{x^{2}}{2}=\frac{S}{2}$$

ч.т.д. 

Задание 4898

Докажите, что биссектрисы углов прямоугольника с неравными сторонами при пересечении образуют квадрат. 

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1)$$\angle JAD = \angle JDA = 45^{\circ}$$ (AJ и DJ - биссектрисы пярмых углов), тогда $$\angle AJD = 90^{\circ}$$. Тогда $$\angle FJI =90^{\circ}$$ как смежный. Аналогично $$\angle FGI =90^{\circ}$$ и тогда FGIJ - прямоугольник

2)$$\bigtriangleup AJD = \bigtriangleup BGC$$ (прямоугольные, равнобедренные, одинаковые гипотенуза), тогда DJ=GC(1). $$\bigtriangleup DFC$$ прямоугольный и равнобедренный, тогда DF=FG(2). Из равенств 1 и 2 получаем FJ=FG. Тогда FGIJ - квадрат

Задание 4945

 Диагонали четырёхугольника АВСD взаимно перпендикулярны. Углы при вершинах В и С равны между собой. Докажите, что стороны АВ и СD параллельны. 

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 4992

В четырехугольнике две стороны параллельны, а диагонали взаимно перпендикулярны. Докажите, что если в данный четырехугольник можно вписать окружность, то две другие стороны четырёхугольника равны между собой.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
1) Так как $$AC \perp BD$$ и $$BC \parallel AD$$ получаем, что $$\angle CBE = \angle EDA ; \angle BCE = \angle EAD$$. Тогда $$\bigtriangleup BEC \sim \bigtriangleup AED$$ и мы можем записать отношение соответственных сторон: $$\frac{BE}{ED}=\frac{EC}{EA}\Leftrightarrow$$$$BE*EA=CE*ED(1)$$
2) Так как чертырехугольник можно вписать в окружность, то BD и AC - хорды и по свойству хорд: $$BE*ED=CE*EA(2)$$
3)Поделим (1) на (2) и получим: $$\frac{EA}{ED}=\frac{ED}{EA}$$. В таком случае $$EA=ED$$, но из подобия $$BE=EC$$ и тогда треугольники AEB и CED равны по двум катетам, откуда следует, что $$AB=CD$$

Задание 5225

Докажите, что в трапеции, диагонали которой являются биссектрисами углов при одном из оснований, длины трёх сторон равны. 

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1)$$\angle BDA=\angle DBC$$(накрестлежащие при параллельных BC и AD) ; $$\angle BDA=\angle BDC$$ (BD - биссеткриса) , тогда $$\angle BDC=\angle DBC$$, тогда треугольник BDC - равнобедренный и BC=BD(1)

2)аналогично рассматривается равенство углов BAC и BCA, тогда треугольник ABC - равнобедренный, и AB=BC, но с учетом равенства (1) получаем AB=BC=CD.

ч.т.д.

Задание 5273

В выпуклом четырёхугольнике ABCD углы DAC и DBC равны. Докажите, что углы CDB и САВ также равны. 

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$\angle CBD=\angle CAD$$ они опираются на $$CD$$ $$\Rightarrow$$ $$ABCD$$ можно вписать в окружность

2) $$\angle CDB$$ и $$\angle CAB$$ опираются на $$BC$$  и из пункта 1 получаем, что они вписанные $$\Rightarrow$$ т.к. на одну хорду опираются, то $$\angle CDB=\angle CAB$$

ч.т.д.

Задание 5321

На стороне BC квадрата ABCD взята точка М. Докажите, что площадь треугольника AМD равна половине площади квадрата.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1)Пусть $$MH \perp AD$$ , тогда ABMH - прямоугольник и MH=AB

2)$$S_{AMD}=\frac{1}{2}AD*MH$$, или $$S_{AMD}=\frac{1}{2}AD*AB=\frac{1}{2}S_{ABCD}$$

Задание 5368

Докажите, что если в равнобедренной трапеции диагонали взаимно перпендикулярны, то высота трапеции равна средней линии.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
1) Треугольники ABE и CDE прямоугольные (по условию), $$AB \parallel DC$$ (свойство трапеции), тогда треугольник $$ABE\sim CDE$$. Следовательно, $$\frac{EC}{AE}=\frac{ED}{BE}=k$$. Пусть AE=x, тогда EC=kx, пусть BE=y, тогда ED=ky
2) Треугольники ABD и ABC равны (AD=BC и $$\angle DAB=\angle ABC$$ т.к. трапеция равнобедренная, AB - общая), тогда AC=BD и x+kx=y=ky, следовательно x=y, тогда треугольники ABE и CDE - равнобедерненные
3)HE - высота и медиана, тогда, по свойству медианы в прямоугольном треугольнике: $$HE=\frac{1}{2}AB$$, аналогично $$EM=\frac{1}{2}CD$$, тогда $$HE+EM=\frac{1}{2}(AB+CD)=KL$$
ч.т.д.

Задание 5416

В параллелограмме MNPK точка A — середина стороны MN. Известно, что AP=AK. Докажите, что данный параллелограмм — прямоугольник.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) По свойству параллелограмма: MN=NP. По условию AN=AM и AP=AK. Тогда треугольники ANP и AMK равны по трем сторонам, следовательно $$\angle ANP=\angle AMK=x$$

2) По свойству параллелограмма: $$\angle ANP+\angle AMK=180$$, следовательно $$\angle ANP=\angle AMK=90$$, тогда MNPK - прямоугольник