ОГЭ
Задание 10975
Сторона треугольника равна 29, а высота, проведённая к этой стороне, равна 12. Найдите площадь этого треугольника.
Задание 1982
Сторона треугольника равна 12, а высота, проведённая к этой стороне, равна 33. Найдите площадь этого треугольника.
Из формулы площади треугольника $$S=\frac{1}{2}*12*33=198$$
Задание 1981
В треугольнике ABC отрезок DE — средняя линия. Площадь треугольника CDE равна 45. Найдите площадь треугольника ABC.
- Так как DE - средняя линия, то $$DE=\frac{1}{2}AC$$, но тогда $$S_{CDE}=\frac{1}{2}S_{ADC}$$ (у них одинаковая высота, но различные в два раза основания). То есть $$S_{ADC}=2*45=90$$, тогда $$S_{ADEC}=135$$
- Треугольники ABC и DBE подобны (по свойству средней линии), при это $$k=\frac{1}{2}$$ - коэффициент подобия, тогда $$\frac{S_{BDE}}{S_{ABC}}=k^{2}=\frac{1}{4}$$, тогда $$S_{BDE}=\frac{1}{4}S_{ABC}$$, следовательно, $$S_{ADEC}=\frac{3}{4}S_{ABC}$$. Получаем, что $$S_{ABC}=\frac{4}{3}S_{ADEC}=180$$
Задание 1976
В треугольнике одна из сторон равна 10, другая равна $$10\sqrt{3}$$, а угол между ними равен 60°. Найдите площадь треугольника.
По формуле площади треугольника $$S=\frac{1}{2}10*10\sqrt{3}*\sin 60^{\circ}=75$$
Задание 1975
В треугольнике одна из сторон равна 10, а опущенная на нее высота — 5. Найдите площадь треугольника.
По формуле площади треугольника $$S=\frac{1}{2}*10*5=25$$