ОГЭ
Задание 11645
Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 1 км до окончания первого круга, ему сообщили, что второй бегун прошёл первый круг 20 минут назад. Найдите скорость (в км/ч) первого бегуна, если известно, что она на 8 км/ч меньше скорости второго.
Задание 11558
По двум параллельным железнодорожным путям навстречу друг другу следуют скорый и пассажирский поезда, скорости которых равны соответственно 65 км/ч и 40 км/ч. Длина пассажирского поезда равна 350 метрам. Найдите длину скорого поезда, если время, за которое он прошёл мимо пассажирского, равно 36 секундам. Ответ дайте в метрах.
Задание 11213
Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 28 минут, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 286 км, скорость первого велосипедиста равна 10 км/ч, скорость второго — 30 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.
Задание 11191
Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 51 минуту, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 251 км, скорость первого велосипедиста равна 10 км/ч, скорость второго — 20 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.
Задание 10981
Два велосипедиста одновременно отправляются в 208-километровый пробег. Первый едет со скоростью на 3 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу первым.
Пусть $$x$$ км/ч - скорость быстрого, тогда $$x-3$$ - скорость медленного. Тогда $$\frac{208}{x-3}-\frac{208}{x}=3\leftrightarrow 208x-208x+208\cdot 3=3x(x-3)\to$$ $$\to x^2-3x-208=0\leftrightarrow D=29^2$$
Получим два корня: $$x_1=\frac{3+2}{2}=16; x_2<0$$. Значит ответ: 16.
Задание 10372
Из пункта A в пункт B, расстояние между которыми равно 34 км, выехал велосипедист. Одновременно с ним из B в A вышел пешеход. Велосипедист ехал со скоростью на 8 км/ч большей скорости пешехода и сделал по пути получасовую остановку. Найдите скорость (в км/ч) велосипедиста, если известно, что они встретились в 10 км от пункта B .
Задание 6645
Поезд, двигаясь равномерно со скоростью 141 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям со скоростью 6 км/ч, за 8 секунд. Найдите длину поезда в метрах.
Пусть пешеход стоит, тогда скорость поезда относительно него : $$141-6=135$$ км\ч.
Переведем секунды в часы: 6 c =$$\frac{8}{3600}$$ часа =$$\frac{1}{450}$$ часа
Найдем длину по формуле расстояния: $$S=v*t=135*\frac{1}{450}=0,3$$ км = 300 метров
Задание 2432
Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 100 км. Отдохнув, он отправился обратно в А, увеличив скорость на 15 км/ч. По пути он сделал остановку на 6 часов, в результате чего затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В.
Пусть х км/ч - скорость велосипедиста в одну сторону, тогда х+15 км/ч - его скорость в обратную сторону. Время из А в В выражается как $$\frac{100}{x}$$ часов, время на обратный путь $$\frac{100}{x+15}$$ часов. Время движения в обратную сторону меньше времени движения из А в В на 6 часов (время остановки), тогда:
$$\frac{100}{x}-\frac{100}{x+15}=6|*\frac{x(x+15)}{2}\Leftrightarrow$$$$50(x+15)-50x=3x^{2}+45x\Leftrightarrow$$$$3x^{2}+15x-750=0|:3\Leftrightarrow$$$$x^{2}+5x-150=0\Rightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=-5\\x_{1}*x_{2}=-150\end{matrix}\right.\Rightarrow$$$$\left[\begin{matrix}x_{1}=-15\\x_{2}=10\end{matrix}\right.$$ - скорость не может быть отрицательной, следовательно, скорость из А в В составляла 10 км/ч
Задание 2430
Два человека одновременно отправляются из одного и того же места по одной дороге на прогулку до опушки леса, находящейся в 4 км от места отправления. Один идёт со скоростью 2,7 км/ч, а другой — со скоростью 4,5 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча?
Пусть х км - расстояние от конечного пункта, на котором встретятся люди. Тогда первый пройдет 4-х км и затратит на это $$\frac{4-x}{2,7}$$ час, а второй пройдет 4+х км и затратит на это $$\frac{4+x}{4,5}$$ часа. Вышли они одновременно, остановок не делали, следовательно, их время равно:
$$\frac{4-x}{2,7}=\frac{4+x}{4,5}|*0,9\Leftrightarrow$$$$5(4-x)=3(4+x)\Leftrightarrow$$$$20-5x=12+3x\Leftrightarrow$$$$8=8x\Leftrightarrow$$$$x=1$$ км. Тогда от точки отправление будет $$4-1=3$$ км.
Задание 2429
Дорога между пунктами A и В состоит из подъёма и спуска, а её длина равна 14 км. Турист прошёл путь из А в В за 4 часа, из которых спуск занял 2 часа. С какой скоростью турист шёл на спуске, если его скорость на подъёме меньше его скорости на спуске на 3 км/ч?
Пусть x км/ч - скорость на спуске, тогда х-3 км/ч - скорость на подъеме. Пусть у км - длина подъема, тогда 14-у км - длина спуска. Получаем время на подъеме: $$\frac{y}{x-3}=2$$ часов, время на спуске: $$\frac{14-y}{x}=2$$ часов. Выразим из первого у через х:
$$\frac{y}{x-3}=2\Leftrightarrow$$$$y=2x-6$$. Подставим во второе уравнение:
$$\frac{14-2x+6}{x}=2\Leftrightarrow$$$$20-2x=2x\Leftrightarrow$$$$x=5$$ км/ч - скорость на спуске.
Задание 2427
Первую половину трассы автомобиль проехал со скоростью 55 км/ч, а вторую — со скоростью 70 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
Пусть 2у км - длина всей трассы, тогда время на первую половину $$t_{1}=\frac{y}{55}$$ часов, а время на вторую $$t_{2}=\frac{y}{70}$$ часов, тогда общее время $$t=\frac{y}{55}+\frac{y}{70}=\frac{14y+11y}{5*11*14}=\frac{5y}{11*14}$$ часов. Следовательно, средняя скорость составит: $$\frac{2y}{\frac{5y}{11*14}}=61,6$$ км/ч
Задание 2426
Первые 300 км автомобиль ехал со скоростью 60 км/ч, следующие 300 км — со скоростью 100 км/ч, а последние 300 км — со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
Время, потраченное на первые 300 км: $$\frac{300}{60}=5$$ часов
На следующие 300: $$\frac{300}{100}=3$$ часа
На последние 300: $$\frac{300}{75}=4$$ часа
Итого пройдено 900 км, а потрачено 12 часов, следовательно, средняя скорость составляет: $$\frac{900}{12}=75$$ км/ч
Задание 2425
Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 1 км до окончания первого круга, ему сообщили, что второй бегун прошёл первый круг 20 минут назад. Найдите скорость первого бегуна, если известно, что она на 8 км/ч меньше скорости второго.
Пусть х км/ч - скорость первого, тогда х+8 км/ч - скорость второго. Пусть у км - один круг, тогда:
за час первый не дошел до конца круга 1 км, следовательно, $$1*x=y-1$$
второй прошел круг за 20 минут до часа, то есть за 40 минут ($$\frac{2}{3}$$ часа), следовательно, $$\frac{2}{3}*(x+8)=y$$. Подставим из второго уравнения в первое выражение вместо у:
$$x=\frac{2}{3}(x+8)-1|*3\Leftrightarrow$$$$3x=2x+16-3\Leftrightarrow$$$$x=13$$ км/ч - скорость первого
Задание 2424
Первые 5 часов автомобиль ехал со скоростью 60 км/ч, следующие 3 часа — со скоростью 100 км/ч, а последние 4 часа — со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
За первые 5 часов прошел: $$5*60=300$$ км
За следующие 3 часа прошел: $$3*100=300$$ км
За оставшиеся 4 часа прошел: $$4*75=300$$ км
Тогда общий путь составил 900 км, а общее время 12 часов, следовательно, средняя скорость составила: $$\frac{900}{12}=75$$ км/ч
Задание 2423
Из городов А и В навстречу друг другу одновременно выехали мотоциклист и велосипедист. Мотоциклист приехал в В на 40 минут раньше, чем велосипедист приехал в А, а встретились они через 15 минут после выезда. Сколько часов затратил на путь из В в А велосипедист?
Пусть х частей расстояния/час - скорость велосипедиста, y - мотоциклиста, все расстояние примем за 1. Так как они встретились через 15 минут ($$\frac{15}{60}=\frac{1}{4}$$ часа), то $$\frac{1}{x+y}=\frac{1}{4}(*1)$$. Время, которое тратит мотоциклист на весь путь из А в В равно $$t_{1}=\frac{1}{y}$$ часов, велосипедист $$t_{2}=\frac{1}{x}$$ часов, и они различаются на 40 минут ($$\frac{2}{3}$$ часа), тогда: $$\frac{1}{x}-\frac{1}{y}=\frac{2}{3}(*2)$$.
Выразим в первом уравнении у через х:
$$\frac{1}{x+y}=\frac{1}{4}\Leftrightarrow$$$$x+y=4\Leftrightarrow$$$$y=4-x$$. Подставим во второе:
$$\frac{1}{x}-\frac{1}{4-x}=\frac{2}{3}|*3x(4-x)\Leftrightarrow$$$$12-3x-3x=8x-2x^{2}\Leftrightarrow$$$$2x^{2}-14x+12=0|:2\Leftrightarrow$$$$x^{2}-7x+6=0\Rightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=7\\x_{1}*x_{2}=6\end{matrix}\right.\Rightarrow$$$$\left[\begin{matrix}x_{1}=6\\x_{2}=1\end{matrix}\right.$$
При х=6 $$y=4-6=-2$$ - число отрицательное, не подходит
При х=1 $$y=4-1=3$$ - подходит, следовательно, скорость велосипедиста составляла 1 часть расстояния в час, то есть за час он преодолел все расстояние
Задание 2422
Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого автомобилиста на 11 км/ч, а вторую половину пути проехал со скоростью 66 км/ч, в результате чего прибыл в В одновременно с первым автомобилистом. Найдите скорость первого автомобилиста, если известно, что она больше 40 км/ч.
Пусть х км/ч - скорость первого, тогда х-11 км/ч - скорость второго на первой половине пути. Примем все расстояние за S км. Тогда, $$t_{1}=\frac{S}{x}$$ часов - время первого, $$t_{2}=\frac{0,5S}{x-11}+\frac{0,5S}{66}$$ часов - время второго. Велосипедисты прибыли одновременно, следовательно:
$$\frac{S}{x}=\frac{0,5S}{x-11}+\frac{0,5S}{66}|:S\Leftrightarrow$$$$\frac{1}{x}=\frac{0,5}{x-11}+\frac{0,5}{66}|*66x(x-11)\Leftrightarrow$$$$66(x-11)=33x+0,5x(x-11)|*2\Leftrightarrow$$$$132x-132*11=66x+x^{2}-11x\Leftrightarrow$$$$x^{2}-77x+1452=0\Rightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=77\\x_{1}*x_{2}=1452\end{matrix}\right.\Rightarrow$$$$\left[\begin{matrix}x_{1}=33\\x_{2}=44\end{matrix}\right.$$, скорость должна быть более 40 км/ч, то есть 44 км/ч
Задание 2421
Первый велосипедист выехал из посёлка по шоссе со скоростью 18 км/ч. Через час после него со скоростью 16 км/ч из того же посёлка в том же направлении выехал второй велосипедист, а ещё через час — третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 4 часа после этого догнал первого.
Пусть х км/ч - скорость третьего. К моменту выезда третьего первый проехал $$18*2=36$$ км, следовательно, третий его догонит через $$t_{1}=\frac{36}{x-18}$$ часов. Второй проехал $$16*1=16$$ км, тогда третий его догонит через $$t_{2}=\frac{16}{x-16}$$ часов. При этом разница во времени составляет 4 часа, то есть:
$$\frac{36}{x-18}-\frac{16}{x-16}=4|*\frac{(x-18)(x-16)}{4}\Leftrightarrow$$$$9(x-16)-4(x-18)=(x-16)(x-18)\Leftrightarrow$$$$9x-144-4x+72=x^{2}-34x+288\Leftrightarrow$$$$x^{2}-39x+360=0\Rightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=39\\x_{1}*x_{2}=360\end{matrix}\right.\Rightarrow$$$$\left[\begin{matrix}x_{1}=24\\x_{2}=15\end{matrix}\right.$$Скорость не может быть 15 км/ч, так как он не смог бы догонять первых двух велосипедистов, следовательно, она составляла 24 км/ч
Задание 2420
Два велосипедиста одновременно отправляются в 60-километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
Путь х км/ч - скорость второго, тогда х+10 км/ч - скорость первого, тогда, время первого $$t_{1}=\frac{60}{x+10}$$ часов, $$t_{2}=\frac{60}{x}$$ часов - время второго. При этом второй ехал на 3 часа дольше, то есть :
$$\frac{60}{x}-\frac{60}{x+10}=3|*\frac{x(x+10)}{3}\Leftrightarrow$$$$20x+200-20x=x^{2}+10x\Leftrightarrow$$$$x^{2}+10x-200=0\Rightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=-10\\x_{1}*x_{2}=-200 \end{matrix}\right.\Leftrightarrow$$$$\left[\begin{matrix}x_{1}=-20\\x_{2}=10\end{matrix}\right.$$. Скорость не может быть отрицательной, следовательно, скорость второго составляла 10 км/ч.
Задание 2419
Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 30 минут, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 144 км, скорость первого велосипедиста равна 24 км/ч, скорость второго — 28 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.
Пусть t часов - время, через которые встретились велосипедисты с момента выезда, тогда время движения второго и есть t, а время движения первого $$t-\frac{1}{2}$$ часа. Тогда первый пройдет расстояние $$s_{1}=24*(t-\frac{1}{2})$$ км, а второй пройдет $$s_{2}=28t$$ км, что в сумме даст общее расстояние в 144 км:
$$24t-12+28t=144\Leftrightarrow$$$$52t=156\Leftrightarrow$$$$t=3$$ часа двигался второй. Тогда расстояние, им пройденное, составит $$3*28=84$$ км
Задание 2418
Поезд, двигаясь равномерно со скоростью 63 км/ч, проезжает мимо идущего в том же направлении параллельно путям со скоростью 3 км/ч пешехода за 57 секунд. Найдите длину поезда в метрах.
Когда два объекта двигаются друг за другом, то можно рассмотреть ситуацию, когда тот, которого догоняют, стоит на месте, а тот, который догоняет, двигается относительно первого со скоростью, равной разности их первоначальных скоростей, то есть человек стоит, а поезд двигается относительно него со скоростью $$63-3=60$$ км/ч. Представим время в часах 57 секунд составляют $$\frac{57}{3600}$$ часа. Тогда длина состава и есть пройденное им расстояние $$S=60*\frac{57}{3600}=0,95$$ км, что в метрах составляет $$0,95*1000=950$$ метров
Задание 2417
Из пункта А в пункт В, расстояние между которыми 13 км, вышел пешеход. Одновременно с ним из В в А выехал велосипедист. Велосипедист ехал со скоростью, на 11 км/ч большей скорости пешехода, и сделал в пути получасовую остановку. Найдите скорость пешехода, если известно, что они встретились в 8 км от пункта В.
Пусть х км/ч - скорость пешехода, тогда х+11 км/ч - скорость велосипедиста. Так как встретились в 8 км от В, то расстояние от А составляло $$13-8=5$$км, тогда время движения пешехода $$t_{1}=\frac{5}{x}$$ часов, время движения велосипедиста $$t_{2}=\frac{8}{x+11}$$. Так как выехал одновременно, но сделал получасовую остановку велосипедист, то время его движения будет на эти полчаса меньше, то есть:
$$\frac{5}{x}-\frac{8}{x+11}=\frac{1}{2}|*2x(x+11)\Leftrightarrow$$$$10(x+11)-16x=x^{2}+11x\Leftrightarrow$$$$x^{2}+17x-110=0\Leftrightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=-17\\x_{1}*x_{2}=-110 \end{matrix}\right.\Leftrightarrow$$$$\left[\begin{matrix}x_{1}=-22\\x_{2}=5\end{matrix}\right.$$. Скорость не может быть отрицательной, следовательно, скорость пешехода составляла 5 км/ч
Задание 2416
Железнодорожный состав длиной в 1 км прошёл бы мимо столба за 1 мин., а через туннель (от входа локомотива до выхода последнего вагона) при той же скорости — за 3 мин. Какова длина туннеля (в км)?
Так как состав прошел мимо столба за одну минуту (по факту он проходит свою же длину), то его скорость можно вычислить как $$1*60=60$$ км/ч (умножили длину на количество минут в часе). Проходя же через туннель поезд проезжает сначала длину туннеля, затем свою собственную. Пусть длина туннеля х км, тогда выразим время, как отношения расстояния к скорости: $$\frac{x+1}{60}=\frac{3}{60}|*60\Leftrightarrow$$$$x+1=3\Leftrightarrow$$$$x=2$$км.
Задание 2415
Расстояние между городами А и В равно 750 км. Из города А в город В со скоростью 50 км/ч выехал первый автомобиль, а через три часа после этого навстречу ему из города В выехал со скоростью 70 км/ч второй автомобиль. На каком расстоянии от города А автомобили встретятся?
За три часа первый пройдет $$3*50=150$$км, следовательно, между автомобилями останется $$750-150=600$$км. Тогда, встретятся они через $$\frac{600}{70+50}=5$$ часов. То есть автомобиль из А в дороге будет $$3+5=8$$ часов, и пройдет $$8*50=400$$ км
Задание 2413
Расстояние между городами А и В равно 375 км. Город С находится между городами А и В. Из города А в город В выехал автомобиль, а через 1 час 30 минут следом за ним со скоростью 75 км/ч выехал мотоциклист, догнал автомобиль в городе С и повернул обратно. Когда он вернулся в А, автомобиль прибыл в В. Найдите расстояние от А до С.
Пусть х км/ч - скорость автомобиля, у км - расстояние до пункта С, следовательно, расстояние от С до В 375-у км. Так как объекты двигаются друг за другом и встречаются в пункте С, то $$\frac{y}{x}-\frac{y}{75}=1,5$$ часа (разница во времени составляет те самые 1,5 часа). Так как от С в В автомобиль и из С в А мотоцикл прибыли одновременно, то $$\frac{y}{75}=\frac{375-y}{x}$$.
Выразим в первом уравнении у через х: $$\frac{y}{x}-\frac{y}{75}=1,5\Leftrightarrow$$$$y(\frac{1}{x}-\frac{1}{75})=\frac{3}{2}\Leftrightarrow$$$$y*\frac{75-x}{75x}=\frac{3}{2}\Leftrightarrow$$$$y=\frac{225x}{150-2x}$$
Подставим во второе: $$\frac{\frac{225x}{150-2x}}{75}=\frac{375-\frac{225x}{150-2x}}{x}\Leftrightarrow$$$$\frac{225x}{(150-2x)75}=\frac{375(150-2x)-225}{x(150-2x)}|*\frac{150-2x}{75}\Leftrightarrow$$$$\frac{3x}{75}=\frac{5(150-2x)-3x}{x}\Leftrightarrow$$$$3x^{2}=(750-13x)75|:3\Leftrightarrow$$$$x^{2}+325x-18750=0\Leftrightarrow$$$$D=105625+75000=180625=425^{2}\Rightarrow$$$$x_{1}=\frac{-325+425}{2}=50 ,x_{2}<0$$, следовательно, скорость автомобиля составляла 50 км/ч, тогда $$y=\frac{225*50}{150-2*50}=225$$км
Задание 2412
Из пунктов А и В, расстояние между которыми 19 км, вышли одновременно навстречу друг другу два пешехода и встретились в 9 км от А. Найдите скорость пешехода, шедшего из А, если известно, что он шёл со скоростью, на 1 км/ч большей, чем пешеход, шедший из В, и сделал в пути получасовую остановку.
Пусть х км/ч - скорость пешехода, шедшего из А, х-1 км/ч - скорость пешехода, шедшего из В. Так как они встретились в 9 км от А, то из В прошел 10 км. То есть время из А $$t_{1}=\frac{9}{x}$$ часов, время из В $$t_{2}=\frac{10}{x-1}$$ часов. Так как из А делал остановку на полчаса и вышли они одновременно, то время движения из В на полчаса больше, то есть:
$$\frac{10}{x-1}-\frac{9}{x}=\frac{1}{2}|*2x(x-1)\Leftrightarrow$$$$20x-18x+18=x^{2}-x\Leftrightarrow$$$$x^{2}-3x-18=0\Leftrightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=3\\x_{1}*x_{2}=-18 \end{matrix}\right.\Leftrightarrow$$$$ \left[\begin{matrix}x_{1}=6\\x_{2}=-3\end{matrix}\right.$$. Скорость не может быть отрицательной, следовательно, она составляла 6 км/ч